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Preface 

This volume contains the papers which were selected for presentation at the second Bioin-
formatics Research and Development (BIRD) conference held in Vienna, Austria during 
July 7–9, 2008. BIRD covers a wide range of topics related to bioinformatics. This year 
sequence analysis and alignment, pathways, networks, systems biology, protein and RNA 
structure and function, gene expression/regulation and microarrays, databases and data 
integration, machine learning and data analysis were the subjects of main interest. 

The decisions of the Program Committee are based on the recommendations of at 
least three, up to five, reviews for each paper. As a result, 30 of the 61 submitted con-
tributions could be accepted for the conference.  

We were happy to have three invited talks presented by experienced researchers 
providing visitors with a good overview but also some very important insights into the 
fascinating domain of bioinformatics. Abstracts and more information on these talks 
are provided in the conference program as well as at the conference site. 

In the second part of this volume the selected contributions of the two workshops 
which were held in parallel to the main conference are presented: Workshop on Dy-
namical Aspects of Perturbation, Intervention and Transition in Biological Systems – 
PETRIN 2008 and Workshop on Algorithms in Molecular Biology – ALBIO 2008 

Poster presentations of the BIRD conference are in the companion proceedings 
published by the Trauner Verlag, Linz. 

The second BIRD conference was a successful continuation of this new conference 
series, which started last year in Berlin. First of all the editors want to thank the au-
thors, whose work made this volume possible. Then we want to thank the invited 
speakers, Rudolf Freund, Peter Schuster, Tom Slezak. 

We especially thank the Program Committee members, who ensured the high qual-
ity of the conference and the publications in this volume, provided their experience 
and expert knowledge, and invested time to select the best submissions. We thank the 
Web administrators (A. Anjomshoaa, A. Dreiling, C. Teuschel), who took care of the 
online submission process and registration.   

Most of all we wish to express our gratitude to Gabriela Wagner (DEXA Society), 
who managed the conference, which includes organizing the submission and the re-
view process, setting up and coordinating the decisions of the Program Committee, 
being responsible for the final paper versions, planning and supervising the technical 
program schedule including the banquet, taking care of the editorial and printing is-
sues, and much more. 
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Workshop on Algorithms in Molecular  
Biology – ALBIO 2008 

Computational molecular biology has emerged from the Human Genome Project as an 
important discipline for academic research and industrial application. The exponential 
growth of the size of biological databases, the complexity of biological problems and 
the necessity to deal with errors in biological sequences result in time efficiency and 
memory requirements. The development of fast, low-memory requirements and high-
performances algorithms is thus increasingly important in computational molecular 
biology. 

Papers presented in this workshop deal with algorithms that solve fundamental 
and/or applied problems in molecular biology, that are computationally efficient, that 
have been implemented and experimented on simulated and/or on real biological se-
quences, and that provide interesting new results.  
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Workshop on Dynamical Aspects of Perturbation, 
Intervention and Transition in Biological  

Systems – PETRIN 2008 

Important aspects in information theory and control theory appeared by studying the 
behavior of biological systems. The classical control loop is a good example present-
ing the methods used by biological entities for controlling certain functional parame-
ters in different circumstances. The further development of control theory and of dy-
namical models led to important achievements in the study of evolutionary processes. 
However, some modern aspects in physics (quantum theory) and mathematics (wave-
lets, fractal theory) imply a more profound approach of transitions and short-range 
phenomena both in materials science and in natural (biological) systems. 

The mathematical formalism of impulsive systems tries to use the rigorous aspects 
from continuous systems formalism as well as the wide range of applications of discrete 
systems formalism. They were introduced due to the fact that many evolution processes 
are characterized by the fact that at certain moments of time they are subject to short-
term perturbations (having the form of external impulses). It is known, for example, that 
many biological phenomena involving thresholds, bursting rhythm models in medicine 
and biology, optimal control models in economics, and frequency modulated systems 
present impulsive effects. Thus impulsive differential equations (involving impulse ef-
fects) can describe the evolution of many scientific and technical phenomena. 

Yet the study of such abrupt changes must be completed with logical, mathematical 
and technical aspects connected with the moment of action of such impulsive external 
commands. 

To model such changes (transitions) in an accurate manner, specific dynamics on 
limited time interval is required. It must be taken into account that bioinformatics 
should join together both statistical aspects (well known in natural sciences from 
thermodynamics theory and quantum theory) and deterministic aspects (describing the 
evolution of systems by differential equations, similar to classical mechanics). As 
particular aspects for biological systems, aspects connected with the so-called free-
choice (for human systems) and external intervention (for human and biological sys-
tems) should be added . This implies the use of accurate dynamics of perturbations, 
intervention and transition in multi-scale systems, for deterministic aspects and sto-
chastic aspects to be merged into a unitary model of the Proper Time of Intervention 
(a very useful concept for human action). 

The Workshop on Dynamical Aspects of Perturbation, Intervention and Transition 
in Biological Systems is intended to emphasize the necessity of joining together de-
terministic and stochastic methods in an accurate multi-scale approach for modeling 
perturbations, transitions and interventions in biological systems. 
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XVI 

The PETRIN 2008 Workshop represented a major scientific event organized by the 
Group for Interdisciplinary Science, Romanian Commission for UNESCO. 
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Abstract. In microarray data analysis, visualizations based on agglomerative
clustering results are widely applied to help biomedical researchers in generating
a mental model of their data. In order to support a selection of the to-be-applied
algorithm and parameterizations, we propose a novel cluster index, the tree index
(TI), to evaluate hierarchical cluster results regarding their visual appearance and
their accordance to available background information. Visually appealing cluster
trees are characterized by splits that separate those homogeneous clusters from
the rest of the data, which have low inner cluster variance and share a medical
class label. To evaluate clustering trees regarding this property, the TI computes
the likeliness of every single split in the cluster tree. Computing TIs for different
algorithms and parameterizations allows to identify the most appealing cluster
tree among many possible tree visualizations obtained. Application is shown on
simulated data as well as on two public available cancer data sets.

1 Introduction

In modern biomedical research, the number of experiments and studies using microar-
ray technology keeps continuously increasing [1,2]. Microarray data is usually char-
acterized by a high dimensionality (many genes), few data points (few samples or
experimental conditions), a low signal-to-noise ratio, outliers, and missing values mak-
ing many standard statistical test methods applicable only to a limited extend.

In the following, we consider the general task of exploratory data analysis of a
preprocessed microarray data set X = {x1, . . . ,xd} of d biological samples. When
exploring this microarray data, the analysis very often includes unsupervised cluster
algorithms. Unlabeled data is divided into natural groups, which may correspond to
particular macroscopic phenotypes or functional categories. The cluster algorithms can
be classified as hierarchical, partitioning and density-based methods [3,4,5].

Agglomerative clustering [6,7] is the basis for most visual data mining tasks in
microarray applications, since in the cluster tree (alias dendrogram) the intrinsic hi-
erarchical cluster structure of a data set is visually accessible at once. Most recently,
normalized cuts [8], a spectral clustering approach has also been applied to microarray
data [9,10]. One problem in clustering based exploratory data analysis is the variability
of the cluster result dependent on the applied cluster algorithm and parameterizations
(preprocessing of the data, (dis-)similarity measure). There is hardly any consensus

M. Elloumi et al. (Eds.): BIRD 2008, CCIS 13, pp. 1–15, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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about how to choose these [11,12]. This results in an enormous number of potential
visual displays for one data set leading to the confusion of the biomedical researcher.
It is common practice to test different algorithms and parameterizations and to select
the cluster result which seems to be the most appropriate according to one’s knowledge
and anticipations. Thus, an analytical and objective evaluation of cluster results would
help to identify the algorithm and parameterization that yield objectively reasonable
cluster results. Cluster indices assess the quality of a clustering by evaluating the data
inside the clusters and by quantifying the amount of global structure captured by the
clustering. Cluster indices can be grouped into internal and external ones [11,13]. In-
ternal indices evaluate the quality of a cluster by using only intrinsic information of
the data. They use the same data which has been used by the cluster algorithm itself.
The following internal measures have been developed: Goodman-Kruskal Index [14],
Calinski Harabasz Index [15], Dunn’s index [16], C-Index [17], Davis-Bouldin index
[18], Silhouette index [19], Homogeneity and Separation [20], and Index I [21]. Most
of these measures have already been successfully applied to microarray data [22], and
are integrated in software packages for analysis of gene expression data [23,24].

More recently, external indices have gained a remarkable popularity to evaluate re-
sults of various cluster algorithms. External evaluation is based on the assumption that a
real class label or category (gold standard) is known for each element. The cluster result
which best reflects both the internal structure and the preset categories, obtains the high-
est score. The label can be a particular macroscopic phenotype, a functional category or
any other category of interest. An important statistical measure is the Rand Index [25] or
the adjusted Rand index [26], measuring the similarity between two partitions that are
the clustering and the external label. A further improvement is the weighted Rand index,
proposed and applied on microarray data [27]. Furthermore the following indices are
proposed in the bioinformatics literature: The cumulative hypergeometric distribution
is used to compute a p-value measuring the probability of observing at least a certain
number of genes of the same annotation in a cluster [28,29]. The biological homogene-
ity index (BHI) is proposed, measuring the fraction of genes with the same annotation
in one cluster, and the biological stability index (BSI) measuring the stability of cluster
results in a leave-one-out approach [30]. Clusterings of genes are compared using the
concept of mutual information [31]. ANOVA is applied to measure the accordance of
the clustering to a linear combination of a binary vector specifying the membership to
functional categories [12]. Finally, a figure of merit (FOM) is proposed to evaluate a
clustering obtained by a leave-one-out approach [32]. The left out sample is used as
external label for validation.

A drawback of all indices proposed so far is that they all work on results obtained by
partitioning methods. The data must be clustered in k groups, whereas k must either be
estimated beforehand or during the cluster evaluation process. Hierarchical cluster trees
are usually evaluated by cutting the tree at some level yielding k clusters. Even though
an evaluation of a hierarchical cluster tree applying traditional indices (for partitions)
at any level of the tree is imaginable, the development of a stable and unbiased index
for trees is not straight-forward. In this paper we propose a novel external cluster index
for cluster trees, the tree index. It is optimized to identify the algorithm and parameteri-
zation (preprocessing of the data, (dis-)similarity measure), yielding the clustering that
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a) c)b) d)

Fig. 1. The first splits of four different cluster trees are shown. In an optimal cluster tree the data is
divided into homogeneous clusters at the very first split (a). Usually such an optimal cluster tree
cannot be generated for real data. An appealing cluster tree is rather characterized by many (here:
two) splits inside the cluster tree each dividing a heterogeneous cluster into almost homogeneous
subclusters (b). The purer and larger the subclusters in a split, the cluster tree is well (b) or not
well (c) suited for a visual datamining task. A degenerated cluster tree (d) separating only single
elements from the rest of the data in each split if of a lower quality.

is best suited for visualization. In biomedical applications, microarray data is usually
analyzed in combination with additional variables, like clinical data or tumor classifi-
cations. Thus we measure the usefulness of a tree visualization according to an external
class label. For demonstration, the index is applied to cluster trees created by agglomer-
ative clustering and normalized cuts on simulated data as well as on two public available
cancer data sets.

2 Methods

We consider a preprocessed microarray data set with d samples (for instance derived
from d tissue samples) of g genes, X = {x1, . . . , xi, . . . ,xd}, dim xi = g. Based
on some background information, one out of κ possible external labels or categories
ci ∈ {C1, . . . , Cκ} is assigned to each sample xi (for instance Cj = tumor classification
of the tissue). In contrast to classification, we use the data labels to tune our visualiza-
tion and not to predict a class for a new sample. Let us now assume that X has been
clustered by some hierarchical agglomerative or divisive cluster algorithm yielding a
cluster tree (Fig. 1). To characterize the features of a cluster tree that allow efficient
visual data mining, we consider the tree as a result of a statistical process. In the ideal
case, the data is divided into homogeneous clusters at the first split (Fig. 1a). Usu-
ally such an optimal cluster tree cannot be generated for real data. In a more realistic
scenario an appealing cluster tree is characterized by many splits that divide a heteroge-
neous clusters into nearly homogeneous subclusters (Fig. 1b). The purer and larger the
subclusters in a split, the more interesting they are, since each of them is defined by a
clear pattern of variables that separate it from the rest of the data. Cluster trees with het-
erogeneous subclusters (Fig. 1c) or degenerated cluster trees (Fig. 1d) separating only
single elements from the rest of the data in each split are of lower visual quality. When
considering the splits of a cluster tree from a statistical point of view, the probabilities
of the splits permit to distinguish between cluster trees of different qualities. Obviously,
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N = 10
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m   = 113

21
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m   = 023
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1
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Fig. 2. In the r-th split, a cluster with N = 10 elements belonging to κ = 3 categories is split
into l = 2 subclusters, each containing mi elements with miλ elements belonging to category
Cλ. In this split a completely homogeneous cluster is separated from the rest of the data. From a
statistical point of view this event is rather unlikely resulting in a high splitting score for the r-th
split.

a cluster tree of high quality is characterized by many unlikely splits, separating large
homogeneous clusters from the rest of the data.

We now introduce the tree index, which is based on the evaluation of probabilities
of every single split in a cluster tree. Clusters, also homogeneous ones, are always
split until only singleton clusters are left since the label is not considered during the
clustering process (Fig. 2). In a first step a splitting score is computed for every single
split in the cluster tree based on the probability of the split. In a second step, all splitting
scores are combined to compute the final tree index.

Step 1: Looking at the r-th split (the splits are numbered arbitrary), a cluster with N
elements is split into l (usually l = 2) smaller subclusters (Fig. 2). The elements of the
main cluster belong to κ different categories whereas nλ, λ ∈ {1, . . . , κ} specifies the
number of elements belonging to category Cλ. The i-th subcluster contains mi elements
with miλ elements belonging to category Cλ. The primary objective is to compute the
probability of such a particular split by taking the observed distributions in the clusters
into account. It is assumed that mi, i ∈ {1, . . . , l} elements are drawn from the N ele-
ments by sampling without replacement. Thereby each element is drawn with the same
probability. For two categories (κ = 2) and two subclusters (l = 2) the probability of
the observed distribution is given by the hypergeometric distribution.

p(m11, m12; N, n1, m1, m2) =

(
m1

m11

)(
m2

m12

)
(
N
n1

) (1)

For the general case (κ categories and l subclusters) the probability is given by a gen-
eralized form of the polyhypergeometric distribution or multivariate hypergeometric
distribution [33]. Let M = {miλ}, n = {nλ}, and m = {mi} with 1 ≤ i ≤ l and
1≤λ≤κ.
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Fig. 3. Cluster trees and histograms with a high (obtained by spectral clustering, σ = 10−2,
Euclidean (dis-)similarity, all normalization), mediocre (obtained by complete linkage, σ = 1,
eucl., all norm.), and low (obtained by single linkage, σ = 1, eucl., all norm.) tree index (TI)
are shown. In all histograms, many splitting scores are close to zero. These result from less
important splits dividing small clusters. The quantity and amplitude of a few high splitting scores
characterize the quality of a cluster tree. A cluster tree with a high TI is characterized by a
histogram with some splitting scores of high amplitude (a). These splitting scores correspond to
splits inside the cluster tree that divide clusters in large and nearly pure subclusters. A cluster
tree with a mediocre TI is characterized by a histogram with some splitting scores of a middle
amplitude (b). These splitting scores correspond to less important splits inside the cluster tree that
divide clusters in less larger and less purer subclusters than observed in the cluster tree with the
high TI. A cluster tree with a low TI is characterized by only a very few splitting scores of low
amplitude (c). Such a degenerated cluster tree consists of many splits separating only one single
element from the rest of the data.

p(M; N,n,m) =

∏l
i=1

mi!∏κ
λ=1 miλ!

N !∏
κ
λ=1 nλ!

(2)

p(M; N,n,m) decreases with the size of the cluster that is split and with the homo-
geneity of the subclusters. The probability reaches its maximum if the distribution in a
given cluster correlates to the distribution in the subcluster, indicating a random split.
We define the splitting score Sr of the r-th split by its negative logarithmic probability.

Sr(M; N,n,m) = − ln p(M; N,n,m)

= ln N !−
κ∑

λ=1

ln nλ!−
l∑

i=1

(
ln mi!−

κ∑
λ=1

ln miλ!

)
(3)
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A splitting score of a given cluster reaches its minimum if the distribution in the cluster
correlates to the distribution in the subclusters. The splitting score increases with the
size of the cluster that is split and with the homogeneity of the subclusters. Thus splits
at higher levels in a cluster tree dividing larger clusters are generally capable to produce
higher splitting scores. Splits at lower levels in a cluster tree divide clusters containing
only few elements. This results in many splitting scores close to zero, since most of
the splits are located in the lower part of a cluster tree. A split dividing a homogeneous
cluster always has a splitting score of zero. Therefore the splits inside homogeneous
clusters are of no importance for the further computation of the tree index.

Step 2: The set of all splitting scores enables to distinguish between cluster trees
of different qualities. Independent of the internal structure of the cluster tree, the sum
of all splitting scores is constant. Many splitting scores are zero (splits of homogeneous
clusters) or close to zero (splits of small clusters). For illustration cluster trees of a high,
mediocre and low quality are presented in Fig. 3.

A cluster tree of low quality is characterized by mostly low splitting scores and a
very few high splitting scores (Fig. 3c). A cluster tree of high quality has considerably
more high splitting scores (Fig. 3a).

To combine the complete set of splitting scores to a parameter-free index, we propose
to use the standard deviation of splitting scores to capture the quality of a cluster tree,
by defining the tree index (TI) by:

TI =

√√√√ 1
R

R∑
r=1

(
Sr − S̄

)2
, with S̄ =

1
R

R∑
r=1

Sr, (4)

and R the number of splits in the cluster tree. Usually S̄ is close to zero because many
Sr are close to zero. Thus, the quantity and amplitude of high Sr basically determines
the index. The higher the index, the more appealing is the corresponding cluster tree
display.

3 Results

For illustration, the tree index is applied to cluster trees obtained from simulated data
and two public available cancer data sets.

3.1 Simulated Data

Our artificial data set C consists of five classes, each containing b = 8 items that are
scattered around their class centers with normally distributed noise (σ∗ = 0.1):

C =
5⋃

i=1

Ci, with Ci = {(xj , cj), xj ∈ N (μi, σ
∗), cj = i, j ∈ [1, b]}, (5)

whereas (xj , cj) comprises a two-dimensional data point xj and the corresponding
label cj . The class centers are given by μ1 = (2, 2)T, μ2 = (5, 2)T, μ3 = (3, 10)T, μ4 =
(50, 2)T, and μ5 = (50, 4)T, meaning that C1 and C2 as well as C4 and C5 are grouped
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close together, with a large gap between the two groups, whereas C3 is located in the
further vicinity of C1 and C2. Now, additional normally distributed noise σ ∈ [0.1, 100]
is added to each point in the data set C to create a perturbed data set Dσ:

Dσ = {(xj + ηj , cj), xj ∈ C, ηj ∈ N (0, σ)} (6)

Four such data sets D0.1, D1.12, D6.32, and D89.1 are shown in Fig. 4a). Their corre-
sponding hierarchical cluster results are displayed below (Fig. 4b). Fig. 4c) displays the
corresponding scores of the four experiments. It can be seen that the number of high
splitting scores decreases as noise increases. The four experiments of Fig. 4a) to c) are
integrated in Fig. 4d), where for each σ, the experiment is repeated 50 times, and the
computed TIs are displayed in Box-and-Whisker plots. The fact that the TI decreases as
noise increases makes the TI a reliable index to measure how well the label is reflect-
ing the structure of the clustered data and how well a specific cluster tree is suited for
visualization.

In order to demonstrate the applicability to larger data sets that are more realistic
in real-world applications and to address the issue of scalability of the tree index, the
experiment is repeated with b = 60 items for each class, resulting in a data set of 300
items. The Box-and-Whisker plots in Fig. 5 indicate that the TI produces qualitatively
similar results compared to the data set with 40 items in Fig. 4. Uniquely the TI’s
amplitude is affected by the number of items in the data set.

3.2 Real-World Data

By applying the TI on real-world data sets, we simulate the scenario where a biomed-
ical researcher is looking for the most appropriate algorithm and parameterization to
visualize the cluster structure in the data.

The first data set is the breast cancer data set of van de Vijver et al. [34]1 which is an
extension to the study of van’t Veer et al. [35]. For each of the 295 subjects in the study,
24496 genes are analyzed and clinical data is available. In our study the clustering of
subjects is performed on logarithms of ratios of a set of 231 marker genes identified by
van’t Veer et al. [35]. The logarithms are either scaled to [−1, 1] (all normalization) or
they are scaled separately to [−1, 1] for each gene (single gene normalization). The data
is separated into two classes of those tumors that develop metastasis and those which
do not. We use this information as the external label (Ci) since the user seeks for groups
of cases that have a similar genetic profile and are in the same tumor class.

The second data set is the multi-class cancer data set of Ramaswamy et al. [36]
containing 288 subjects and 16063 genes. The data is separated into 22 different cancer
types that are taken as external labels (C0, . . . , C21). Thereby it is assumed that there is
a correlation between the cancer type and the microarray data.

In order to create a large range of possible tree visualizations, two different prepro-
cessings are applied (all and single gene normalization), and two different (dis-) similar-
ity measures with five different scaling factors (see next paragraph) are used. The data
set is clustered by the normalized cuts algorithm [8] applied in a hierarchical manner
and by five variants of hierarchical agglomerative clustering (single linkage, complete

1 Downloadable at http://www.rii.com/publications/2002/nejm.html
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Fig. 4. Four perturbed data sets D0.1, D1.12, D6.32, and D89.1 are shown in a). Their cor-
responding hierarchical cluster results are displayed below (b). In b1) the five classes are well
separated. In a first step, the items of each class are grouped together (i). Then the classes C1

and C2 (ii) as well as C4 and C5 (iii) are linked to each other, followed by C3 that is linked to C1

and C2 (iv). As noise increases, C1 and C2 (v) as well as C4 and C5 (vi) cannot be separated any
more by the cluster algorithm (b2). With a further increase of noise, C3 (vii) melts with C1 and C2

(b3), but C1, C2 and C3 are still separated from C4 and C5 (viii). Finally, with very high noise, an
identification of the original classes is not possible any more (b4). c) displays the corresponding
scores of the four experiments. It can be seen that the number of high splitting scores decreases
as noise increases. The four experiments of a) to c) are integrated in d), where for each σ, the
experiment is repeated 50 times, and the computed TIs are displayed in Box-and-Whisker plots.
Obviously, the TI decreases as noise increases. (ix) marks the position of the perfect separation
of the clusters, (x) the position where C1 and C2 as well as C4 and C5 are combined in one cluster.
(xi) marks the position where C3 cannot be separated from C1 and C2 any more and (xii) indicates
a complete random clustering.
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linkage, average linkage, Centroid, Ward). This results in a total of 2×2×5×6 = 120
cluster results. The cluster tree with the highest tree index is selected for final visual-
ization.

Similarity and dissimilarity measures. Both the Euclidean distance and the Pearson
correlation coefficient are used with a scaling factor specifying the sensitivity of the
measures. The normalized cuts algorithm requires a similarity measure wij ∈ [0, 1] of
two expression profiles xi and xj of dimension g whereas hierarchical agglomerative
clustering requires a dissimilarity measure dij ∈ [0, 1]. For our studies we apply dij =
1− wij . The first similarity measure is defined as

wij = exp
{
−μ(xi,xj)

σg

}
, with μ(xi,xj) =

√√√√ g∑
k=1

(xik − xjk)2 (7)

and scaling factor σ. The second similarity measure is based on the Pearson correlation
coefficient [2], which corresponds to the intuitive understanding of correlation and is
often used in the domain of microarray data analysis [7,10]. It is defined as

wij = exp
{
−1− ρ(xi,xj)

σ

}
, with ρ(xi,xj) =

1
g

g∑
k=1

(
xik − x̄i

si

)(
xjk − x̄j

sj

)

(8)

where x̄i = 1
g

∑g
k=1 xik and si =

√
1
g

∑g
k=1(xik − x̄i)2. In our study we use five

different scaling factors σ ∈ {10−3, 10−2, 0.1, 1, 10}.
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Results. Results of the van de Vijver breast cancer data set are displayed in Fig. 6. The
highest tree index is obtained for complete linkage clustering, the correlation
dissimilarity measure, all normalization, and a scaling factor of 10. In the cluster tree,
the subjects are colored according to their category (metastasis or no metastasis). It can
be seen that in the very first split the data has been separated in an nearly homogeneous
cluster (many subjects without metastasis) and a heterogeneous cluster. Such a split
obtains a high splitting score and increases the tree index considerably.

Results of the Ramaswamy data set are displayed in Fig. 7. The highest tree index is
obtained for Ward clustering, the correlation dissimilarity measure, all normalization,
and a scaling factor of 0.1. In the cluster tree, the subjects are colored according to
their category (tumor type). It can be seen that in various splits, homogeneous clusters
are separated from the rest of the data. Such splits obtain high splitting scores and are
responsible for a high tree index.

4 Discussion

Hierarchical cluster algorithms are frequently used for clustering microarray data. Dif-
ferent cluster algorithms and parameterizations produce different cluster results. The
algorithm and parameterization leading to the most appealing cluster visualization need
to be detected according to a specific external label. An appealing cluster tree is charac-
terized by splits dividing a heterogeneous cluster into nearly homogeneous subclusters
regarding externally given additional variables which are interpreted as labels.

We propose a novel index, the tree index, which is based on the probability of each
split. The tree index can identify the cluster algorithm and parameterization yielding
the clustering best suited for visualization. In our study we varied the applied clus-
ter algorithms, preprocessings and (dis-)similarity measures to create a large range of
possible tree visualizations. Since the application of cluster algorithms and the compu-
tation of the tree index are not very time consuming and can be performed automatically
for a large range of parameterizations, many more preprocessings and (dis-)similarity
measures could be tested. Other important issues like gene selection or outlier deletion
might also be considered to obtain cluster trees with even higher tree indices. The direct
analysis of the structure of the cluster tree has the advantage that — in contrast to clus-
ter indices that work on partitions — there is no need to estimate the number of clusters
or to cut the cluster tree at some level.

In step 1, the splitting scores are computed using the probabilities of the splits,
i.e. densities of the hypergeometric distribution. More robust splitting scores might be
obtained using the p−value of the hypergeometric distribution. However, the computa-
tion of the p−value of the generalized hypergeometric distribution, as needed for κ > 2
categories, is not a trivial task.

In step 2, different scoring methodologies might be considered to compute the final
tree index. When combining the R splitting scores to a vector of size R, the Lp-norm
allows to define the final tree index in multiple ways. p = 2 leads to a result qualitatively
similar to taking the standard deviation. p = ∞ is equivalent to judging the tree’s quality
exclusively by the maximal splitting score. More complex scoring methodologies might
also take the tree level of the splitting scores into account.
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The tree index might be compared with other cluster indices. However, such a com-
parison is not straight-forward since those indices have to be adapted in order to address
the issue of cluster tree evaluation appropriately.

The tree index optimizes the tree structure of the cluster tree, not its display. The
leaf ordering inside the cluster tree is still arbitrary. For final visualization we recom-
mend the application of a leaf ordering algorithm [37] and an enhanced visualization
technique with carefully selected graphical attributes (like color scale, line width, etc.).

In the presented examples single biological samples are clustered. The tree index
might also be applied to trees clustering genes. A possible external label might be the
primary function of a gene. Many databases exist for gene annotation and gene ontol-
ogy [38,39]. However, a gene is usually involved in more than only one function or
pathway and the gene annotations are still incomplete. Adaptations of the tree index are
necessary to apply it with such multi-variate and incomplete external labels. Another
application of the tree index is that it can be used to test the robustness of cluster trees.
The influence of noise added to the microarray data or changing the scaling parameter
of the (dis-) similarity measure have to be further examined.

5 Availability

An implementation of the tree index in Matlab can be downloaded at
www.techfak.uni-bielefeld.de/ags/ani/projects/TreeIndex
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Abstract. Time series microarray analysis provides an invaluable insight into 
the genetic progression of biological processes, such as pregnancy and disease. 
Many algorithms and systems exist to meet the challenge of extracting knowl-
edge from the resultant data sets, but traditional methods limit user interaction, 
and depend heavily on statistical, black box techniques. In this paper we present 
a new design philosophy based on increased human computer synergy to over-
come these limitations, and facilitate an improved analysis experience. We pre-
sent an implementation of this philosophy, XMAS (eXperiential Microarray 
Analysis System) which supports a new kind of “sit forward” analysis through 
visual interaction and interoperable operators. Domain knowledge, (such as 
pathway information) is integrated directly into the system to aid users in their 
analysis. In contrast to the “sit back”, algorithmic approach of traditional sys-
tems, XMAS emphasizes interaction and the power, and knowledge transfer po-
tential of facilitating an analysis in which the user directly experiences the data. 
Evaluation demonstrates the significance and necessity of such a philosophy 
and approach, proving the efficacy of XMAS not only as tool for validation  
and sense making, but also as an unparalleled source of serendipitous results. 
Finally, one can download XMAS at http://cose-stor.sfsu.edu/~huiyang/ 
xmas_website/xmas.html 

1   Introduction 

Microarray-based experimentation is a technique, which measures the expression lev-
els for hundreds and thousands of genes within a tissue or cell simultaneously. It 
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therefore provides a data rich environment to obtain a systemic understanding of vari-
ous biochemical processes and their interactions. Data from microarray experiments 
have been used, among others, to infer probable functions of known or newly discov-
ered genes based on similarities in expression patterns with genes of known function-
ality, reveal new expression patterns of genes across gene families, and even uncover 
entirely new categories of genes [1], [2]. In more applied settings, microarray data has 
provided biologist with ways of identifying genes that are implicated in various dis-
eases through the comparison of expression patterns in diseased and healthy tissues. 

The area of microarray data analysis remains particularly active, leading to the de-
velopment of numerous algorithms and software tools. The algorithmic underpinnings 
of these methods span a variety of pattern analysis, machine learning, and data mining 
methodologies including Bayesian belief networks (BBN), clustering, support vector 
machines (SVM), neural networks and Hidden Markov models. A survey of many of 
these techniques can be found in [1], [3], [4] and [5]. From a user perspective, a num-
ber of vendors have developed software systems for microarray data analysis such as 
Ingenuity [6], Onto-Express [7] and GenMAPP [8]. Furthermore, plug-ins have been 
developed for existing software systems such as the BioConductor [9] package for R 
[10], along with SAM [11] and PAM [12] for Excel. 

Despite this un-arguable richness of analysis tools, it is acknowledged however, 
that analysis of microarray data is currently at a bottleneck [13]. Some of the most 
fundamental reasons behind this include: 

• Emphasis on the algorithmics to the exclusion of the user: Holistically taken, most 
microarray analysis implementations are algorithm-oriented and do not provide 
sufficient support for exploration and/or hypotheses formulation. From an end user 
perspective, they function as a “black box” giving users very limited control over 
the analysis process outside what the underlying algorithmic mechanism is in-
tended for. Among others, this limits the ability of users to integrate their domain 
expertise into the analysis process or explore alternatives which the algorithm de-
sign had not foreseen. 

• Interpretability: Methods involving complex algorithms (such as BBN, SVM, and 
dimensionality reduction) may produce results that are difficult to interpret or un-
derstand. This can create a disconnect between the algorithmic process and the bio-
chemical interpretability of the information. 

• Biased statistical analysis: An important challenge outside the aforementioned 
user-centric issues lies in the fact that many existing techniques (e.g., SAM and 
PAM) employ statistical approaches to analyze microarray data. This can lead to 
bias, since in the majority of microarray studies the data is under-constrained (there 
are far fewer samples than genes or probes of interest). A representative example is 
the dataset used in this paper. It studies the placenta over the duration of pregnancy 
and is composed of just 36 samples containing expression levels for over 40,000 
probes.  As a result, it is difficult to construct reliable statistical samples or assume 
a reasonable data distribution model to carry out further analysis. 

Given the aforementioned context, we propose re-thinking the design philosophy 
for developing microarray data analysis systems. Our central observation notes the 
fact that computers are inherently strong at large scale processing, data storage and 
data integration. However they lack the human skills of contextual reasoning, pattern 
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detection, hypotheses formulation, exploratory behaviors, and sense making. Thus the 
primary design goal we seek to establish is the ability to exploit human-machine syn-
ergy by taking advantage of the aforementioned complementarities. 

In the area of human-computer interactions, such an emphasis on exploration and 
hypothesis formulation in data rich environments has been the focus of study in [14] 
and [15], where the term “experiential environment” was used to denote systems and 
interfaces that take advantage of the human-machine synergy and allow users to use 
their senses and directly interact with the data. 

In this paper, we describe the anatomy of a microarray data analysis system called 
XMAS (eXperiential Microarray Analysis System) that is developed by using and 
extending the ideas of experiential computing. The proposed system is (1) direct in 
that it does not use complex metaphors and commands; (2) supports unified query and 
presentation spaces; (3) maintains user context; (4) provides external contextual in-
formation through assimilating a variety of supplementary data such as pathway data 
from the Kyoto Encyclopedia of Genes and Genomes (KEGG) [16], and (5) supports 
algorithmic and user-directed analysis, exploration and hypotheses formulation. Our 
ultimate goal is to promote perceptual analysis by integrating the user directly in an 
interactive and reflexive visualization environment with powerful algorithmic capa-
bilities. XMAS is not limited to the analysis of time series microarray data, and can be 
more widely applied to any time-series datasets. XMAS supports the following visu-
alization and analyses: 

• Trajectory based gene clustering: In time series microarray data, a trajectory is 
composed of a sequence of expression measurements collected at different time 
points for a certain probe or gene. It is essentially a time series of gene expression 
data w.r.t. a single probe or gene.  This function clusters different genes according 
to the relative geometric similarity of their expression trajectories. 

• Data filtering: This can be based on gene identifiers, pathways, and integrated or 
user defined annotations. These filters facilitate the specification of genes of inter-
est, enabling the user to narrow down hypotheses. This functionality extends to 
support any integrated secondary data. 

• Interestingness evaluators: XMAS implements a set of measurements such as 
Pearson’s correlation and p-value to quantify the interestingness of the results, to 
aid the user during visual inspection and more generally the entire analysis process. 

• Visualizations: Two primary visualizations provide interactive representations of 
data at different resolutions including (1) a discretized trajectory view; and (2) a 
precise gene expression view. 

• Interactions: Users can directly manipulate, interact and explore the data using 
highly intuitive point-and-click interactions. 

There exist systems which support some of the features described above. For ex-
ample the commercial system OmniViz [17] offers various reflective and interactive 
visualizations in addition to the more traditional statistical measures and algorithmic 
capabilities. Systems which share this closer resemblance to XMAS lack the core ex-
periential design philosophy, which in turn has a significant influence over the com-
pleted system in the following areas: interaction, visualization, data integration, and 
interoperability. This will become apparent through the remainder of the paper. 
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Through use of XMAS, users are expected to achieve three main goals: (1) to gain 
a deeper understanding of a time series microarray dataset; (2) to verify or compare 
phenomena reported in literature on comparable datasets; (3) to generate hypotheses 
through examining results from different analyses. The main contributions of this 
work include: (1) increased user involvement, comprehension and understanding 
through development of a new design philosophy for microarray data analysis; (2) 
improved biological results from analysis; and (3) a concrete web-based extensible 
implementation of this design philosophy. This paper goes on to describe XMAS; its 
fundamental components and associated combinatorial power in Section 2. In Section 
3 experimental results and user evaluation are presented to demonstrate the efficacy 
of this approach. 

2   System Description 

XMAS is an experiential system for time series microarray data (TSMAD) analysis 
through realizing a collection of interactive visual data operators and assimilating 
different types of knowledge such as pathway information. As shown in Fig. 1, 
XMAS consists of the following main modules: (1) data preprocessing;  (2) a collec-
tion of interoperable data operators, including a parameterized discretization operator, 
basic data integration operators, and trajectory-oriented data operators; (3) interest-
ingness evaluators; and (4) visualization and Human Computer Interaction (HCI). 
Next, we first discuss the datasets utilized by XMAS, and then describe in detail its 
main modules. 

2.1   Data Sets 

XMAS focuses on the analysis of time series microarray data. Such data has been 
used to study the developmental nature of an organ (e.g., a cancerous tissue) by con-
ducting Microarray experiments on samples drawn from this organ over time. The  
 

 

Fig. 1. System overview of XMAS 
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genes of interest are generally specific to a study, which in turn determines the set of 
probes on a microarray chip that one is interested in looking into. 

Let D be a TSMAD, P={p1, p2, .., pM} be the set of M probes of interest, T=<t1, 
t2, .., tQ> be the ordered Q time points when Microarray analyses are conducted, 
and Si={ s1, s2, .., sNi } be the set of Ni samples at time ti∈T. Note that Si and Sj (i≠j) 
might be two different sets due to restrictions on acquisition of live tissues. Then D 
can be considered as a dataset of M time series, each of which corresponds to one 
probe and is referred to as a complex probe trajectory. For each probe pk∈P, its 
trajectory has Q time points. Each time point is associated with a vector of Ni ex-
pression values, corresponding to the Ni samples at this point. To further enhance 
users’ explorative power, and analysis experience, XMAS integrates a variety of 
existing domain knowledge such as a mapping database between the probe set P 
and the set of genes, and pathway data from KEGG. XMAS adopts MySQL, an 
open source RDMBS, to manage such data. 

2.2   Data Preprocessing 

Given a TSMAD D, this module first performs a base-2 logarithmic transformation 
over each expression value in D.  It then applies a simple data reduction technique to 
reduce each complex probe trajectory to a simple time series. Specifically, for a given 
complex trajectory, it replaces the vector of expression values at each time point by 
the median of this vector. One main reason the median is chosen is that it is more 
noise-tolerant.  For the remainder of this paper, we refer to such simple time series as 
simple probe trajectories or probe trajectories. This process simplifies analysis at a 
global level, where the median expression is a reasonable representation of the con-
stituent samples. Complete expression levels are preserved within XMAS and are 
accessible to aid in more concentrated analysis. 

2.3   Interoperable Data Operators, Visualization and HCI 

Interoperable data operators, intuitive visualization, and user-friendly HCI support 
form the core of XMAS. XMAS consists of data operators that can both function in-
dividually and collaborate with others when combined at users’ command. Unlike 
most existing software systems for Microarray data analysis, XMAS injects visualiza-
tion and HCI into data analysis. Therefore, users can not only visually observe the 
results at any moment, but also be able to interactively respond to XMAS to design 
their own explorative paths towards concept validation or hypothesis generation. It is 
due to this tight coupling of data operators, visualization and HCI, we will describe 
each data operator by also including the other two aspects.  

Parameterized data discretization: One main interest in studying TSMADs is to 
characterize the temporal movement of genes in terms of expression level. Given that 
the collection of genes under study can be large, for instance, in the order of tens of 
thousands, examining a dataset on a trajectory-by-trajectory basis is time consuming 
and difficult. In addition, one also needs to reduce the impact from noise in the data. 
To address such issues, XMAS first applies equi-width discretization to each probe 
contained within the preprocessed TSMAD, where the width w (applied globally) is a 
user-specified parameter. The result of this intuitive probe association operator is a 
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collection of discretized probe trajectories, where each expression level is represented 
by an integer, corresponding to its discretized value. The issue of information loss 
inherent to such discretization is countered through the preservation of the precise 
expression values which can be exposed through visualization or inspection. 

Fig. 2 shows part of a screenshot of such discretized trajectories. In this figure, 
each discretized value (or bin) occupies one row space. Small squares or nodes in 
each bin can be clicked to reveal all the probes whose expression levels fall into this 
bin at a give time point. Moreover, all the nodes are arranged from left to right in col-
umns, with the ith column corresponding to the ith time point. A node is colored in red 
if its expression level is higher than the previous node on a trajectory and blue if it is 
lower. The probes in the first node in a row share discretized expression value at the 
first time point. The probes in each of the rightmost nodes share identical discretized 
trajectories. And the probes in each of the middle nodes share a partial trajectory prior  
 

 

Fig. 2. The XMAS analysis environment is divided into three primary regions: (1) the visuali-
zation space displays discretized or precise trajectory views. Visualizations in this space can be 
manipulated in a similar way to various interactive web based mapping applications. This ac-
commodates larger visualizations than would be practical in a static environment. Each node in 
the primary visualization is interactive, allowing the user to inspect content through in-place 
context windows (2). A complementary view, the visualization sidebar (3), provides similar 
data for the entire visualization. Operator specification tools in addition to operator summaries 
and correlation data are also accessible from this space. 
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to that time point. All such nodes are expandable. Note that the system calls several 
operators described later to construct those nodes. 

Basic data integration operators: The operators contained within this category 
realize integration of different datasets. They can be categorized as follows:   

• Gene-probe integrators: These operators relate probes to genes or vice versa, for 
instance, identifying the list of probes associated with a given gene.    

• Probe-gene-pathway integrators: This set of operators enriches a gene or probe 
with pathway information. For instance, one such operator determines whether a 
given gene participates in a pathway; whereas another operator lists all the genes or 
probes that are involved in a pathway. 

• Trajectory-trajectory integrators: These operators relate the three forms of probe 
trajectories utilized by XMAS: complex, simple and discretized probe trajectories. 

Trajectory-oriented data operators: This set of operators support users to ex-
plore the data by examining and uncovering the similarity among probe trajectories. 

• K-means clustering: This operator puts probes of similar, non discretized trajecto-
ries into the same group. The user can choose to cluster based on either Euclidian 
or Pearson’s Correlation distance metrics and can specify the value of K. 

• Expression level preserving trajectory-based clustering: This operator identifies 
the genes whose discretized probe trajectories are identical and associates them in a 
single cluster. Two trajectories are identical if they have the same expression level 
at each time point. Fig. 2 shows examples of such clusters, each corresponding to 
one trajectory. One can inspect the probes and related contextual information in a 
cluster by clicking the corresponding node. 

• Trajectory shape based clustering: This operator finds similar shaped trajectories 
across possibly different expression values. Probes of the same trajectory shape are 
essentially co-expressed at each time point. Therefore, each of such clusters identi-
fies one co-expression pattern. We implement this operator in two steps. It first 
vertically translates all the discretized probe trajectories in a way such that the first 
node of each trajectory corresponds to the same expression level 0. For instance, 
for a given trajectory <2, 3, 1, 3, 4>, its translated trajectory is <0, 1, -1, 2>.  The 
second step finds such clusters by calling the previous clustering operator.  Fig. 3 
shows part of a screenshot of such clusters. One can view the content of each clus-
ter by expanding each of the rightmost nodes. 

 

Fig. 3. Trajectory shape based clustering translates trajectories to a common root. Each node is 
interactive, revealing contextual data about the content of the node as a mobile, in-place win-
dow in the visualization. 
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Fig. 4. Shape based trajectory specification, reveals 2 clusters of inverse trajectory shape 

• Discovery of inversely expressed probes/genes: This operator identifies probes 
whose discretized trajectories are the inverse of each other. Fig. 4 shows the inter-
active query space and corresponding visualization showing five probes expressing 
with perfect discretized inverse correlation to twelve others. 

• Filtering operators: Such operators utilize one or more basic data integration op-
erators described earlier to identify trajectories that satisfy certain specified crite-
ria. All such operators are integrated into one interactive user interface as shown in 
Fig. 2. XMAS currently supports the following filtering operators: 
• Filtering by probes or genes: This identifies probe trajectories associated with 

one or more specified genes. 
• Filtering by pathway: This identifies probes involved in a specified pathway 
• Filtering by gene expression movement: This identifies probes that are partially 

or entirely co-expressed. Fig. 4 illustrates the interface where users can specify a 
specific co-expression pattern of interest. This filtering operator can be applied 
to strictly trajectory-based clusters, or trajectory shape based clusters, as illus-
trated in Figs. 2 and 4 respectively. In Fig. 2, a user is interested in identifying 
all the probes or genes with a relative movement of 2 between the last two dis-
cretized expression levels.  Fig. 4 illustrates the ability to include all the in-
versely expressed genes, this time for shape based clusters (i.e. with the same 
root).  A similar operator is also included where one can identify the probes that 
have a similar expression level at one or more time points by specifying the 
range of expression levels at such time points. 

• Exclude a probe from the resulted probe set: This operator removes a probe 
from analysis. In Fig. 3, one can remove a probe by clicking the ‘x’ symbol. 

Note that all the above data operators are interoperable with each other. This is es-
sential, as XMAS does not prescribe data discovery paths for users. Instead, it em-
powers users to construct their own discovery paths by combining different operators 
in different order. XMAS achieves this by accommodating an integrated user inter-
face shown in Fig. 2. 

2.4   Interestingness Evaluators 

Although visualization is powerful and intuitive for users to gain insight into a data-
set, its effectiveness can be greatly reduced in a variety of situations. For instance, the 
amount of the data being visualized is too large to fit into a computer screen. In some 
cases, data might exhibit an inherently complex structure such that it is difficult for 
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human beings to make sense of the visualized data. To overcome this limitation, 
XMAS includes a collection of evaluators to quantify the results.   

• Volatility of a trajectory: Let TR=<e1, e2, …, eQ> represent a discretized trajectory, 
where ei is the expression value at the ith time point. The volatility of this trajectory 

is defined as Σi=1,Q-1(│ei-ei-1│). One can use this measure to identify probes with 
extremely low or high volatility, where the former might not be of much interest 
and the latter might be a result of noise in the dataset. 

• Precision and recall: These two measurements are used to quantify the strength of 
association between a pathway and the set of probes produced by a data operator. 
Let P be the pathway of interest and x be the number of participating probes of P.  
Let y be the number of probes returned by a certain operator, among which z 
probes are associated with P. Then Precision=z/y and Recall=z/x. 

• Pearson's correlation coefficient:  Let X=<x1, x2, …, xQ> and Y=<y1, y2, …, yQ> 
be two probe trajectories. One can use this evaluator to measure the direction and 
strength of the linear relationship between X and Y. 

• Identification of differentially expressed genes (DEGs): DEGs are selected by  
determining the moderated t statistic-adjusted P values (<0.05 using Bonferroni 
correction [18]). Fig. 2 highlights the DEGs within the current analysis, as leaf an-
notations in the primary visualization (1), and as “tags” in the list view (3). 

P-value: We adopt P-values to measure the statistical and biological significance of 
observing a set of probes being associated with each other by a clustering operator 
described earlier. Given a background distribution, the lower the p-value, the more 
unlikely that observing a set of probes associated with each other is by chance. We 
next use the pathway annotation as an example to explain how P-values are com-
puted. Let N be the number of probes under study, D be the number of probes in a 
given pathway, n out of these N probes are associated with each other by a data opera-
tor, and finally, k out of these n probes are also in the said pathway. The P-value of 

this association of n probes is then defined as: 
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2.5   Interoperability, Interactivity and Extensibility of XMAS 

Interoperability among data operators: Unlike most existing software tools for 
TSMADs, XMAS does not prescribe analytical tasks for users. Instead, it empowers 
users to construct their own data discovery paths tailored for their special needs by 
combining different operators in different orders. XMAS achieves this by realizing 
interoperable data operators and an integrative user interface shown in Fig. 2. Aided 
by visualization, users can use this interface to select a sequence of data operators that 
are most likely to maximize their understanding of a problem at hand. A use case is 
described in detail in section 3 to illustrate this feature and its advantages. 

Interactivity: Interactions with operators in XMAS are direct, i.e., no complex meta-
phors are involved. In addition, XMAS maintains contextual information on both  
users’ behavior and data produced from such behavior. This ensures that there is no 
unnecessary context switching, thereby reducing the cognitive load from users.   
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Extensibility: Due to its modular architecture design (Fig. 2), XMAS can be readily 
extended in one or more of the following aspects: (1) integrate additional supplemen-
tary datasets such as gene ontology (GO)[19] functional categories and implement 
new data integration operators to enrich users' analytical experience; (2) integrate new 
data operators; and (3) realize additional interestingness evaluators. 

3   Experimental Evaluation 

XMAS’ analytical power lies in the union of three areas: (1) visualization; (2) interac-
tivity; and (3) interoperability. As discussed earlier, existing algorithms and software 
systems lack some or all of these desirable components. Considering the general 
trends in the state of the art: user interaction is limited to data entry, parameter speci-
fication and analysis via a simple (text based) command driven interface. Workflow is 
linear and disjoint, (often spread over numerous systems), and data presentation is 
generally textual (with notable exceptions such as pathway visualization in Gen-
MAPP). 

In this section we present evaluation of XMAS which demonstrates the importance 
and necessity of having the three areas coexist. First, we describe how XMAS can be 
used as an interactive visual tool to foster a greater breadth and depth of understand-
ing within microarray data. Second, a common information goal serves as the entry 
point to a highly-non-traditional workflow drawing on many interoperable compo-
nents of XMAS. Finally, comparative quality information is presented to support the 
generated hypotheses. Throughout, the inherent facilitation of hypothesis generation 
and serendipitous discoveries are highlighted. All evaluations were performed on the 
data set described below. 

3.1   Data Description 

To demonstrate the efficacy of XMAS, we used it to analyze a publicly available 
TSMAD [GEO Accession No: GSE5999] which captures expression data of human 
placentas during pregnancy. Using the description of a TSMAD provided in section 
2.1, five time points (Q=5), comprising N1=6, N2=9, N3=6, N4=6, and N5=9 samples 
capture genome wide (45,000 probes representing 39,000 gene transcripts) expression 
profiles of non-contiguous placentas between 14 and 40 weeks of pregnancy. The 5 
distinct gestational time intervals (Q) range between 14-16, 18-19, 21, 23-24, and 37-
40 weeks. The experiments which compose Q=1 through Q=4 capture the stage of 
pregnancy known as midgestation, and the samples from Q=5 are contained within 
the third trimester, also known as Term. For complete experimental protocol, descrip-
tion and analysis workflow, readers are referred to [20]. The findings on this dataset, 
reported in [20] will be cross-referenced where necessary. The dataset was first pre-
processed as described in Section 2.2. It was then discretized as explained in Section 
2.3. Throughout the following evaluation, a bin size of 1 (i.e., w=1) was used. 

3.2   XMAS as a Visual Interactive Tool to Aid in Data Comprehension 

Developing a detailed understanding of a TSMAD is an important step towards gen-
erating focused analysis and hypotheses. Traditionally, the development of a broad 
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and formal understanding is based almost exclusively on the dissection of output from 
utilizing a variety of analysis systems and algorithms. In contrast, XMAS provides an 
integrated environment to facilitate this process. We next describe two scenarios 
(among many), where XMAS is being used to help expert users gain both a global 
and localized view of the data and many times serendipitous discoveries. 

Expression pattern knowledge discovery: Visualization of discretized trajectories and 
shaped based trajectory clustering (i.e. unique trajectories) provide a global view of 
the entire dataset (Fig. 2(1)). As the user began to specify the operators (Section 2.3), 
the reflective query space updated to indicate the quantity of probes, DEGs and 
unique trajectories that would match the defined operator (Fig. 2). This reciprocal 
interaction aided the user to gain insight into the distribution of probes, DEGs, and the 
variability of probe expression during the specification refinement process. For in-
stance, with 2 mouse clicks—one for the discretization operator and the other for the 
shape-based trajectory clustering--XMAS reveals that there are 76 distinct expression 
patterns and 504 DEGs in the dataset. Using the filter as shown in Fig. 4, more de-
tailed information of such patterns were identified within a few mouse clicks:  6 pat-
terns showing a significant expression increase (≥ 4-fold) at Term, 11 showing an 
expression decrease (≥4-fold) at Term, and only 1 showing a 16-fold increase. One 
more click revealed that only one probe involved in the last case. Such information 
provides the user with an insight into both the global and localized behavior of their 
data. This is in sharp contrast to traditional analyses, where such information is 
gleaned through utilizing a number of tools. Additionally, due to effective integration 
of user knowledge, our evaluation has shown that XMAS can often uncover previ-
ously unknown, yet interesting patterns in the data, thereby leading to serendipitous 
discoveries. 

Pathway involvement analysis: The identification of known biological processes  (or 
pathways) involved in a TSMAD is one main goal in microarray analysis. Following 
the identification of such pathways, domain users often find it necessary to further 
support such identification by investigating the relative involvement of each pathway 
in the context of the entire data set (i.e. not exclusive to DEGs, which are traditionally 
the sole focus of pathway analysis such as GenMAPP). This is generally a labor-
intensive and manual process, which can take up to several hours and may become 
impractical for large pathways. We next use the Apoptosis pathway as an example to 
demonstrate how XMAS can significantly improve in this respect.  

As illustrated in Fig. 5, we first used the pathway membership filter to identify the 
631 probes involved in the Apoptosis pathway, among which 8 were annotated as 
DEGs. We then inspected the annotations accompanying each discretized trajectory in 
the visualization, to ascertain the quantity of probes sharing DEG expression profiles 
(at the discretized level). This, the user determined, was a good way of assessing the 
relative involvement of the entire pathway. Individual probes were subsequently re-
included into analysis, enabling visual assessment on a probe-by-probe basis. 

This simple concatenation of operators led to a focused analysis of pathway in-
volvement, reducing what was previously a multi hour process to a few interactions 
(mouse clicks). Too often, traditional analysis concentrates exclusively on DEG lists, 
and here, simple trajectory association enabled the user to surround DEGs with  
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Fig. 5. User led analysis quickly identified DEG involvement in a given pathway. Probe con-
text information presented within the visualization enables the user to pull in similar, yet non-
DEG probes to focus an analysis on the relative involvement of the pathway as a whole. 

contextually similar probes. Analysis of these probes facilitated a more confident dec-
laration of significance, and led to the specification of a subset of probes which could 
form the basis of subsequent analysis. 

3.3   Negative Expression Shift Approaching the End of Pregnancy 

In this and the following sections, we described a complete workflow to illustrate the 
power of discovering serendipitous knowledge as a direct consequence of the integra-
tion of visualization, interactivity, and interoperability among data operators. Such 
integration enables a highly focused, yet simple analysis, which leads to the exposure 
of pathway involvement, hypothesized crosstalk, and co-expression patterns. These 
types of knowledge could not be reasonably developed by traditional means. The user 
workflow is described below and illustrated in Figs. 6 and 7. 

Towards the end of pregnancy, the placenta begins to shut down in preparation for 
delivery. This process materializes at the genetic level as placental cells switch off, 
and is observed as a shift in expression between the second trimester intervals and 
term (time period 5) 0. The entry point to this analysis was to identify such probes. 

Traditionally, such analysis involves the reduction of the data set into two repre-
sentative samples, between which the expression characteristic can be evaluated. 
However, considerable details can be lost in this process. The analysis from 0, for 
example, assumed constant expression during midgestation, reducing 27 samples to 
just one. This is not the case, as one can observe directly within XMAS (Fig. 3). Fur-
thermore, the lack of interaction in traditional analyses heavily restricts the users’ 
ability to obtain a greater sense of completeness. 

As shown if Fig. 6, we first performed a trajectory shape-based clustering to iden-
tify 39 probes that show a 4-fold or more increase at Term, of which 19 are DEGs. 
The visualization based contextual information further verified that the clustering  
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Fig. 6. Workflow, illustrating the specification of operators used to focus analysis. Correlation 
scores demonstrate the power of exploratory analysis to expose common patterns of biological 
interest based on simple interactions. Key visualizations provide an insight into the environ-
ment in which the user is empowered to apply domain knowledge. 

captured the target characteristic well. DEGs were subsequently excluded from analy-
sis to concentrate on the remaining 20 candidates, as they share similar expression 
patterns with DEGs yet not categorized as DEGs. Through visual inspection of pre-
cise probe trajectories the user was able to exclude probes judged to be of lesser inter-
est in the context of the current analysis. Interactively, we focused on the emergence 
of a specific trajectory shape, shared by 6 probes. Correlation analysis verified and 
strengthened this association. Through this process (Fig. 6), XMAS enables direct 
application of domain knowledge and intuition from the domain user. This is un-
matched by other systems.  

Main Observations: The quantity of discretized trajectories represented by the 39 
probes (Fig. 6) indicates the details lost in traditional methods. XMAS facilitated a 
less strict, more intuitive specification of characteristics, which accommodated a 
greater sense of completeness than traditional analysis is capable of establishing. Fur-
thermore, probe membership information, such as DEG content, was integrated into 
the analysis/query space in various ways. These provided valuable contextual infor-
mation which aided the user in the decision making process. The 6 probes identified 
earlier were of great interest to domain experts, due to the reason that will be dis-
cussed in Section 3.4. Again, such probes would be unlikely to be associated without 
the direct application of user knowledge and intuition. 

3.4   Interoperable Pathway Analysis 

Biologists commonly want to identify the involvement of known biological processes 
in the observed time series. Systems such as GenMAPP, Ingenuity and GSEA provide 
mechanisms by which such pathways can be exposed, yet analysis within such sys-
tems is generally confined to DEGs. Statistical methods are employed to expose the 
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most “significant” pathways represented, but issues relating to the completeness and 
quality of such subsets are here compounded. 

Pathway analysis within XMAS can center on DEGs, as per traditional analysis, 
but is equally applicable to sets of probes sharing other characteristics – demonstrat-
ing the core value of interoperability. The power of XMAS to facilitate the exposition 
of probesets with significant commonality beyond, or in addition to differential ex-
pression, was explored in the previous scenario. Based on a serendipitous discovery, 
this scenario is extended, illustrating pathway analysis functionality within XMAS. 
This process is illustrated in Fig. 7. 

It was indicated by the pathway membership view accompanying the visualization 
of the six probed from the previous use case (see Fig. 7), that the set has a significant 
three probe overlap with the pathway of Calcium regulation in cardiac cells. Interest-
ingness measures provided quantitative support for the discovery, and the application 
of a corresponding pathway filter concentrated analysis on the three matching probes. 
DEG probes were reintroduced into the analysis space, revealing a single DEG shar-
ing the developed characteristics. The appropriateness of the association of the addi-
tional DEG with the existing three probes was confirmed visually, and with the aid of 
the correlation matrices. 

Serendipitous Discoveries: The exposure of 6 non-DEG probes, with a shared trajec-
tory characteristic and expression profile led to the analysis of a pathway, which was 
unlikely to be judged significant by traditional analysis that focuses entirely and glob-
ally on the set of DEGs. The workflow that led to the association of non-DEGs with 
DEGs provided evidence to suggest that the localized observation was significant. 
Domain experts agree that the finding is striking, strengthening its candidacy for web 
lab experimentation. Further from the analysis of Calcium Regulation, the user noted 
a pathway overlap with Purine metabolism. This provides another extension point to 
analysis, which could manifest as a reverse analysis from local observation to global 
view of the relative involvement of Purine metabolism. Smooth muscle contraction is 
another such extension point. 

 

Fig. 7. Workflow for the exploration of a serendipitous pathway discovery 



30 B. Dalziel et al. 

 

Fig. 8. Comparative assessment of association quality: The left figure compares the two sets of 
probes associated by k-means and XMAS respectively; the upper right figure identifies the 
common probe shared by these two sets; and the lower right table compares the factors under 
consideration by K-means and XMAS 

Traditional analysis and analysis within XMAS are difficult to compare directly 
because of the differing emphasis on interaction and exploratory analysis, and global 
statistical/algorithmic analysis respectively. The outputs from both traditional and 
experiential approaches are comparable, however. 

K-means analysis from 0, for example, associated the DEG from our set of four 
(201667_at) with 9 other DEGs, based on expression alone. This set serves as a direct 
comparison for the set of four which emerged from the previously described analysis. 
Despite having more probes, and more DEGs, the literature hits for our set far out-
weigh the expression (only) based association of k-means. See Fig. 8 for details. 

4   Conclusions 

This paper has presented XMAS, a web application developed with a new design 
philosophy to foster increased human-computer synergy. Various interoperable op-
erators have been presented which combine with visualizations and HCI to compose 
an exploratory, interactive analysis system. Detailed use cases and comparisons 
made between XMAS and well established microarray analysis methods present evi-
dence to prove the ability of this new approach to dramatically enhance the users 
experience during analysis. This materializes in the form of new, more complete 
hypothesis generation. 
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Abstract. Clustering genes into groups that exhibit similar expression patterns
is one of the most fundamental issues in microarray data analysis. In this pa-
per, we present a normalized Expectation-Maximization (EM) approach for the
problem of gene-based clustering. The normalized EM clustering also follows the
framework of generative clustering models but for the data in a fixed manifold.
We illustrate the effectiveness of the normalized EM on two real microarray data
sets by comparing its clustering results with the ones produced by other related
clustering algorithms. It is shown that the normalized EM performs better than
the related algorithms in term of clustering outcomes.

Keywords: clustering, microarray data, normalized EM, manifold.

1 Introduction

Microarray technology allows ones to simultaneously monitor expression measure-
ments of thousands of genes, across various conditions or over time [1], [2], [3]. To
explore a vast amount of data generated from microarray experiments, numerous data
mining techniques have been proposed to extract insightful biological data-based
knowledge. Clustering is one of the basic exploratory tools for microarray data analysis.
A wide range of clustering methods have been proposed in gene expression community
including hierarchical clustering [4], [5], [6]; self-organizing maps (SOM) [7]; k-means
and its variants [8], [9], [10]; graph-based methods [11], [12]; and mixture model-based
clustering [13], [14], [15].

One of the most important aspects in clustering is the metric utilized to gauge the
similarity between data points and their cluster representatives. It is well-known that
similar gene expression patterns often show co-linear stochastic relationship, especially
on standardized data sets. This stochastic relationship is suitably evaluated by the co-
sine similarity among data vectors. Indeed, the similarity measure has been seen to
be applied for clustering [16], [17]. In [16] Dhillon and Modha performed text clus-
tering using spherical k-means. In [17] Banerjee et al proposed a method to estimate
the concentration parameter of von Mises-Fisher distributions and applied their clus-
tering algorithms for yeast cell cycle gene expression data. They were ,however, more
concerned with the estimation of stochastic model parameters than the applicability of
the clustering on a hypersphere for extracting useful knowledge from gene expression
profiles.

M. Elloumi et al. (Eds.): BIRD 2008, CCIS 13, pp. 32–42, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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In this paper, we propose a normalized EM algorithm for clustering gene expression
data, in which data points are already projected onto a hypersphere. The proposed ap-
proach also follows the mixture model-based clustering framework but data points are
assumed to be generated by a mixture of exponential distributions in a fixed manifold,
which is the surface of a hypersphere. The normalized EM is able to work stable with
high dimensional microarray data sets.

In short, our main contributions in this work are the following: (i) the normalized EM
algorithm is introduced for the problem of clustering genes using microarray data; (ii)
the viability of the proposed normalized EM is demonstrated by comparing its cluster-
ing performance with that of spherical k-means [16] and Gaussian parsimonious clus-
terings [18].

The remainder of this paper is as follows. Section 2 presents the statistical model
of normalized EM and derivations of the algorithm. In section 3, the performance of
the proposed approach is examined with the demonstration through two real microar-
ray data sets. Finally, section 4 reviews what has been done in this work and briefly
discusses directions of further research.

For the ease of presentation, some conventions of notation used in this paper are
provided: n is the number of data points or genes to be clustered; p is the dimension of
data points or the number of samples; X = {xi}n

i=1 is the set of all data points; K is
the number of clusters in a data set; {Xh}K

h=1 is a K-cluster partition of the data; 〈.〉 is
the inner product of two vectors; ‖.‖ is the Euclidean norm.

2 Statistical Model

A typical microarray data set is given as a matrix Gp×n, where the entry (i, j) of the
matrix represents the expression level of gene j in the ith experiment. In other words,
G = [x1, x2, ..., xn] where xj ∈ Rp is the expression profile of the jth gene in the mi-
croarray. Usually the number of genes n is much larger than the number of experiments
p (n 	 p). Our primary aim is to detect groups of genes exhibiting similar expression
patterns. Specifically, we have to classify the set of data points or genes into K groups
X1,X2, ...,XK such that genes within each cluster are highly correlated whereas ex-
pression patterns of genes between clusters are as much different as possible.

An important point to note here is that Euclidian distance is not capable of capturing
the co-linear stochastic relationship between the original gene expression profiles. To
overcome the limitation, data are projected onto the surface of a hypersphere. And as
can be seen, after the data projection cosine similarity between any two data vectors
still remains unchanged and can be trivially inferred from their Euclidian distance in
the new manifold.

Spherical k-means is one of the heuristic clustering algorithms applied for spherical
data, where at each iteration any data point is assigned to one of the clusters with prob-
ability one. This hard clustering procedure may not be robust against the complexity of
microarray data, which are inherently dense and noisy.

We now introduce a new normalized EM soft clustering approach for both gene
expression data. First, data points are normalized so that they lie on a hypersphere and
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then clustering of the data is performed on this hypersphere only. The statistical model
for the normalized EM clustering is described in detail as follows:

First, each gene expression profile xi is normalized so that they belong to a fixed
manifold Sμ = {x : ‖x‖2 = μ, x ∈ Rp} for some μ > 0. In other words, the data
points are processed by

xi →
√

μ
xi

‖xi‖
, i = 1, 2, ..., n (1)

Then these normalized xi’s are treated as drawn sampled outcomes of a mixture of
K exponential distributions

p(x|Θ) = γμ

K∑
h=1

πhe−‖x−μh‖2
(2)

where Θ = (π1, μ1, ..., πk, μk), in which the πh, μh as mixing proportions and direc-
tional mean vectors respectively,

K∑
h=1

πh = 1, πh ≥ 0, ‖μh‖2 = μ, h = 1, 2, ..., K (3)

and γμ is the normalizing constant

γμ = 1/

∫
x∈Sμ

e−‖x−μh‖2
dx. (4)

Assuming that the data vectors are independent and identically distributed with dis-
tribution p. Then the data likelihood function is

L(Θ|X ) = p(X|Θ) =
n∏

i=1

p(xi|Θ) =
n∏

i=1

(γμ

K∑
h=1

πhe−‖x−μh‖2
). (5)

The maximum likelihood problem is thus

max
Θ
{L(Θ|X ) : (3)}. (6)

However, maximizing the likelihood function (6) is very difficult and we relax it by
maximizing the expectation of the marginal log-likelihood function [19].

Given current estimates Θ(�) at the 
th iteration (
 ≥ 0) of the EM iterative proce-
dure, for each h = 1, 2, ..., K , the posterior probability p(h|xi, Θ

(�)) that xi is gener-
ated by the hth component of the mixture density is defined by

p(h|xi, Θ
(�)) =

p(h|Θ(�))p(xi|h, Θ(�))
p(xi|Θ(�))

=
π

(�)
h e2〈xi,μ

(�)
h 〉

K∑
h′=1

π
(�)
h′ e2〈xi,μ

(�)
h′ 〉

. (7)
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The expectation of the marginal log-likelihood function for the observed data over
the given posterior distribution is

E[
n∑

i=1

log(γμπhe−‖xi−μh‖2
)]

=
n∑

i=1

E[log(γμπhe−‖xi−μh‖2
)]

=
n∑

i=1

K∑
h=1

[log(γμπhe−‖xi−μh‖2
)]p(h|xi, Θ

(�))

=
n∑

i=1

K∑
h=1

(log πh − ‖xi − μh‖2)p(h|xi, Θ
(�)) + n log γμ

=
n∑

i=1

K∑
h=1

(log πh − 2μ + 2〈xi, μh〉)p(h|xi, Θ
(�)) + n log γμ

=
K∑

h=1

n∑
i=1

(log πh + 2〈xi, μh〉)p(h|xi, Θ
(�))− 2nKμ + n log γμ. (8)

The maximization (6) is relaxed by maximizing expectation of the marginal log-
likelihood function

max
Θ
{

K∑
h=1

n∑
i=1

(log πh + 2〈xi, μh〉)p(h|xi, Θ
(�))− 2nKμ + n log γμ : (3)}

= max
Θ
{

K∑
h=1

n∑
i=1

(log πh)p(h|xi, Θ
(�))+

+2
K∑

h=1

n∑
i=1

〈xi, μh〉p(h|xi, Θ
(�)) : (3)} − 2nKμ + n log γμ

= max
{πh}K

h=1

{
K∑

h=1

n∑
i=1

(log πh)p(h|xi, Θ
(�)) :

K∑
h=1

πh = 1, πh ≥ 0, h = 1, 2, .., K}+

+2
K∑

h=1

max
μh

{
n∑

i=1

〈xi, μh〉p(h|xi, Θ
(�)) : ‖μh‖2 = μ} − 2nKμ + n log γμ (9)

To find max
{πh}K

h=1

{
K∑

h=1

n∑
i=1

(log πh)p(h|xi, Θ
(�)) : πh ≥ 0,

K∑
h=1

πh = 1}, we intro-

duce Lagrange multiplier λ with the constraint
K∑

h=1

πh = 1 and form the following

Lagrangian

L({πh}K
h=1) =

K∑
h=1

n∑
i=1

(log πh)p(h|xi, Θ
(�))− λ(

K∑
h=1

πh − 1). (10)
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Take the partial derivatives of (10) with respect to each πh and λ, then set them to
zero, we obtain

n∑
i=1

1
πh

p(h|xi, Θ
(�))− λ = 0, h = 1, 2, ..., K (11)

K∑
h=1

πh = 1 . (12)

From equations (11) and (12), we get

λ = n

π
(�+1)
h = 1

n

n∑
i=1

p(h|xi, Θ
(�)), h = 1, 2, ..., K . (13)

To find max
μh

n∑
i=1

〈xi, μh〉p(h|xi, Θ
(�)) subject to ‖μh‖2 = μ, we introduce the La-

grange multiplier λh and the Lagrangian here is given by

L(μh) =
n∑

i=1

〈xi, μh〉p(h|xi, Θ
(�))− λh(‖μh‖2 − μ). (14)

Similarly as above, take the partial derivatives of (14) with respect to {μh, λh} and
set them to zero, we obtain

n∑
i=1

xip(h|xi, Θ
(�))− 2λhμh = 0 (15)

‖μh‖2 = μ (16)

Solving (15) and (16), we get

λh = 1
2
√

μ‖
n∑

i=1

xip(h|xi, Θ
(�))‖

μ
(�+1)
h =

√
μ[

n∑
i=1

xip(h|xi, Θ
(�))]

‖
n∑

i=1

xip(h|xi, Θ
(�))‖

(17)
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The EM iterative procedure of the normalized EM is as follows:

π
(�+1)
h =

1
n

n∑
i=1

p(h|xi, Θ
(�))

=
1
n

n∑
i=1

π
(�)
h e2〈xi,μ

(�)
h 〉

K∑
h′=1

πh′e2〈xi,μ
(�)
h′ 〉

(18)

ν
(�+1)
h =

n∑
i=1

xip(h|xi, Θ
(�))

μ
(�+1)
h =

√
μν

(�+1)
h

‖ν(�+1)
h ‖

. (19)

The optimal parameter estimates Θopt are obtained when the difference between two
observed data log-likelihoods corresponding to two successive iterations is less than a
given tolerance threshold. Finally, each data point is assigned to the component with the
maximum estimated posterior probability, i.e. a data point xi is assigned to component
h or cluster Xh if h = arg max

h′
p(h′|xi, Θopt).

3 Results

The utility of the normalized EM clustering approach is demonstrated on two microar-
ray data sets: (1) yeast cell cycle data with the five-phase criterion [15]; (2) yeast cell
cycle data of regulated genes [20]. The clusterings of the normalized EM on these gene
expression data sets are assessed with different values of μ and the obtained results are
compared with those produced by spherical k-means for both data sets. The normalized
EM is also compared with Gaussian parsimonious clustering models on the first data
set. For the second data set, due to the lack of external criterion and the difference in
similarity measures used in the normalized EM and Gaussian parsimonious clustering
models, we just make comparison of the normalized EM with spherical k-means. Note
that the analysis of the normalized EM is only provided for the values of μ in the range
from 0 up to 350 as with the bigger values of μ, the iterative procedure of the normalized
EM involves the difficulty of very large exponential computations.

Yeast Cell Cycle Data with the Five-Phase Criterion

This data set was created and used by Yeung et al [15]. It consists of 384 genes across
17 experiments and is supposed to include five clusters corresponding to five phases
during the mitotic cell cycle: Early G1, Late G1, S, G2 and M. It should be noted that
beside the original raw data set, the standardized data set derived from the original was
also analyzed. Both the two data sets have been made publicly available by Yeung et al
at http://faculty.washington.edu/kayee/cluster/. For the ease of comparing clusterings,
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Table 1. Clustering results of the normalized EM on the raw data set (10 runs were performed for
each value of μ)

μ 20 25 30 40 80 120 180 240 300 350
0.49 0.49 0.5 0.49 0.37 0.37 0.46 0.47 0.36 0.37
0.49 0.49 0.37 0.49 0.49 0.37 0.37 0.37 0.48 0.37
0.49 0.49 0.48 0.48 0.48 0.36 0.37 0.49 0.37 0.37
0.49 0.49 0.38 0.48 0.48 0.48 0.48 0.36 0.37 0.47

ARI
0.49 0.49 0.38 0.49 0.49 0.47 0.47 0.37 0.37 0.49
0.49 0.5 0.49 0.49 0.48 0.48 0.49 0.37 0.48 0.48
0.47 0.49 0.5 0.48 0.47 0.47 0.48 0.48 0.47 0.46
0.50 0.49 0.5 0.49 0.47 0.37 0.37 0.37 0.49 0.37
0.49 0.48 0.5 0.36 0.44 0.37 0.37 0.48 0.47 0.47
0.49 0.49 0.48 0.48 0.37 0.49 0.37 0.37 0.48 0.48

Average ARI 0.49 0.49 0.46 0.47 0.45 0.42 0.42 0.41 0.43 0.43

we made use of adjusted rand index (ARI) [21], which is an information criterion to
evaluate the degree of agreement between two partitions, one is the real clustering and
the other is derived from given class labels. The higher the value of ARI, the better the
predictive ability of a clustering algorithm.

Table 1 and Table 2 show the values of ARI produced by the normalized EM and
spherical k-means respectively on the raw data set. Similar results were also obtained
on the standardized data set for both the normalized EM and spherical k-means. The
normalized EM worked well in the range from 20 to 350 and achieved the highest
values of ARI when μ was in the range from 20 to 25. As can be seen, spherical k-
means worked quite comparable to the normalized EM in term of clustering results.
However, when the normalized EM worked best, e.g. μ was in the range from 20 to 25,
it consistently produced higher average values of ARI compared to spherical k-means.

Table 2. Clustering results of spherical k-means on the raw data set (20 runs were performed)

ARI
0.37 0.48 0.37 0.48 0.46 0.46 0.37 0.37 0.45 0.38
0.49 0.37 0.37 0.37 0.47 0.37 0.37 0.37 0.47 0.37

Average ARI 0.41

In [15], Yeung et al utilized five typical Gaussian parsimonious models for clustering
this yeast cell cycle data: EI(EII), VI(VII), VVV, diagonal and EEE and they showed
that some of these models worked comparable to CAST, a leading heuristic cluster-
ing algorithm. The cluster quality of these Gaussian parsimonious clustering models on
this data with the number of clusters K = 5 was again examined using Mclust pack-
age [22]. For diagonal models, EEI was taken to analyze. Since the normalized EM was
run using random initializations, to be fair we also performed Gaussian parsimonious
clusterings with random initializations as well. It should be noted that in [15], the au-
thors made use of mixture model-based hierarchical clusterings to initialize the iterative
procedure of the EM algorithm. Table 3 and Table 4 show the ARI values produced by
Gaussian parsimonious clustering models on the raw data set and standardized data set
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Table 3. Clustering results of Gaussian parsimonious clustering models on the raw data set (10
runs were performed for each clustering model)

EII VII VVV EEI EEE
0.0114 0.0111 0.011 0.011 0.011
0.0048 0.0048 0.0685 0.0048 0.0209
0.0289 0.0256 0.0349 0.0316 0.0175
0.0022 0.0077 0.0088 0.0083 0.0088

ARI
0.0236 0.0219 0.0029 0.0121 0.0118
0.0112 0.0054 0.0111 0.0111 0.0089
0.0048 0.0689 0.0048 0.0506 0.0053
0.0157 0.0349 0.0141 0.0252 0.0491
0.0029 0.0083 0.008 0.0088 0.0027
0.0001 0.0051 0.0026 0.0427 0.0104

Average ARI 0.0106 0.0194 0.0167 0.0206 0.0146

Table 4. Clustering results of Gaussian parsimonious clustering models on the standardized data
set (10 runs were performed for each clustering model)

EII VII VVV EEI EEE
0.5 0.45 0.21 0.47 0.45
0.5 0.37 0.17 0.47 0.45

0.37 0.48 0.32 0.49 0.45
0.37 0.48 0.31 0.49 0.42

ARI
0.46 0.48 0.29 0.49 0.48
0.5 0.44 0.29 0.37 0.48

0.37 0.5 0.23 0.49 0.46
0.37 0.43 0.25 0.37 0.47
0.5 0.47 0.29 0.37 0.43

0.46 0.45 0.26 0.44 0.41
Average ARI 0.44 0.45 0.26 0.45 0.45

respectively. As can be seen, on the raw data set these models failed to discover the
inherent cluster structure of the data as very low ARI values were achieved. On the
standardized data set, except VVV model the other four models produced quite high
ARI values. However, when the normalized EM worked best, e.g. μ was in the range
from 20 to 25, it consistently produced higher average values of ARI compared to all
the five Gaussian parsimonious clustering models, see Table 1 and Table 4 for verifica-
tion. We mention again that on the standardized data set, the normalized EM produced
similar results as shown in Table 1 for the raw data set.

Yeast cell cycle data of regulated genes

This data set consists of 800 genes across 77 experiments. These 800 genes were se-
lected to meet an objective minimum criterion for cell cycle regulation [20]. For this
data, as we do not know the number of underlying clusters that the data should have,
the normalized EM and spherical k-means were run by trying various choices of the
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number of clusters K . In order to evaluate clusterings when class labels are unknown,
internal indices have been used widely to measure clustering quality [17], [23], [11].
In [17], the homogeneity for spherical data of a clustering is defined to be

Havg =
1
n

K∑
h=1

∑
xi∈Xh

xT
i μh

‖xi‖‖μh‖
(20)

which is the sum of cosine similarities between all data points and their own cluster
representatives. On the other hand, the inter-cluster separation is taken note as

Savg =
1∑

i
=j |Xi||Xj |
∑
i
=j

|Xi||Xj |
μT

i μj

‖μi‖‖μh‖
. (21)

The bigger the value of Havg and the smaller the value of Savg , the higher the predic-
tive ability of a clustering algorithm. We made use of these figures of merit to compare
clusterings produced by the normalized EM and spherical k-means. For each value of μ
and each choice of K , we ran the normalized algorithm 10 times and took the average
of Havg , Savg values of these clustering results. Similarly, we ran spherical k-means
10 times for each choice of K and the average values of Havg , Savg for these cluster-
ings were computed. These summary statistics are shown in Figure 1 and Figure 2 to

Fig. 1. Comparisons of cluster quality produced by the normalized EM (μ = 50) and spherical
k-means

Fig. 2. Comparisons of cluster quality produced by the normalized EM (μ = 100) and spherical
k-means



Clustering in a Fixed Manifold to Detect Groups of Genes 41

compare the predictive ability of the two clustering algorithms. Note that for limited
space, only the comparisons with μ = 50 and μ = 100 are shown. It can be seen that
compared to spherical k-means, the normalized EM achieved higher values of Havg

and smaller values of Savg even with different values of μ as well as various choices
of K . This demonstrates that the normalized EM produced a bit higher cluster quality
than spherical k-means. In fact, we took many other values of μ in the range from 40 to
350 and similar conclusions were taken out.

4 Conclusions and Future Works

We have introduced and described a statistical model for clustering data in a fixed
manifold in order to identify groups of genes with similar expression patterns using
microarray data. Additionally, the utility of the normalized EM has been confirmed
by comparing its clustering results with the ones produced by spherical k-means and
Gaussian parsimonious clusterings.

It is of interest and left for future work to show that the normalized EM is capable of
leaving out noisy genes and only producing meaningful clusters, in which genes within
each group are highly correlated. Besides, it should be noted that the normalized EM is
also able to work very stable with the problem of clustering samples as well but these
results are not included here.
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Abstract. As one of the most widely used bio-sequence searching tools,
BLAST adopts index-based approach to detect the matches between
two substrings by looking up a large table and processing one match
per query. In this paper, we propose a systolic array approach to detect
string matches without using looking up tables. The pipelining systolic
array is implemented as a multi-seeds detection and parallel extension
pipeline engine to accelerate the first two stages of NCBI BLAST family
algorithms. Different from the index-based approach, our implementa-
tion consumes little memory resources and eliminates redundant string
extensions by merging multiple adjoin seeds into a valid seed. Our FPGA
implementation achieves superior performance results in both of process-
ing element number and clock frequency over related works in the area
of FPGA BLAST accelerators. The experimental results also show the
speedup can reach about 17, 48, 14, 71 and 10 compared to the NCBI
BLASTp, TBLASTn, BLASTx, TBLASTx and BLASTn programs for
3072-residue queries on Intel P4 CPU, respectively. Furthermore, the
idea of multi-seeds detection also can be adopted in other seed-based
heuristic searching applications.

1 Introduction

The comparison of DNA or protein sequences has become a fundamental task
of modern molecular biology. BLAST (Basic Local Alignment Search Tool)[1]
as one of the most important tools has been designed to run on commodity PC
clusters at present, such as [2],[3],[4],[5],[6] to search for sequence similarity in
genomic databases. With the exponential growth of the bio-sequence databases,
such as the NCBI (National Center for Biotechnology Information) GenBank[7],
which has doubled in size every 12∼16 months for the last decade and now
stands at over 56 billion characters, the computational requirements for sequence
comparisons have far exceeded the computing capability.

General-purpose microprocessors typically provide very limited bit-level par-
allelism. However, sequence comparison algorithms exhibit a much higher degree
of bit-level data parallelism, typically hundreds of bit-level operations can be per-
formed in parallel. Therefore, many researchers keen on implementing BLAST
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algorithms in hardware to avoid the low efficiency in general-purpose micropro-
cessors. Recently, FPGA chips have emerged as one promising application accel-
erator, using a combination of FPGAs and general-purpose CPUs to accelerate
BLAST algorithm attracts much more attention. A number of parallel architec-
tures have been proposed, such as Mercury BLASTn[8],[9],[10], Tree-BLAST[11],
Mercury BLASTp[12], RC-BLAST[13], FPGA/FLASH Accelerator[14], Multi-
engine BLASTn Accelerator[15],[16] and many commercialized system,
BEE2[17], CLC Cube[18], Mitrion[19] and DeCypher[20] et al. have been built.

Most of the current implementations adopt the index-based searching ap-
proach, which builds all kinds of tables to record the position of each word in
query sequence, then drives the words (or named w-mers) in database flowing
through the accelerator one by one and looks up the table to find the seeds. How-
ever, this method typically suffers two drawbacks. Firstly, only one word can be
searched per cycle (meaning at most one seed can be detected per cycle), with
the limitation on memory port number, no matter whether the table is stored in
internal or external memory. Second, the storage and access overhead of lookup
table become the resource bottleneck.

Specifically, Mercury BLASTn[9] and Mitrion[19] implement a pre-filter using
hashing, then check words in database against a hash table constructed from
the query one by one. Hash table is stored in an external SRAM attached to
FPGA, since the internal block RAMs are too limited in size to hold the tables for
large query sequence. The accessing delay to external SRAM incurs long pipeline
cycle time. RC-BLAST[13] and BEE2[17] implement the word-finding stage by
using query index. Each word from subject sequence is then used as an index
to lookup the table in order. Because of the limitation of on-chip memory size,
the design in RC-BLAST assumes that no word in query sequence is repeated
more than three times. Obviously, the assumption is unreasonable. Compared
with other designs, FPGA/FLASH adopted a novel approach, the database is
also formatted as an index structure. Each word is associated with its position
in the sequence and its neighboring environment. This information allows short
un-gapped alignments to be immediately computed, avoiding millions of random
accesses to the database. Unfortunately, the size of the database index has to
be very large. As an example, storing a 40 amino acid substring environment
leads to a 150 GB index for the Human genome. This is 50 times more than
the raw data[14]. The storage cost will be intolerable with the steep growth of
database. To improve searching efficiency, Multi-engines BLASTn[16] fitted 64
identical computing machines in single chip to compare the query with 64 subject
sequences in database concurrently and Mercury BLASTp[12] implemented a
two-seed generator for accelerating the first stage of BLASTp. Unfortunately,
these approaches are still based on the query index essentially.

Besides the index-based searching approach, there exists another searching
strategy, which uses systolic array without lookup tables. D.Hoang et al. [21],[22]
implemented the Needleman-Wunsch and dynamic programming algorithms us-
ing systolic array implementation on SPLASH 2. Using JBits S.Guccione et al.[23]
implements the Smith-Waterman algorithm. The most recent implementations
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were the Hyper Customized Processors in Nanyang Tech University[24] and
FPGA-Based Accelerators by Tom Van Court et al[25]. It is a natural approach
to use systolic array to mapping dynamic programming algorithms on FPGAs.
But it is rare to use systolic array for mapping the BLAST algorithm, only
Tree-BLAST[11] can be found.

At present, most of the seed-based solutions test the words from database
stream in a serial mode, one match per cycle. The searching efficiency can be
improved if hardware can detect multiple ”seeds” concurrently and extend them
in parallel. In this paper we present a Multi-seeds Detection and Parallel Ex-
tension Engine to accelerate BLAST family algorithms. Our design is based on
systolic array rather than the static lookup table. It lessens the storage require-
ment to on-chip memory because all positions of match points can be calculated
dynamically at seeds detection pipelines. The multi-seeds detection has three ad-
vantages: Firstly, it improves the searching capability in word-matching stage,
which can execute up to 3072 matches/cycle and report all the match points
contemporarily with the help of 3072 PEs. Secondly, all the reported seeds at
a time are located in identical diagonal, which is convenient for filtering some
invalid seeds. Finally, the mechanism of multiple seeds detection supplies enough
seeds to reduce the empty time in the extension stage. As a result the extension
efficiency can be improved. Our implementation also uses merging seeds strat-
egy to reduce unnecessary extension. We fit our design on Altera FPGA chips
EP2S130C5 to accelerate the first two stages of BLAST family algorithms. The
experimental results show about at most 71 times faster than the desktop com-
puter with a 2.60GHz Pentium4 and 1.5GB Memory running the NCBI BLAST
family programs for 3072-residue queries.

2 BLAST Algorithm Overview

As one of the most widely used software tools searching for local similarities be-
tween a short query sequence and a large bio-sequence database, BLAST family
is composed of five subprograms: BLASTn, BLASTp, BLASTx, TBLASTn and
TBLASTx. They provide functionalities for comparing all possible combinations
of query and database sequence types by translating the sequences. Nevertheless,
the algorithms for each type of search operate are almost identically. The kernel
of the algorithm can be summarized as a 3 step procedure:

Find Hits. It creates a list of all short sequence (word or w-mer) by using sliding
window. Then detects substrings of fixed length w in DB stream that perfectly
match a substring of the query (typically, w = 11 for DNA, 3 for protein) and
records the positions of those exact match (hereafter called a ”seed”).

Ungapped Extension. Each seed is extended to either side to identify a longer
pair of sequences between the query and the subject sequence from the database.
Extension is continued until the score of the alignment drops below a threshold.
These longer matches are called high-scoring segment pairs (HSPs).
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Gapped Extension. HSP list is passed to the last stage, which uses the Smith-
Waterman algorithm usually to extend it into a gapped alignment. The search
result is a list of local alignments giving a measure of similarity between genomic
sequences with the decreasing order of alignment’s score.

Previous study[9] showed that most of the execution time is spent in the step
1 and 2, over 99%, especially in the first one, over 80%. Therefore, how to detect
and locate word matching quickly is critical to accelerate BLAST algorithm.

3 The Structure of Multi-seeds Detection and Parallel
Extension Engine

Our BLAST searching system consists of an algorithm accelerator engine and
a host processor. The accelerator scans database for an input query sequence
and produces a HSP list. Then the host analyses the HSP list in order to assign
statistical significance to those matches. The accelerator engine comprises one

(A) (B)

Fig. 1. (A) The Structure of Multi-seeds Detection and Parallel Extension Engine, (B)
The Structure of Multi-seeds Detection Array

FPGA chip (Altera StratixII EP2S130C5), two 1GB SDRAM modules (Micron
MT16LSDT12864A) and an USB2.0 interface which is connected to the host.
The structure is shown in Figure 1(A). The design fitted in the FPGA includes
SDRAM&PE Array Interface Module, Sequence Memory Group, Multi-seeds
Detection Array, Seeds Merging Module and Multi-seeds Ungapped Extension
Module. SDRAM&PE Array Interface is responsible for system initialization
and providing the subject data stream. Sequence Memory holds the query and
current subject sequence, and produces the subsequence including seeds for un-
gapped extension. The last three modules compose the algorithm core. In the
following subsections, we take BLASTp algorithm as example to illustrate our
implementation in detail.
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3.1 Multi-seeds Detecting

The function of this stage is similar to word matching in NCBI BLASTp. It finds
out the common appearance of subsequence with 3 amino acids (3-AA word)
in both query sequence and subject sequence in database. The main difference
is that with the help of systolic array, multiple seeds can be detected at each
clock cycle, instead of one match per cycle in usual index-based method. Suppose
qi−1qiqi+1 and sj−1sjsj+1, (i, j ≥ 1) are substrings in query and subject sequence
respectively. If (qi−1 = sj−1)∧(qi = sj)∧(qi+1 = sj+1) that means a 3-AA word
matching occurred and a seed had been detected. The structure of systolic seed
detecting array as shown in Figure 1(B).

The array consists of a series of Processing Elements (PEs), which holds
the query(a char per PE) while the database stream flows through the array.
PE[i](the ith PE) compares qiwith sj , then send the match flag to previous and
next PEs, per cycle. At the same time, PE[i] receives the match flags, compares
results of amino acid pairs (qi−1, sj−1) and (qi+1, sj+1) , generated by neighbour
PEs and judges if a seed has been detected. Therefore, the array is capable of
processing word matching at up to L Matches/cycle (L is the PE array size) and
can report multi-seeds per cycle if they are detected. The array reports two seeds
(word AKL on PE2 and KLP on PE3) at the same time, as shown in Figure
1(B). The multi-seeds detect algorithm is illustrated in Figure 2(A).

Seed detecting and locating are two key functions of PE module implemented.
Statement S3 in Algorithm 1 implements the seed-detecting. The location of
word hit consists of the offsets in query and in subject, the subject sequence
ID in database, which calculated dynamically by S2(Initial phase), S1 and S2 in
processing phase respectively.
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Algorithm 1: Seed-detecting Algorithm for Each PE  (PE[i], 1≤i≤L)
Initial phase:  // drive query sequence into PE array and record the location of each AA char

S1：Query_reg ← 0;     PE_match_flag ← 0;     Find_3-AA_Match ← 0; 
Hit_location_Query_reg ← 0;  Hit_location_Subject_reg ← 0;  // registers clear

S2：if  (Query_stop_in = 0)     // PE array no pause
Query_reg ← Query_in;    Query_out ← Query_in;
Location_Query_reg ← Location_Query_reg + 1;  // compute location in query

        else all signals hold on;        

if  (Subject_stop_in = 0)    // the database stream no pause
S1：Subject_out ← Subject_in;

Location_Subject_reg ← Location_Subject_reg + 1;  // compute location in subject
S2：if (Subject_in = Sequence_end_flag)       

Sequence_ID_Subject ← Sequence_ID_Subject +1; // sequence number in DB
        else if  (Sj = Qi)

Current_PE_match_flag ←  1;  // amino acid pair matching is detected
Match_flag_left_out ←  1;        // send match flag to previous PE
Match_flag_right_out ←  1;     // send match flag to next PE

S3：if ((Current_PE_match_flag = 1)&(Match_flag_left_in = 1)&(Match_flag_right_in = 1))
Find_3-AA_Match ← 1;             // seed is detected and set hitting flag
Hit_Location_Query ← Hit_Location_Query_reg;   
Hit_Location_Subject ← Hit_Location_Subject_reg;// output match-point location

else  all signals hold on;        

Processing phase:             // drive database stream into PE array and detect all the seeds

(A) (B)

Fig. 2. (A) The Seeds Detecting Algorithm for Each PE, (B) PE Module Structure
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3.2 Successive Seeds Merging

The systolic array implements the multi-seeds detect procedure very quickly.
The array may report a lot of seeds contemporarily when there is enough sim-
ilarity between the query and subject. It is hard for ungapped extension stage
to catch up with the speed of multi-seeds detect with the growth of the array
size. Finally, it will cause the unbalance in processing capability between the
two stages. To address the problem, we add a seeds merging stage to merge
the adjacent successive word-hits (because those seeds belong to identical HSP)
into a valid seed and pass it to extension stage as shown in Figure 3(A). The
benefit of merging seeds is that the number of valid seed can be reduced signif-
icantly. As result, the efficiency of ungapped extension stage is improved since
the duplication extension of single HSP had been eliminated.

3.3 Multi-seeds Extension

This stage extends the seeds to either side to identify a longer pair of protein
sequence with the score exceeds the threshold. To improve the extension effi-
ciency, we adopt the Multi-channel Parallel Extension Strategy, which will be
introduced particularly in section 4.4.

4 FPGA Implementation and Optimization

4.1 Multi-seeds Detection Array

As for the basic cell in multi-seeds detection array, PE Module performs the
character comparison in pipeline mode and calculates the hit position. The kernel
in PE module is a 3-input AND Gate(the middle rectangle area in Figure 2(B)),
which implements seed detection. The two input signals named Match flag left in
and Match flag right in generated by adjacent PEs and the current pair match-
flag are sent to input ports of the 3-input AND to generate a hit signal when
all inputs are TRUE. Three accumulators calculate the offsets of the seed by
counting the amino acid characters passed through. Since the Find 3-AA Match
flag depends on the comparing result of amino acid pairs calculated by adjacent
PEs, the calculating the hit flag is the critical path. Timing analysis shows the
path delay is less than 3ns, thus it is not the bottleneck in FPGA implementation.

The systolic array consists of a series of Processing Elements. The PE array
size is limited by logic (LUT) resource in FPGA. Generally, the larger array size
is, the higher searching efficiency can be reached since more words are scanned
and more seeds may be detected at the same time. However with the increase in
seed-detection capability, multi-seeds recording becomes a critical issue because
the number and location of seeds generated by PE array at each time is random.
When there is enough similarity between the query and subject, a lot of seeds
are reported contemporarily. The overhead recording the seeds orderly will lead
to a long pause and low efficiency since the array must be held up until all
the seeds have been recorded. To address this problem, we adopt two schemes:
decomposing the PE array and merging successive seeds.
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4.2 Decomposing the Detection Array

The idea of this strategy is decomposing the Multi-seeds Detection Array into
PE Groups to record the seeds in parallel. To record the seeds detected by
the array, the Seeds Merging Module should also be partitioned into some SM
subModules (corresponding to PE Groups), each of which records and merges
the seeds detected by local PE Group then sends it to a local Hit FIFO. The seed
in Hit FIFOs is delivered to Hit information FIFO by multilevel Fifo Merger
Modules. The partition and hierarchical merging process is illustrated in Figure
3(A).

Suppose the detection array detects H seeds each time and the seeds are
located in G groups evenly. Each one has H/G seeds because the position of
3-AA word hitting is random and satisfies the uniform distribution. Recording
these seeds only costs H/G cycles by using hierarchical merging strategy since all
of the SM subModules can collect and combine those seeds in parallel. However, it
takes H cycles to finish the process for Seeds Merging Module without merging
seeds strategy. Therefore, the processing overhead for recording match points
only occupies 1/G cycles of un-optimization.

The other advantage of decomposing the detection array is eliminating the
bottleneck in implementing the huge multiplexer (MUX) between the Multi-seeds
Detection Array and Seeds Merging Module as shown in Figure 3(B). We trans-
form the huge multiplexer into several smaller ones (subMUX) by partitioning
the large array and Seeds Merging Module into small groups. Thus the multi-
plexer units no longer become the bottleneck in FPGA implementation. The
synthesis results show that the 64 PEs compose a group is an optimal choice.
The clock frequency of the detection array with 512 PEs increases from 55MHz
to 156MHz since the large MUX (512-line to one) is divided into eight small
subMUX (64-line to one) and it does not change visibly with the array size
growth. The main cost in implementation is adding multilevel Hit FIFO and
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Fig. 3. (A) The Array Partition and Hierarchical Multi-seeds Merging Process, (B)
The Port Connection between PE Array and Seeds Merging Module
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Merging modules(the level number is log2 G). However, the storage resource is
not bottleneck in our design and the LUT overhead caused by FIFO Mergers
can be ignored compared to large MUX.

4.3 The Algorithm of Merging Successive Seeds

As far as each PE Group is concerned, recording multi-seeds still have to be
processed in order. If the two subsequences in query and current subject are
highly similar, many seeds will be reported by adjacent PEs contemporarily.
It will take a long time to record them one by one. Additionally, it will cause
redundant extension if every seed in successive position is sent to the Hit FIFO
because the seeds belong to the identical HSP.

To filter the redundant seeds and reduce unnecessary extension overhead, we
adopt a merging seeds strategy in SM sModule. The successive seeds merging
algorithm is illustrated in Figure 4. Each SM sModule registers the seed flags as
statement S1 in processing phase and checks whether word matches are detected.
The function in S4 finds the first position ”1” (”1” means a word hit), which
corresponds to the location of first seed detected. The loop in S6 merges the
successive word hits into a valid seed then reports it (S8). Suppose the current

Algorithm 2：Successive Seeds Merging
Initial phase:

S1：Hit_location ← 0;    Subject_stop ← 0;    Word_hit_reg[1..m]  ← 0;     i  ← 0;  

S1：Word_hit_reg[1..m]  ← Word_hit[1..m];    Hsp_flag   ←  0;    i  ← 0;  
S2：While  (Word_hit_reg[1..m] != 0)
              Do  S3 ~ S8;
                     S3：Subject_stop ← 1;                  // Stop current subject sequence passing through
                     S4：FUNCTION Find the first location of   ‘1’ (n); // The value returned is n (1≤n≤m).
                     S5：Word_hit_reg[n] ←  0;     n ← n +1; i  ← 1;  
                     S6：While  (Word_hit_reg[n] = 1)
                                   Do  { Word_hit_reg[n] ←  0;            // record the match point and clear the hit flag
                                             n ← n +1; i  ← i  +1;  }  

S7：If (i  > T)                           //  judge if finds a segment matched exactly with enough length
Hsp_flag  ← 1;    

S8：Hit_location ←  { Hsp_flag, Hit_info[n] };
S9： Subject_stop ← 0;    Returns  S1;

Processing phase:

Fig. 4. Successive Seeds Merging Algorithm for Each SM subModule

status of PE Group as shown in Figure 1(B). Both PE2 and 3 find a seed at
the same time. The SM sModule will deliver the two seeds to Hit FIFO and the
extension operation will be executed twice without the phase of merging seeds.
In fact only one extension is needed since the seed AKL and KLP can be merged
into a bigger seed AKLP.

Statement S7 judges whether it finds a segment matched exactly with enough
length from the count of successive hit flags (variable i). If i is greater than
the value set by user (suppose T = 8, that means the substring with more
than 10 amino acid pairs matched exactly is detected), then Hsp flag is set ac-
tive. The extension module will no longer extend the seed but output it directly
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because the extension have finished. Our method reduces unnecessary extension
and endows the PE array with a measure of ”macroscopic” searching ability.

4.4 Multi-channel Parallel Extension Strategy

In this stage seeds are read out from Hit information FIFO and extended (adopt-
ing Blosum62 Matrix) to either side to identify a HSP. So the seed’s context
characters are needed for extension. FPGA/FLASH[14] constructs the index for
each word. Thus, it can get the subsequences directly. Mercury BLASTn[8] pre-
fetches the seed’s context because there is only one seed can be detected at a
time. However, because of the powerful capability of multi-seeds detecting and
the serial extension procedure (only one amino acid pair can be read out per
cycle from Sequence Memory), the seed-extension capability can’t catch up with
the throughput of multi-seeds detection units.

To solve the problem, we adopt the Multi-channel Parallel Extension method
by setting several Ungapped Extension Modules as shown in Figure 5. Because
each Extension Module accesses query and subject sequence memory contem-
porarily to get the seed’s context characters, several Qry/Sub Memory copies
are fitted to supply enough access ports for multi-channel extension. Thus, mul-
tiple seeds from different Hit info FIFO can be extended in parallel.
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5 Experiments and Performance Comparison

The NCBI BLAST software with default parameters (Ver:2.2.16) runs on a desk-
top computer with a 2.60GHz P4 CPU and 1.5GB Memory. Theoretically, the
Multi-seeds Detection Array can detect all seeds. We searched a sequence se-
lected in Swiss-Prot with 2048 residues against a small part of Swiss-Prot with
65536 total letters. As a result, 12629 seeds have been detected and 793 seeds
have been extended successfully. Using the merging seeds strategy, the number of
seeds reported in our design is greatly less than that of the software, but the HSP
list accords with the software version. We did a series of tests to evaluate our
implementation in the aspects of synthesis performance, storage requirement,
actual searching capability and speedup over related works.
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5.1 Test 1: Comparing Synthesis Performance to Systolic Array
Approaches

We fit our design on FPGA EP2S130C5 with 3072 PEs as shown in Table 1.
Without seed-detecting, Tree-BLAST[11] finds HSP directly by adding up the
scores of individual alignments between two amino acids. It allocates a BRAM
for every four PEs to index the scoring matrix, therefore the BRAM count limits
the query size up to 600 on XC2VP70 and 1024 on XC4VLX160. Different from
Tree-BLAST, the array size is not limited by BRAM but LUTs in our implemen-
tation. It only consumes 38% on-chip memory resource of FPGA XC4VLX160,
compared with nearly 88% of related work. We also implement 1024 PEs on
XC2VP70-5, the same platform with Tree-BLAST. The result shows our design
is superior to Tree-BLAST in both PE number and clock frequency.

Table 1. Performance results and comparison

Ours Tree-BLAST[11]

FPGA EP2S130C5 XC2VP70-5 XC4VLX160 XC2VP70-5 XC4VLX160

PEs Fitted 3072 1024 3072 600 1024

ALUT/Slice (%) 92098/(87%) 20007/(60%) 48272 /(71%) −− 78%

Memory (%) 741376 bits/(11%) 36 BRAM/(11%) 110 BRAM/(38%) −− 88%

Clock (MHz) 113 140 189 110 178

Single PE 42 ALUTs or 31 Slices −− −−

5.2 Test 2: Comparing Storage Requirement to Index-Based
Approaches

As stated before, the systolic array storage requirements less than index-based
approaches. The main storage expense in our design is Sequence Memory and
multistage Hit FIFO (When the array size is 3072, the memory overhead is
692Kbits, which is only 11% of the memory capacity in EP2S130C5). On the
contrary, the index-based approach is limited to the capacity of on-chip block
RAMs. RC-BLAST[13] fitted a query index with the size of 64K × 64bits in
Xilinx 4085XLA, which can only record three offsets for each word. Due to the
same reason, Mercury[9] and Mitrion[19] have to store the hash table to external
SRAM. The delay of memory access becomes the performance bottleneck. Com-
pared to index-based RC-BLAST and systolic-based Tree-BLAST, our approach
reduced the storage requirement by about 90% and 50% respectively. Further-
more, in our implementation, little memory requirement reduces the complexity
of memory access and lessens the difficulty in FPGA layout and routing.

5.3 Test 3: Comparing to Index-Based Hardware Accelerators

(1) Word-scanning Capability. Most of the current implementations can
execute only one word-match per cycle, such as [8],[9],[10],[13],[17],[19]. The
word-scanning capability in Mercury BLASTn[8] is 96M matches/s. Mercury
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BLASTp[12] designed a two-seed generator, the processing capability reaches
up to 219M matches/s for 2048-residue queries. The capability in Multi-engine
BLASTn Accelerator[16] achieves 6400M matches/s by using 64 identical par-
allel engines. Comparatively, our searching engine can execute 294912M word
matches per second, over 40 times, by using the multi-seeds parallel detecting
approach.

(2) Actual Searching Capability. We use the measurement unit, the num-
ber of Kilo Amino Acids (Kaa) compared to the number of Mega nucleotides
(Mnt) performed every second, KaaMnt/s, to measure the actual computing
power, because of the variation in the hardware structure, the amount of FPGA
resource and clock frequency among all kinds of accelerators. The computa-
tional power of FPGA/FLASH and Timelogic Decypher Engine reported in[14]
is 451 and 182KaaMnt/s respectively. In our implementation, it took 424ms to
search a 3072-residue query against drosoph.nt downloaded from NCBI BLAST
Database[26] on our engine. We calculate our computational capability:

3Kaa× 122Mnt

424ms
= 863KaaMnt/ sec

Hence, as for the actual searching capability, our design is 1.91 and 4.74 times
as fast as the FPGA/FLASH and Timelogic Decypher Engine respectively.

5.4 Test 4: Comparing Execution-Time to Software Version

We fit the design on our testbed to accelerate the first two stages of NCBI
BLAST family programs. The experimental results are listed in Table 2 ([*] The
execution time of hardware accelerator is tested by simulation tools (ModelSim
SE PLUS 6.2h) for the array size exceeding 4K-PE because of the limitation of
FPGA logical resource).

(1) Comparing to BLASTp. We did a series of experiments to search
queries selected in Swiss-Prot with different length(128∼8K, which equals array
size) among the database Swiss-Prot, including 274,295 sequences, 100,686,439
total letters, downloaded from EBI[27]. Timings were averaged over at least 10

Table 2. Execution time (ms) and speed-up for different queries (SWt: software exe-
cution time, HWt: hardware execution time, Sp: Speedup)

Array Size BLASTp TBLASTn BLASTx TBLASTx BLASTn

(Query length) SWt HWt Sp SWt HWt Sp SWt HWt Sp SWt HWt Sp SWt HWt Sp

128 1901 1047 1.82 3203 150 21.3 1594 1034 1.54 4031 158 25.5 6225 1115 5.58

256 3087 1057 2.92 3641 163 22.3 2641 1045 2.53 5906 195 30.3 7378 1128 6.54

512 5603 1090 5.14 5156 199 25.9 4378 1073 4.08 9978 266 37.4 8904 1147 7.76

1K 9327 1157 8.06 9891 254 38.9 7828 1137 6.88 16266 344 47.2 9953 1180 8.43

2K 17814 1227 14.5 15438 358 43.0 13187 1221 10.8 27703 459 60.3 11343 1218 9.31

3K 25132 1487 16.9 20328 424 47.9 18875 1336 14.1 37500 527 71.1 12360 1260 9.81

4K[*] 32469 1620 20.0 25656 480 53.4 26031 1478 17.6 45392 575 78.9 13531 1316 10.28

8K[*] 61162 2207 27.7 47797 570 83.8 49828 1987 25.1 77766 720 108 15344 1393 11.0
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queries for each length, and each query’s running time was averaged over three
identical runs of BLASTp. The execution time in the first two stages of our
multi-seeds detection engine and BLASTp for different queries are listed in the
column 2∼4 of Table 2.

The software execution time, with the growth of query size, is increasing very
fast. It only took 1901 ms to search the database with 128-residue queries, while
the time added up to 61162 ms to finish the mission with 8K-residue queries.
The reason is the cost in both index constructing and searching object increas-
ing greatly with the query size growth. However, the time on our accelerator
increases very slowly. This is due mainly to searching cycles of our accelerator
equals to the time of database stream flow through the array (that is L + S,
where L is the array size and S is the database size) plus the pausing time. In
the above factors, S is a const and the variation in L can be ignored compared
with S. In addition, the pausing cost is related to the number of seeds detected
directly. When searching domain (DB) is certain, the valid seeds number and
the extension overhead will not increase sharply with the query size growth since
the optimized strategies introduced in section 4 are used in our implementation.
Thus the larger the array size is, the better the speedup achieves. It is about
17 times faster than the desktop computer for 3072-residue queries. Simulation
result shows it can reach 27.7 with the array size of 8K.

(2) Comparing to TBLASTn. Queries were selected in Swiss-Prot with
the length from 128 to 8K residues. The run time of TBLASTn is tested for
searching the database drosoph.nt downloaded from NCBI BLAST Database[26],
which includes 1170 sequences, 122,655,632 letters and the accelerator searches
against the Coding Sequence (CDS) picked out from drosoph.nt. The time for
database translation is not calculated, because this operation need to be done
only once and the result can be reused for many other applications.

TBLASTn is used for searching protein sequence against DNA database. It
translates all the DNA sequences into the 6 possible potential proteins before
searching. Therefore, for the same query, it is slower than BLASTp. However,
the execution time of our accelerator does not increase steeply with the query
size growth for the same reason as the Test4(1), so the higher speedup can
be achieved. Our implementation has a speedup of approximately 48 for 3072-
residue queries using the array with 3072 PEs and the value can reach 84 for
8K-PE array.

(3) Comparing to BLASTx. BLASTx is used for searching DNA sequence
against protein database. The queries are translated into six-frame protein se-
quence before searching. We selected a series of queries from drosoph.nt with the
length from 128 to 8K residues to search against the protein database, Swiss-
Prot, downloaded from EBI[27]. The execution time for different queries is also
listed in Table 2.

For the same reason as BLASTp and TBLASTn, the software execution time
of BLASTx is increasing very fast with the growth of query size. It only took 1594
ms to search the database with 128-residue queries, while the time added up to
49828 ms to finish the mission with 8K-residue queries. On the other hand, the
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execution time of hardware BLASTx algorithm does not increase steeply with
the query size growth. Thus, the speedup raises with the growing query size.
It is about 14 times faster than the desktop computer for 3072-residue queries.
Simulation result shows it can reach 25 with the array size of 8K.

(4) Comparing to TBLASTx. Queries were selected in drosoph.nt with the
length from 128 to 8K residues. The run time of NCBI TBLASTx is tested for
searching the database drosoph.nt downloaded from NCBI BLAST Database.
The accelerator searches against the Coding Sequence (CDS) picked out from
drosoph.nt and the time for database translation is not calculated.

TBLASTx is used for searching six-frame translation of DNA sequence against
six-frame translation of DNA database. Both the queries and the database are
translated into the six possible potential proteins before searching. Therefore, it
is much slower than other programs in BLAST family. However, the execution
time of our accelerator does not increase steeply with the query size growth for
the same reason as state before, so the much higher speedup can be achieved.
Our implementation has a speedup of about 71 for 3072-residue queries using
the array with 3072 PEs and the simulation result shows it can reach 108 with
the array size of 8K.

(5) Comparing to BLASTn. The four subprograms in BLAST family:
BLASTp, BLASTx, TBLASTn and TBLASTx provide functionalities for com-
paring all possible combinations of query and database types, but they search
Protein vs. Protein sequence actually. Therefore, all of them can execute on our
Multi-seeds Detection and Parallel Extension Engine with w=3, named PSSE
(Protein Sequence Search Engine).

However, BLASTn program is used for searching DNA sequence against DNA
database and the word length equals 11-nucleotide, typically. To accelerate the
BLASTn program, we also designed a Multi-seeds Detection and Parallel Ex-
tension Engine with w=11, named DSSE (DNA Sequence Search Engine).

The main structure of DSSE is consistent with PSSE. The main difference
lies in PE structure. The PE[i](the ith PE) in DSSE array compares qiwith
sj , then send the match flag to adjacent Ten PEs (from PE[i-5] to PE[i-1]
and from PE[i+1] to PE[i+5]), per cycle. At the same time, PE[i] receives
the match flags, compares results of residue pairs generated by adjacent Ten
PEs and generate a hit signal when all the ten inputs and the match flag
of current residue pairs are TRUE. That means the exactly matched pairs
(qi−5 · · · qi · · · qi+5||sj−5 · · · sj · · · sj+5) in the query and subject are found and
a 11-mer seed is detected. Then send it to extension stage.

We did a series of experiments to test our DSSE’s searching capability. Queries
with different length are selected in drosoph.nt and the experiment environment
is the same as the other programs in BLAST Family. As shown in the last
three columns of Table 2, the software execution time of BLASTn is increasing
obviously. It increases from 6225 ms to 15344 ms with the query size growing
from 128 to 8K-residue. However, the execution time of hardware BLASTn DSSE
does not increase visibly for the same reason as the PSSE. Our implementation
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has a speedup of approximately 10 for 3072-residue queries using the array with
3072 PEs.

6 Conclusion

In this paper we present a systolic array, which supports Multi-seeds Detec-
tion and Multi-channel Ungapped Extension in parallel, to accelerate the first
two stages of NCBI BLAST family algorithms. Our implementation reduces un-
necessary extension by using merging seeds strategy and decreases the memory
requirement on-chip as a result of eliminating the lookup tables. The experi-
mental results show about 17, 48, 14, 71 and 10 times faster than BLASTp,
TBLASTn, BLASTx, TBLASTx and BLASTn programs running on a desktop
computer with 2.60GHz P4 CPU for 3072-residue queries, respectively. Further-
more, our Multi-seeds Detecting Array also can be used to accelerate the seed
detection stage in other seed-based heuristic searching applications.
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Abstract. We study the problem of structured motif search in DNA sequences. 
This is a fundamental task in bioinformatics which contributes to better under-
standing of genome characteristics and properties. We propose an efficient al-
gorithm for Exact Match, Overlapping Structured motif search (EMOS), which 
uses a suffix tree index we proposed earlier and runs on a typical desktop com-
puter. We have conducted numerous experiments to evaluate EMOS and com-
pared its performance with the best known solution, SMOTIF1 [1]. While in 
some cases the search time of EMOS is comparable to SMOTIF1, it is on aver-
age 5 to 6 times faster.  

Keywords: DNA sequences, structured motif, suffix tree, performance. 

1   Introduction 

Advances in bioinformatics have facilitated experiments in biology laboratories and 
genome sequences acquired are growing at exponential rate. Understanding the prop-
erties and characteristics of these sequences requires various types of searches to be 
performed. A fundamental task in bioinformatics is searching in new sequences for 
previously known information, expressed as structured motifs. Examples of potential 
applications include searching for composite regulatory binding sites in DNA se-
quences and finding long terminal repeat (LTR) retrotransposons, which have signifi-
cant presence in typical mammalian genome and are believed to have major impact on 
genome structures and functions [2,3]. 

A structured motif consists of several simple motifs, interleaved by variable-length 
bounded gaps. Each simple motif can be represented either as a string of symbols from 
a specific alphabet (pattern representation), or as a matrix which gives the probability 
of observing a specific nucleotide at each position in the simple motif (profile repre-
sentation). A gap is represented as [x, y], which denotes the minimum and the maxi-
mum gap sizes allowed between two adjacent simple motifs. This structured motif 
model provides a suitable way for simultaneously searching for several (related to each 
other) DNA sequences, while accounting for some possible evolutionary mutations.  

Consider the following sample structured motif SM = M1[2,5]M2[6,7]M3, taken 
from [4]. In Table 1, rows 2 to 5 represent each simple motif as a profile, while row 6 
gives their corresponding pattern representations using the IUPAC alphabet. As in 
[1,5], in this work we adopt the IUPAC alphabet for pattern representation of the  
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Table 1. A Sample Structured Motif 

Bases M1 [2,5] M2 [6,7] M3 
A 2 12 17 1 11 1 35 0 24  1 0  3 1 35 
C 0 10 8 5 2 0 0 19 0  0 25  5 35 1 
G 2 5 5 2 10 34 1 0 0  26 11  0 0 0 
T 32 9 6 28 13 1 0 17 12  9 0  28 0 0 

IUPAC D N N N N D R Y W [2,5] D S [6,7] H M M 

Table 2. The IUPAC Alphabet 

Bases A C G T U A,G C,T G,T A,C G,C A,T C,G,T A,G,T A,C,T A,C,G A,C,G,T 
Symbol A C G T U R Y K M S W B D H V N 

structured motif, and use the DNA alphabet {A,C,G,T} for sequence data to be 
searched. The mapping convention between the DNA bases and the corresponding 
IUPAC symbols is shown in Table 2. To avoid confusion, we refer to characters in a 
pattern motif as symbols and to sequence characters as DNA bases, or bases for short.  

The goal of structured motif search, given a sequence S, is basically to find the 
starting positions p in S at which a match between the query SM and a substring of S 
occurs. For example, consider our sample SM and S[p, p+25], a sample substring of S 
starting at position p, shown in the first row in Figure 1. The next four rows in the 
figure show 4 matches between SM and S[p], for the gap sizes {3,6}, {3,7}, {5,6}, 
and {5,7}, respectively. 

S[p, p+25]= T A C G T A A T T G G A A C A C G C A T A C A A A A 
SM = D N N N N D R Y W - - - D S - - - - - - H M M   
SM = D N N N N D R Y W - - - D S - - - - - - - H M M   
SM = D N N N N D R Y W - - - - - D S - - - - - - H M M  
SM = D N N N N D R Y W - - - - - D S - - - - - - - H M M 

Fig. 1. Matching a SM with a substring of S 

In this paper, we propose a search algorithm for finding structured motifs repre-
sented as patterns over the IUPAC alphabet. The algorithm proceeds in three steps. 
First, based on a heuristic using the information content of each simple motif in SM, 
the algorithm selects a simple motif estimated to have the fewest number of matches 
in S. In the second step, using a suffix tree index created for the sequence S, we re-
trieve all starting positions in S at which a match with the selected simple motif oc-
curs. We refer to these positions as anchors. In the final step, the simple motif and the 
sequence S are aligned at all anchor positions, to search for matches for the whole 
structured motif SM. A match of SM in S occurs if, for a unique and allowed combina-
tion of the gap values, a match for all simple motifs of SM is found in S. 

The rest of the paper is organized as follows. In Section 2 we provide a background 
and review related work. Section 3 recalls the suffix tree index we use in this work. In 
Section 4, we propose our algorithm for structured motif search, EMOS (for Exact 
Match, Overlapping Structured motif search). Experiments and results are presented 
in Section 5. We conclude and outline future work in Section 6. 
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2   Background and Related Work 

Formally, a structured motif SM consisting of two or more simple motifs Mk separated 
by gaps of possibly variable lengths, is represented as SM = M1[i1, j1]M2[i2, j2]M3… 
Mn-1[in-1, jn-1]Mn, where ik ≤ jk. The gap values ik and jk indicate respectively the mini-
mum and the maximum gap sizes allowed between the last symbol in Mk and the first 
symbol in Mk+1.  

In the related literature, we can find several variants of the structured motif search, 
depending on the definition of match and the constraints imposed by the gaps. We 
next review these variants and define the problem addressed in this paper. 

An exact match of SM in S is defined as an “exact” match between all the symbols 
in SM and the corresponding bases in a substring of S, obeying the gap constraints. 
Note that when using IUPAC representation for a motif and using DNA representa-
tion for the sequence data, the notion of “exact” match between a motif symbol and a 
sequence base is defined by the mapping scheme shown in Table 2. Examples of ex-
act matches of SM in S are shown in Figure 1. Even though this “exact” matching al-
lows some flexibility and is approximate in nature, some applications may require 
even more relaxed matching. One such example is allowing for errors (i.e., insertions, 
deletions, and substitutions of symbols/bases) when comparing simple motif symbols 
and their corresponding DNA bases. This variation of the structured motif search is 
referred to as approximate match [1]. For example, in our sample SM and S (Fig. 1), 
suppose the number of errors allowed per simple motif is at most 1. Then approximate 
match search returns a match for gap sizes {2, 6}, in addition to the results returned 
by exact match. Another type of approximate search allows up to q’ (out of all n) 
simple motifs to be missing. This version of the problem is referred to as q-
occurrence search [1,5] and its goal is to find all occurrences of SM in S, where at 
least q = n – q’ simple motifs are matched. For our sample SM and S, this type of 
search for q = 2 will return a match for gap sizes {4, 6}, in addition to the results re-
turned by exact match. In this work, we are interested in exact match structured motif 
search, for which all IUPAC symbols in SM must match (according to the mapping 
scheme in Table 2) the corresponding DNA bases in S, and no missing simple motifs 
are allowed.  

Considering the gap constraints, the fixed motif search problem is the simplest case 
in which ik = jk, for all k in [1, n-1], and every ik is known in advance and is positive. 
When at least one ik is different from jk, the problem is referred to as structured motif 
search. Yet another version of the problem allows negative values for ik, with the re-
striction that the absolute value of ik is smaller than the size of Mk. This amounts to al-
lowing partial overlap between Mk+1 and some of the rightmost symbols of Mk, and 
hence adds more flexibility to the search. This variant is referred to as overlapping 
structured motif search and is addressed in this work. If the gap ranges are not known 
in advance, the problem is called extended structured motif search [1].  

To summarize, the problem we investigate in this paper is the exact match overlap-
ping structured motif search where structured motifs are represented as patterns over 
the IUPAC alphabet, and no missing simple motifs are allowed. 

Searching for structured motifs represented as patterns is an active research area 
[6,7,8,5,1]. Anrep [6,7] allows the user to specify the simple motifs of the structured 
motif via declarative, free-format, and strongly typed language, called A. These simple 
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motifs are referred to as network expressions, and are essentially regular expressions, 
excluding the Kleene star operator. Using this notation, the user may specify the  
required parameters for approximate match and q-occurrence search. The gaps between 
simple motifs are called spacers. Anrep executes in two steps. First, using an  
ε-automaton, it searches for simple motifs that satisfy the approximate threshold con-
straints. In the second step, it looks for structured motif occurrences using a backtrack-
ing match algorithm, optimized according to some statistical criterion. As one of the 
first efforts on structured motif search, Anrep provides a unified pattern representation 
of bio-sequence data, however the search performance was improved by other solu-
tions, discussed next. 

Navarro et al. [8] refer to structured motifs as Classes of Characters and Bounded 
Gaps (CBG) expressions. The proposed solutions (forward and backward search) are 
based on a non-deterministic ε-automaton with bit-parallelism. CBG provides effi-
cient search for relatively short structured motifs whose maximum span (i.e., the sum 
of the sizes of all simple motifs plus the sum of the maximum sizes of the gaps) is less 
than the number of bits in a computer word. For longer patterns, the size of the 
automaton grows accordingly and the advantage of bit-parallelism deteriorates when 
performing bit operations on several computer words instead of one. As a result, the 
application of CBG is limited to searching for patterns with small number of symbols 
and gaps. 

SMaRTFinder [5] adopts a two-step approach. It first finds all the occurrences of 
each simple motif, using a suffix tree (ST) index for the sequence data. The index can 
be constructed either on the fly (the lazy approach), which builds only parts of the ST 
that are relevant to the particular motif, or construct the entire ST for the sequence in 
advance (the eager approach). In the second step, SMaRTFinder solves a constraint 
satisfaction problem, by building a constraint graph for all possible pairs of simple 
motifs occurrences (represented as nodes) which locally satisfy the gap constraints.  
Subsequently this graph is pruned only to feasible nodes (i.e., nodes that represent oc-
currences of simple motifs that certainly belong to a match for the structured motif), 
and the set of all structured motif matches is obtained by a depth-first traversal of the 
pruned graph. The experimental results in [5] indicate a significant search time advan-
tage of SMaRTFinder over Anrep, when searching for a randomly generated set of 
1,000 structured motifs in a 5 MB DNA sequence. Further, the SMaRTFinder exhibits 
linear search time performance with respect to the number of matches found, while 
the performance of Anrep depends strongly on the success of the statistical optimiza-
tion of the backtracking match algorithm.  An important note made by Policriti et al. 
[5] is that the performance of SMaRTFinder for such number of queries is independ-
ent of the approach (eager or lazy) taken for constructing the ST index. 

In a recent work [1], Zhang and Zaki proposed the SMOTIF technique for struc-
tured pattern and profile motif search. It consists of several algorithms, which support 
exact match, approximate match, and q-occurrence search operations. There are two 
alternative implementations for structured pattern search: SMOTIF1 and SMOTIF2. 
Below, we review their approaches to the exact match search problem. 

As a first step, SMOTIF1 scans once the sequence to be searched, and then  
converts it into an equivalent inverted format [9,10], where each character in the  
sequence is associated with its post-list – a sorted list of the positions at which the 
base occurs in the sequence. Also, the structured motif is converted to its SMOTIF 
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representation, by adding a gap [0,0] between adjacent symbols within each simple 
motif, and then consolidating the gaps, if possible. For example, the motif 
GCN[0,1]TB is converted into G[0,0]C[1,2]T[0,0]B. The second step in SMOTIF1 
starts from the last two motif symbols (T and B in this example) and computes the 
post-list of T[0,0]B, using positional joins over T and B’s post-lists (each of which 
viewed as a union of the post-lists of their corresponding matching bases, computed 
in the first step). The result essentially is the list of all starting positions of T[0,0]B in 
the sequence. Next, the algorithm recursively expands the positional join process, by 
considering the first unprocessed symbol to the left (in our example, C), and performs 
a positional join over its post-list and the post-list of T[0,0]B. Upon completion of the 
recursive positional join process, the post-list of the entire structured motif is ob-
tained, i.e., the list of all starting positions of the structured motif in the sequence. If 
required by the application, the set of matching positions for each symbol in the motif 
can be recovered. 

In contrast to SMOTIF1, which performs positional joins on the post-lists of indi-
vidual motif symbols, SMOTIF2 performs the positional join process on the post-lists 
of the whole simple motifs. That is, the post-list (i.e., the starting positions) of each 
simple motif is obtained by lazy construction of the same ST index as in SMaRT-
Finder. While this first step is the same for SMOTIF2 and SMaRTFinder, the main 
difference between them is in the second step, in which they process the information 
obtained. The positional join technique of SMOTIF2 proves to be more efficient than 
the constraint satisfaction technique used in SMaRTFinder. 

The experimental results in [1] show that SMOTIF1 and SMOTIF2 are respec-
tively up to 18 and 4 times faster than SMaRTFinder searching for three real-life  
motifs in chromosome 1 of A. Thaliana. Also, the performance of the three search 
techniques is compared more comprehensively for searching chromosome 20 of 
Homo sapiens for a set of 100 random structured motifs. Again, SMOTIF1 and 
SMOTIF2 are considerably faster than SMaRTFinder, 6 and 4 times respectively. 
Further, SMOTIF1 performs significantly better than SMOTIF2 when no missing 
simple motifs are allowed. One of the shortcomings of SMOTIF2 (as well as of 
SMaRTFinder) is that in the first step, it searches for the exact match occurrences of 
all simple motifs of a SM. In case of long sequences and/or several simple motifs that 
have low information content, this may lead to enormous intermediate output which 
does not fit in main memory. As a result, SMOTIF2 and SMaRTFinder run out of 
memory in such cases and cannot conclude the SM search.  

Our EMOS algorithm has three important characteristics that distinguish it from 
the above solutions. First, it handles efficiently some typical structured motif search 
challenges, e.g., the maximum span of a SM could be several thousand bases long; 
some of the simple motifs could be very short and/or with low information content, 
etc. Second, while EMOS can search in very long sequences (e.g., chromosome 2 of 
Homo sapiens containing around 238 million bases), it does not require extensive 
memory space and runs on typical desktop computers (with 2 GB RAM as in our 
computer system). Third, the fastest known solution for exact match overlapping 
structured motif search is SMOTIF1 [1]. The results of our experiments indicate that 
for majority of the cases, EMOS is 5 to 6 times faster than SMOTIF1.  
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3   The STTD64 Index 

Similar to SMOTIF2 and SMaRTFinder, a part of our solution to the structured motif 
search problem uses a suffix tree based index. As illustrated in [11], such an index is 
suitable for biological sequences and provides efficient and versatile support for nu-
merous bioinformatics search applications. In a previous work [12], we proposed the 
suffix tree indexing structure STTD64 (Suffix Tree, Top Down, 64 bits). Using this 
index, we also developed efficient and scalable algorithms for string searching (exact 
match and k-mismatch problems), and for finding supermaximal repeats in sequences. 
Interested readers are referred to [13] to experiment with and evaluate these applica-
tions accessible through a web-based interface. Our focus in this work is to develop 
an efficient motif search algorithm, for which we use the STTD64 index. Here, we as-
sume the index is already constructed and stored on disk. In Section 5, we justify this 
assumption. Below we review the key points in the STTD64 representation to better 
understand the EMOS algorithm and a source of its efficiency.  

To illustrate the STTD64 index, consider sequence S = AGAGAGCTT$. Figure 2 
shows a general, high-level graphical representation of a ST for S. In the figure, the 
numbers in squares illustrate the order in which the nodes in the tree are evaluated and 
recorded in STTD64. Each edge is labeled with the corresponding bases from S. The 
number below each leaf node s indicates the starting location in S at which we can 
find the suffix indicated by the labels of the path from the root to s. 

Figure 3 shows the actual STTD64 index for S. Each ST node is represented as a 
record of size 64 bits (shown vertically), divided into four fields, as follows. For each 
node v, we store, in the first field of 32 bits (the first row in Fig. 3), its left pointer 
value. This value, denoted lp(v), is the sum of the leftmost starting location in S at 
which we can find the substring encoded from the ST root to node v plus the depth of 
node v. The depth of a node v is defined as the number of characters from the root to 
the parent of v. For example, for node 10, the substring that is encoded from the root 
to this node is “GAG.” The leftmost occurrence of “GAG” in S starts at S [1]. The 
parent of node 10 is node 2, and hence the depth of node 10 is 1. Thus, lp(10) = 1+1 = 
2. For each ST node, the second field of size 1 bit (second row in Fig. 3), stores its 
leaf value. A leaf value 0 indicates that the current node is a branch node, while leaf 
value 1 indicates a leaf node. For clarity, the leaf nodes are shown in gray in the fig-
ure. For each ST node, the third field of size 1 bit (third row in Fig. 3), stores its 
rightmost value. A rightmost value 1 indicates that the current node is the rightmost 
child of its parent. For example, node 5 is the rightmost child of the root, and node 7 
is the rightmost child of node 1. In the last field of size 30 bits (the fourth row) we 
store different information depending on whether the current node is a branch or a 
leaf node. In case it is a branch, we store a pointer to the location in the STTD64 in-
dex at which the first child of this branch node is stored, thus providing means for 
downwards traversal of the ST. These pointers are illustrated by the arrows above 
Figure 3. In case of a leaf, in the fourth field we store the depth of the leaf node. 

It should be noted that the starting locations of the suffixes in S indicated in Figure 
2 by the number below each leaf node are just to facilitate our description in the text; 
they are not explicitly stored in the STTD64 representation. For search applications 
which use STTD64, the availability of depth values allows for fast computation of the 
starting locations. For example, the starting location of the suffix encoded by the path 
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from the root to node 13 is computed by subtracting the depth value of node 13 from 
its lp value, i.e., the starting location of the suffix “GAGCTT$” is 6 – 3 = S[3] (see 
Figures 2 and 3). Storing the information required for this computation in a single 
node eliminates unnecessary ST traversals, leading to a significant decrease of the 
number of disk I/O operations, and eventually to search time improvements for appli-
cations based on STTD64.  

 

Fig. 2. A ST for S = AGAGAGCTT$ 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
0 1 6 7 9 2 6 4 6 2 6 4 6 8 9 
0 0 1 0 1 0 1 1 1 0 1 1 1 1 1 
0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 
6 10 0 14 0 8 2 4 4 12 1 3 3 1 1 

Fig. 3. STTD64 Representation of ST for S = AGAGAGCTT$ 

Although inspired by the suffix tree based wotd index [14] adopted in SMaRT-
Finder and SMOTIF 2, STTD64 differs from it. First, STTD64 requires 16 bytes per 
sequence character (in the worst case), compared to the 12 bytes required by the wotd, 
which is known to be the most space efficient ST representation [14]. The reason is 
that in STTD64 we store the additional information, i.e., the depth of the ST leaf 
nodes. Regardless of the larger storage requirements, STTD64 construction time is 
comparable with TDD [15], which is known to be the most time efficient ST con-
struction technique. Second, STTD64 has a theoretical limit of 4 GB on the size of the 
sequence being indexed (assuming there are no repeats longer than 230 bases), and in 
[12] we have shown its capability for indexing the entire human genome (approxi-
mately 3 GB) on a regular desktop computer with 2 GB RAM. On the other hand, the 
theoretical limit for sequences handled by wotd is around 700 million bases [14]. 
However, since both construction algorithms (wotd-eager and wotd-lazy) proposed in 
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[14] are memory based, the practical limit depends on the available RAM size. The 
results in [14] show that wotd-eager construction algorithm needs around 10.5 bytes 
per input character, which for a typical desktop with 2 GB RAM leads to a practical 
limit on the input sequence size of around 200 million bases. The exact memory re-
quirement is not given for wotd-lazy, but it is more than wotd-eager.  

Based on the above comparisons, we find that STTD64 is more suitable and effi-
cient for indexing biological sequences, and we use it as our index in conjunction with 
the EMOS algorithm, presented next. 

4   The EMOS Algorithm 

Our proposed EMOS (Exact Match, Overlapped Structured motif search) algorithm 
takes as input a structured motif SM represented as a pattern over the IUPAC  
alphabet, a DNA sequence S to be searched, and its STTD64 index. The output of the 
algorithm consists of all positions in S at which an exact match between the SM and a 
substring of S starts, together with the length of the match. The EMOS algorithm is 
presented in Figure 4. Our algorithm takes a three-step approach in solving the struc-
tured motif search problem. In a nutshell, in the first step, based on preprocessing the 
structured motif, a suitable simple motif (Ma) is selected. In the second step, using the 
STTD64 index, all exact occurrences of Ma in the sequence are found. In the third 
step, the structured motif is aligned with the sequence by using the exact occurrences 
of Ma as anchors, and the symbols of the remaining motifs are compared with the cor-
responding sequence bases.  

To illustrate the EMOS algorithm, consider the following example: Find all exact 
match occurrences of SM = WN[-1,2]KW[2,4]Y in our sample sequence S = 
AGAGAGCTT$. For clarity of the exposition and to avoid unnecessary technical de-
tails, in our discussion we will use the graphical ST representation of the index (Fig. 
2), noting that EMOS uses the equivalent STTD64 representation (Fig. 3). 

In Step 1 of our algorithm, we preprocess SM to select a suitable simple motif, as 
the anchor motif Ma. Intuitively, “most suitable” is a simple motif with smallest num-
ber of exact matches in S, which in the subsequent phase are to be used as anchors. 
Since we do not know in advance the number of exact matches of each simple motif 
in S, we employ the following fast heuristic for selecting Ma. By reading SM once, we 
compute the selectivity power (SP) of each simple motif, by considering the informa-
tion content of its symbols, according to Table 2. For example, the selectivity powers 
of the three simple motifs of the SM are computed as follows: SP(M1) = SP(WN) = 2/4 

* 4/4 = 0.50; SP(M2) = SP(KW) = 2/4 * 2/4 = 0.25; SP(M3) = SP(Y) = 2/4 = 0.50. Assum-
ing uniform distribution of the DNA bases in S, the expected number of exact matches 
is estimated to be around 50% of the size of S for M1, 25% for M2, and 50% for M3. 
Thus, we select M2 to be our Ma. One drawback of this selection heuristic is that in 
practice the distribution of bases in nucleotide sequences is not strictly uniform. How-
ever, our experimental results indicate that although not optimal, the employed heuris-
tic provides an overall SM search speedup of 2 to 3 times, compared to an alternative 
in which we pick Ma randomly, as discussed in more detail in the experimental sec-
tion. Note that since the SP for each simple motif is strictly greater than 0, this step  
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Algorithm EMOS(Sequence S,Index STTD64,Structured Motif SM)  
 0. Read Sequence S from disk to memory 
Step 1 //Preprocess the Structured Motif SM 
 1. Select the anchor simple motif, M

a
;  

Step 2 //Find all occurrences of M
a
 in S 

 2. ARS := STTD64 root; //ARS is Answer Root Set 
 3. for each symbol in M

a
 (starting from M

a
[0]){ 

 4.   dna_set := convert M
a
[i] to its corresponding DNA base(s); 

 5.   for each STTD64 node in ARS, node_old 
 6.     for each node_old outgoing edge 
 7.       if (its label match one base in dna_set) 
 8.       then insert in ARS edge destination node,node_new; 
 9.     delete node_old from ARS; 
10. } //at this point ARS contains all answer roots 
11. M

a
(all):=Ø; 

12. for each answer root (AR) node in ARS{ 
13.   for each leaf in subtree rooted at AR 
14.     compute S location, add it to M

a
(all); 

15. }//M
a
(all) contains start locations of all exact matches of M

a
 in S 

Step 3 //For each L in M
a
(all), align SM with S, check the other simple motifs 

16. L = first location in M
a
(all); 

17. while (not all locations in M
a
(all) are examined){ 

18.   sm_len = |M
a
|; 

      //Explore SM to right and left of M
a
, matching remaining motifs 

19.   extendRight(a, L); 
20. }//End EMOS 
 
extendRight(v, loc){ 
  //M

v
 - verified simple motif; loc - a starting location of M

v
 in S; 

  right := v+1; 
  while (right <= n){ 
    for each x, i

v
 <= x <= j

v
 (starting from i

v
){ 

      align M
right

 and S such that M
right

[0] is at S[loc+|M
v
|+x]; 

      compare M
right

 symbols with the corresponding S bases 
      if (mismatch) x++; //consider next gap value 
      else //exact match for M

right
 found 

        sm_len = sm_len + |M
right

| + x; 
        loc = loc+|M

v
|+x; //loc points to the leftmost M

right
 symbol 

        if (right < n) //not reached the rightmost simple motif yet 
          extendRight(right, loc); 
        else //a match for rightmost simple motif found 
          extendLeft(a, L); 
    }//end for 
  }//end while 
}//end extendRight 
extendLeft(v, loc){ 
  left := v-1; 
  while (left >= 1){ 
    for each x, i

left
 <= x <= j

left
 (starting from i

left
){ 

      align M
left
 and S such that M

left
[0] is at S[loc-|M

left
| - x]; 

      compare M
left 

symbols with the corresponding S bases 
      if (mismatch) x++; //consider next gap value 
      else //exact match for M

left
 found 

        sm_len = sm_len + |M
left
| + x; 

        loc = loc-|M
left
| - x; //loc points to the leftmost M

left
 symbol 

        if (left > 1) //not reached the leftmost simple motif yet 
          extendLeft(left, loc); 
        else //a match for leftmost simple motif found 
          return (SM occurs at S[loc], length = sm_len bases);          
    }//end for 
  }//end while 
}//end extendLeft 

Fig. 4. EMOS Algorithm 

cannot lead to a premature and incorrect conclusion that SM does not occur in S, i.e., 
the adopted heuristic does not contravene the 100% recall and precision of our EMOS 
algorithm. 

In Step 2, we find all exact match occurrences of the selected Ma in S in two 
phases. In the first phase (lines 2-10), starting from the ST root and the first symbol of 
Ma, the ST is traversed downwards, matching the corresponding bases for each of the 
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Ma symbols. At the end of the traversal, the set ARS contains the answer roots for all 
DNA queries that can be derived from the IUPAC represented Ma and for which at 
least one occurrence in S is found. An answer root for a query is a ST node, which is 
the root of the subtree that contains all the query answers. In the second phase (lines 
11-15), each answer subtree is traversed and from each leaf node, we obtain a starting 
location of Ma in S. Consider our selected Ma = KW, where K = G or T and W = A or 
T (see Table 2). Initially ARS = {root} (Fig. 4, line 2). The first iteration of the FOR 
loop (lines 3-10), converts the first Ma symbol K to the dna_set = {G, T}. All outgo-
ing edges of the root (Fig. 2) are examined for a match between their label and the 
bases in the dna_set, and as a result at the end of this iteration ARS = {node 2, node 
4}. For the second Ma symbol, dna_set = {A, T} and after considering the outgoing 
edges of each of the ARS nodes, the set ARS is updated to {node 10, node 14}. Since 
all Ma symbols are processed, the second phase starts. The answer subtree rooted in 
node 10 has two leaf nodes – nodes 12 and 13, representing starting locations S[1] and 
S[3], which are added to the Ma(all) set. Similarly, answer root node 14 has one leaf 
node in its subtree (node 14 itself), representing starting location S[7], also added to 
the Ma(all). So, at the end of the second phase (also the end of Step 2), the starting lo-
cations of all exact matches of Ma in S are in the set Ma(all) = {1, 3, 7}. 

In Step 3, starting with the first verified simple motif (Ma) as an anchor, the 
algorithm iteratively explores the right adjacent simple motifs (Fig. 4, function 
extendRight). If for a particular combination of gap values, exact matches for all 
simple motifs to the right of Ma are found, then the algorithm explores iteratively the 
Ma’s left adjacent simple motifs in a similar manner (i.e., function extendLeft). If for a 
particular combination of gap values, exact matches for all simple motifs to the left of 
Ma are found, then an exact match for the whole SM is found, and its starting location 
in S and its length are returned to the user. In the context of our ongoing example, 
consider the first location of the Ma(all) set, L = 1. In Step 3, the algorithm sets 
sm_len = |Ma| = 2, and calls the function extendRight with a = 2 and L = 1 (line 19). 
For L = 1, EMOS finds two occurrences of SM in S, one of size 7 bases, and one of  

 
extendRight(2,1): 
  right := 2+1 = 3,  
  x = 2 => compare M

3
[0] = Y with S[1+2+2] = S[5] = G – no match 

  x = 3 => compare M
3
[0] = Y with S[1+2+3] = S[6] = C – match,  

    all M
3 
symbols matched, sm_len=2+1+3=6, M

3 
is rightmost simple motif 

    extendLeft(2,1): 
      left := 2-1 = 1, 
      x = -1 => compare M

1
[0] = W with S[1-2-(-1)] = S[0] = A – match 

                compare M
1
[1] = N with S[1] = G – match 

                all M
1 
symbols matched, sm_len = 6+2+(-1)=7,  

                M
1 
is leftmost simple motif 

                print: SM occurs at S[0], length = 7 bases 
      x = 0  => compare M

1
[0] = R with S[1-2-0] = S[-1]:terminate extendLeft; 

  x = 4 => compare M
3
[0] = Y with S[1+2+4] = S[7] = T – match,  

    all M
3 
symbols matched, sm_len=2+1+4=7, M

3 
is rightmost simple motif 

    extendLeft(2,1): 
      left := 2-1 = 1, 
      x = -1 => compare M

1
[0] = W with S[1-2-(-1)] = S[0] = A – match 

                compare M
1
[1] = N with S[1] = G – match 

                all M
1 
symbols matched, sm_len = 7+2+(-1)=8,  

                M
1 
is leftmost simple motif 

                print: SM occurs at S[0], length = 8 bases 
      x = 0  => compare M

1
[0] = R with S[1-2-0] = S[-1]:terminate extendLeft; 

end extendRight(2,1); 

Fig. 5. Partial illustration of Step 3 (EMOS) 
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size 8 bases, both starting at S[0], as shown in Figure 5. Overall, there are 6 exact  
match occurrences of SM in S: four starting at S[0] with gaps sizes {-1,3}, {-1,4}, 
{1,2}, and {1,3}, respectively; and two starting at S[2] with gaps sizes {-1,2} and  
{-1,3}. 

5   Experiments and Results 

We conducted numerous experiments to evaluate the performance of our EMOS algo-
rithm and compare it to SMOTIF1, the most efficient alternative solution. In our ex-
periments we used chromosomes Y, 20, 10, and 2 of Homo sapiens (build number 36, 
version 2 [16]) as sequences to be searched. From each of the sequences we removed 
the still unknown nucleotides (represented by N), which leads to sequence sizes of 26, 
60, 132, and 238 million bases (Mb), respectively.  

We used a standard 32-bit desktop computer with Intel Pentium 4 @ 3GHz, 2 GB 
RAM, 300 GB HDD, 2 MB L2 cache, running Linux kernel 2.6. All I/O operations 
are unbuffered at the OS level. All times reported are real times. 

In our experiments we used the source code of SMOTIF1 available at [17]. Its cur-
rent implementation is limited to processing only a single structured motif query at a 
time. While our implementation of EMOS accepts a set of structured motifs as input, 
in our experiments we pose only a single query at a time to both programs. This 
makes the comparison fair to SMOTIF1, since otherwise EMOS is much faster. 
EMOS is implemented in C and is available through the WEB, as part of our FASST 
(Fast and Scalable Search Tool for biological sequence data) project [13]. 

5.1   Comparison with SMOTIF1 

In our first set of experiments we compare the performance of the two algorithms us-
ing the same collection of random structured motifs used in [1], which was provided 
to us by the authors. The set contains 100 random structured motifs over the IUPAC 
alphabet. Each structured motif consists of 3 to 8 simple motifs of length between 5 
and 10 symbols. The number of simple motifs and their lengths are selected uniformly 
at random within these ranges. The gaps between simple motifs are chosen as a ran-
dom subinterval of [-5, 100]. Recall that negative values for the gap size allow for 
partially overlapping simple motifs. The measured search times are accumulated for 
all 100 queries and reported in Table 3. Our results indicate that EMOS performs 5 to 
6 times faster than SMOTIF1, due to reasons discussed in detail in Section 5.2. 

In our second set of experiments we compare the performance of the two algo-
rithms for real-life structured motifs. We use the same 4 real-life motifs as in [1], 
which are obtained by a multiple alignment of 36 A. thaliana LTR retrotransposons.  
 

Table 3. Cumulative Search Times for 100 random structured motifs 

Sequence Sequence Size SMOTIF1 (sec) EMOS (sec) Speedup 

chr_Y 26 Mb 422 88 4.8 
chr_20 60 Mb 1,072 184 5.8 
chr_10 132 Mb 2,205 371 5.9 
chr_2 238 Mb 3,859 645 6.0 
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The motifs are shown in Figure 6 (where ZZ stands for Zhang & Zaki) and the meas-
ured search times are presented in Figure 7. Again, for structured motifs with practical 
selectivity, EMOS significantly outperforms SMOTIF1, providing up to 8 times faster 
search (i.e., ZZ4 in chr_2). For ZZ3, due to the low selectivity power of all its simple 
motifs (there are almost 4 million occurrences of ZZ3 in chr_2), the advantage of se-
lecting a suitable simple motif Ma which will reduce the work done in Step 3 cannot 
be achieved, and EMOS exhibits performance similar to SMOTIF1. 

ZZ1 = HNGTNYDNHDNBTNNDNA[0,3]YNHTNYRHGGNBTNAR[0,2]ARDBNBH 
ZZ2 = TNVRNKAYNKNVVNDV[9,11]HNRR[6,8]YDNNVNNV[9,13]HB[4,5]TNNNNRBNYDBDNNRR 
ZZ3 = DNNNNDRYW[2,5]DS[6,7]HMM[1,2]TNDB 
ZZ4 = DBNNNND[48,102]KRRYMYNNNMRNHYNDVNYAYVH[7,10]VNNNYNNND[34,63]WD[2,8]KNNH[3,5] 
.          VNDDRNNNNNNHVNNNNNNNHHH 

Fig. 6. Real-life structured motifs [1] 
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Fig. 7. Search Times for real-life structured motifs 

5.2   Sources of EMOS Speedup 

There are two major sources for the improvement achieved by EMOS. First, our ap-
proach of finding exact matches for a single simple motif and then aligning the struc-
tured motif with the sequence and performing character comparisons is more efficient 
compared to the approach taken by SMOTIF1, which is based on extracting the full 
post-lists for all motif symbols and then performing positional joins on them. Second, 
the heuristic used for selecting a suitable simple motif, although imperfect, signifi-
cantly reduces the amount of work done by our algorithm, thus further improving its 
search time performance. 

To evaluate the first source of improvement, in our third set of experiments, we 
modified EMOS so that a random simple motif is selected as Ma (i.e., EMOS_random). 
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In this way its performance is independent of how suitable the selected Ma is. The 
measured search times are presented in Table 4. As can be seen from the results, our 
approach is 2.2 to 2.6 times more efficient than the alternative. This is explained by the 
fact that in the first step SMOTIF1 considers all possible locations in the sequence, i.e., 
the full post-lists of all SM symbols. In the second step, it explores these post-lists by 
performing positional joins. On the other hand, by first performing exact match search 
for a single simple motif, EMOS greatly reduces the number of sequence locations 
(usually less than 10% of the sequence size) that has to be further examined in Step 3 
by aligning the SM with S at these anchor locations.  

Table 4. Cumulative Search Times for 100 random structured motifs (random Ma) 

Sequence SMOTIF1 (sec) EMOS_random (sec) Speedup 
chr_Y 422 174 2.4 
chr_20 1,072 410 2.6 
chr_10 2,205 935 2.4 
chr_2 3,859 1,728 2.2 

The second source of the improvement provided by EMOS is based on selecting a 
suitable simple motif as Ma. The goal is to choose Ma in such a way, that the number 
of anchor positions that has to be examined in Step 3 is the smallest. We choose the 
Ma by computing the selectivity powers of all simple motifs as discussed in Section 4. 
Table 5 shows the search time improvement obtained by selecting and using a suitable 
Ma compared to using a random simple motif as Ma. Our experimental results indicate 
that by selecting a suitable Ma, the number of sequence locations that have to be  
examined in Step 3 of EMOS is further reduced by a factor of 10 (i.e., now anchor lo-
cations are less than 1% of the sequence size). As a result, an additional search time 
improvement of 2 to 2.7 times is obtained.  

Table 5. 100 random structured motifs: Random versus Suitable Ma 

Sequence EMOS_random (sec) EMOS (sec) Speedup 
chr_Y 174 88 2.0 
chr_20 410 184 2.2 
chr_10 935 371 2.5 
chr_2 1,728 645 2.7 

A related interesting question is to evaluate the performance of our heuristic used 
for selecting Ma. As already illustrated, the adopted technique for calculating the se-
lectivity power is fast and provides significant search time improvement (Table 5), 
but is it optimal as an estimator of the actual number of exact matches of Ma in S? In 
our last set of experiments, using the 100 random structured motifs, we study the ac-
curacy of the estimator. We compute the estimation percentage error E = (num_act – 
num_est) / num_est, where num_est is the number of matches estimated by our heuris-
tic and num_act is the actual number of matches found by searching the sequence. 
The sample distribution of the estimation error is approximately normal. Our heuristic 
slightly overestimates the number of actual exact matches (mean error = -5%). How-
ever, the standard deviation of the error is relatively high (50%), reflecting that in 
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some cases the estimator performs poorly. This is due to our assumption of uniform 
distribution of the DNA bases in real-life sequences. One way to relax this assump-
tion and to provide more accurate estimation would be to read the sequence content as 
part of the preprocessing step and obtain the actual base distribution, which is a topic 
we currently study. 

Now, we revisit our assumption of STTD64 index being already created. This is a 
fair assumption, since the content of biological sequences is relatively stable and there 
are numerous other applications that benefit from the index. However, if the index has 
not been created in advance, it can be constructed for around 900 seconds for chr_2, 
for example [12]. The search times for chr_2 in Table 3 indicate that the cost of creat-
ing the STTD64 index will be amortized after around 30 structured motif queries. 

Last, we remark that on average 70% of the EMOS search time is spent reading the 
data sequence from disk to memory. Of the remaining 30%, selecting a suitable sim-
ple motif (Step 1) takes less than 1%, using the STTD64 index to obtain all exact 
match occurrences of the anchor motif (Step 2) requires around 10%, and extending 
the structured motif at the anchor positions (Step 3) accounts for the last 20%. The 
search time distribution explains why EMOS is much faster when searching in a par-
ticular sequence for a set of motif queries, as opposed to a single one at a time. It also 
points out that in order to further improve the search time of EMOS, a more efficient 
implementation of Step 3 will be beneficial. We plan to investigate this issue, by con-
sidering alternative approaches, such as the positional join approach of SMOTIF1. 

6   Conclusions and Future Work 

In this work we study the problem of exact match overlapping structured motif search 
in DNA sequences. Our main contributions are two. First, the existing solutions to 
this problem, as a first step, either search for matches of all simple motifs (SMOTIF2 
and SMaRTFinder) or do not search for any simple motif at all (SMOTIF1). The 
drawback of the first approach is that for long sequences and/or several simple motifs 
that have low information content, the preliminary output may become larger than the 
main memory and thus render the algorithms incapable of concluding the search. In 
contrast, our proposed solution performs an index-based search for a single simple 
motif, by using only the related parts of the disk-resident STTD64 index, thus not re-
quiring extensive RAM space. Another major advantage of our approach is that it sig-
nificantly reduces the number of sequence locations that has to be examined further, 
thus avoiding a shortcoming of SMOTIF1, which although based on efficient posi-
tional joins, starts with much larger input, i.e., the full post-lists of all structured motif 
symbols. 

Second, in order to further reduce the number of sequence locations to be exam-
ined in the last step of our approach, we propose a heuristic for selecting a suitable 
simple motif for which the index-based search is carried out. A suitable simple motif 
is such that the number of its occurrences in S is the smallest. We select this anchor 
simple motif based on its information content, computed using the selectivity power 
of its symbols. This computation is fast and reduces the sequence locations that have 
to be examined in the last step of our approach to around 1% of the sequence size. 
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We have implemented these ideas in the EMOS algorithm (Exact Match, Overlap-
ping Structured motif search) and conducted numerous experiments to evaluate and 
compare its performance to SMOTIF1, the most efficient known solution. Our ex-
perimental results show that for a set of 100 randomly generated structured motifs 
EMOS provides 5 to 6 times faster search than SMOTIF1 on average. Intuitively, for 
the cases when all simple motifs of the structured motif are with low information con-
tent, EMOS cannot take advantage of the two sources of improvement we introduce. 
In these cases, it exhibits performance comparable to SMOTIF1.  

There are two main areas in which the performance of EMOS can be further im-
proved – implementing its third step in a more efficient way and improving the accu-
racy of our estimator for selecting a suitable simple motif as an anchor, which we are 
currently investigating. Also, we plan on extending the algorithm to perform ap-
proximate motif search and to accept a profile representation of the structured motif. 
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Abstract. Protein homology detection is a key problem in computational biol-
ogy. In this paper, a novel building block for protein called N-nary profile 
which contains the evolutionary information of protein sequence frequency pro-
files has been presented. The protein sequence frequency profiles calculated 
from the multiple sequence alignments outputted by PSI-BLAST are converted 
into N-nary profiles. Such N-nary profiles are filtered by a feature selection al-
gorithm called chi-square algorithm. The protein sequences are transformed 
into fixed-dimension feature vectors by the occurrence times of each N-nary 
profile and then the corresponding vectors are inputted to support vector ma-
chine (SVM). The latent semantic analysis (LSA) model, an efficient feature 
extraction algorithm, is adopted to further improve the performance of this 
method. When tested on the SCOP 1.53 data set, the prediction performance of 
N-nary profile method outperforms all compared methods of protein remote 
homology detection. The ROC50 score is 0.736, which is higher than the 
current best method for nearly 4 percent. 

Keywords: remote homology; N-nary profiles; chi-square algorithm; latent se-
mantic analysis. 

1   Introduction 

Protein homology detection is one of the most intensively researched problems in 
bioinformatics, which refers to the detection of structural homology in protein when 
there is little or no sequence similarity. The aim is to predict structural or functional 
properties of protein by means of homologies, these properties are important for the 
classification of proteins into functional and structural classes. 

Many powerful methods and algorithms have been proposed to detect homology 
between proteins. Early methods were based on the pairwise similarities between 
protein sequences. Among those algorithms, the Smith-Waterman dynamic program-
ming algorithm [1] which finds an optimal score for similarity according to a prede-
fined objective function is among the most successful methods. Some heuristic algo-
rithms, such as BLAST [2] and FASTA [3] trade reduced accuracy for improved 
efficiency. These methods do not perform well for remote homology detection, for the 
alignment score falls into a twilight zone when the protein sequences similarity is 
below 35% at the amino acid level [4]. The later methods challenged this problem by 
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incorporating the family information. These methods are based on a proper represen-
tation of protein families and can be split into two groups [5]: generative models for 
protein families and discriminative classifiers. Generative models which provide a 
probabilistic measure of association between a new sequence and a particular family, 
such as profile hidden Markov models (HMM) [6], can be trained iteratively in an 
unsupervised manner using both positively labeled and unlabeled examples by pulling 
in close homology and adding them to the positive set [7]. The discriminative algo-
rithms such as Support Vector Machine (SVM) [8] provided state-of-the-art perform-
ance with appropriate kernel. In contrast to generative methods, the discriminative 
algorithms focus on learning a combination of the features that discriminate between 
the classes. These algorithms are trained in a supervised manner using both the posi-
tive and negative samples to establish a discriminative model. The first discriminative 
method is the SVM-Fisher [9], which represents each protein sequence by a vector of 
Fisher scores. SVM-pairwise [10] is another successful method, in which each protein 
sequence is represented as a vector of pairwise similarities to all protein sequences in 
the training set. Many other SVM-based methods also have been proposed, such as 
SVM-k-spectrum [11], Mismatch-SVM [12], SVM-I-sites [13], SVM-n-peptide [14], 
Monomer-dist [5], GPkernel [15], SVM-LA and SVM-SW [16]. A comparison of 
SVM-based methods has been performed by Saigo et al. [17]. 

Sequence homologs are an important source of information about proteins. Multi-
ple sequence alignments of protein sequences contain much information regarding 
evolutionary processes. This information can be detected by analyzing the output of 
PSI-BLAST [18, 19]. Since protein sequence frequency profiles are a richer encoding 
of protein sequences than the individual sequence, it is of great significance to use 
such evolutionary information for protein remote homology detection. 

In our previous study [20], we have introduced a discriminative method called bi-
nary profiles method to use the protein sequence frequency profiles for protein remote 
homology detection, in which protein sequence frequency profile is converted into 
binary profiles with a probability threshold. In detail when a given amino acid is lager 
than the threshold it is converted into an integral value 1, otherwise it is converted 
into 0. However, this simple method omits a lot of important evolutionary information 
of the protein sequence frequency profiles. Here, we present a novel method called N-
nary profiles method to use the evolutionary information of the protein sequence 
frequency profiles, which can contain more evolutionary information of the protein 
sequence frequency profiles than binary profiles method. The protein sequence fre-
quency profiles calculated from the multiple sequence alignments outputted by PSI-
BLAST are converted into N-nary profiles. Such N-nary profiles are filtered by a 
feature selection algorithm called chi-square algorithm. The protein sequences are 
transformed into fixed-dimension feature vectors by the occurrence times of each N-
nary profile and then the corresponding vectors are inputted to support vector ma-
chine (SVM). The method is further improved by applying an efficient feature extrac-
tion algorithm from natural language processing, namely, LSA model [21]. N-nary 
profile method has been compared with other seven methods. When tested on the 
SCOP data set, the prediction performance of the new method outperforms all related 
methods. In terms of computational efficiency, the LSA approach of the new method 
outperforms SVM-pairwise [10] and SVM-LA [16]. 
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The rest of this paper is organized as follows. Section 2 introduces the data set and 
N-nary profiles. Experimental results and discussion are shown in Section 3. Finally, 
conclusions are drawn in Section 4. 

2   Methods and Algorithms 

2.1   Data Set 

We use a common data set for protein remote homology detection [22] to evaluate the 
performance of our method. The data set is available at http://www1.cs.columbia.edu/ 
compbio/svm-pairwise. Because this data set [5, 16, 21, 22] has been used by many 
studies of remote homology detection methods, it can provide good comparability 
with previous methods. The data set contains 54 families and 4352 proteins from 
SCOP version 1.53 which are extracted from the Astral database [23] and include no 
pair with a sequence similarity higher than an E-value of 10 25− . Because the PSI-
BLAST [18] is unable to generate profiles on short sequences, the protein sequences 
with lengths less than 30 are removed. For each family, the proteins within the family 
are taken as positive test samples, and the proteins outside the family but within the 
same superfamily are taken as positive training samples. Negative samples are se-
lected from outside of the superfamily and are separated into training and test sets. 

2.2   Generation of N-nary Profiles 

2.2.1   Protein Sequence Frequency Profiles 
A protein sequence frequency profile can be represented as matrix M, the dimensions 
of M are L×N, where L is the length of the protein sequence and N is the number of all 
standard amino acids which is a constant value of 20. Each element of M is target 
frequency which indicates the probability of an amino acid in a specific position of a 
protein sequences during evolution. The rows of M are amino acid frequency profiles. 
For each row the frequencies add up to one. Each column of M corresponds to one of 
the 20 standard amino acids. The calculation of target frequency is similar to that 
implemented in PSI-BLAST [18]. The protein sequence frequency profiles are calcu-
lated from the multiple sequence alignments outputted by PSI-BLAST. The parameter 
values of PSI-BLAST are set to default except for the number of iterations set to 10. 
The database for PSI-BLAST to search against is nrdb90 database from EBI [24]. A 
subset of multiple sequence alignments with sequence identity less than 98% is used 
to calculate the protein sequence frequency profiles. We use the position-based se-
quence weight method [25] to assign the sequence weight. Formula (1) is used to 
calculated the pseudo-count for amino acid i. 

∑
=

=
20

1

)/(*
j

jijii pqfg  (1) 

Where fi is the observed frequency of amino acid i, pj is the background frequency of 
amino acid j, qij is the score of amino acid i being aligned to amino acid j in BLO-
SUM62 substitution matrix, which is the default score matrix of PSI-BLAST.  
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The target frequency is calculated with the pseudo-count as: 

)/()( βαβα ++= iii gfQ                (2) 

Where β is a free parameter set to a constant value of 10 which is initially used by PSI-
BLAST and α is the number of different amino acids in a given column minus one. 

 

Fig. 1. The flowchart of calculating and converting protein sequence frequency profile. The 
multiple sequence alignment is obtained by PSI-BLAST. The protein sequence frequency 
profile is calculated on the multiple sequence alignment and converted to N-nary profiles. 

2.2.2   Convert Frequency Profile into N-nary Profiles 
Because a protein sequence frequency profile is a matrix of frequencies of 20 standard 
amino acids, it cannot be used directly. To solve this problem, the protein sequence 
frequency profiles are converted into N-nary profiles. Details of converting protein 
sequence frequency profile into N-nary profiles are as follow: 

The frequencies for all amino acids belong to interval [0, 1], so this interval can  
be divided into N equal size intervals. N different integers from 0 to N-1 are used to 
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represent the N different equal size intervals respectively (i.e. for N=4, interval [0, 1] 
is divided into 4 equal size intervals: [0, 0.25), [0.25, 0.5), [0.5, 0.75), [0.75, 1] and 
four integers including 0, 1, 2 and 3 are used to represent the four different equal size 
intervals respectively). When a given amino acid frequency belongs to a specific 
interval, the corresponding integer value of the interval is assigned to the amino acid. 
This process is iterated until each of the 20 standard amino acids is represented as a 
corresponding integer. By collecting the values of all the 20 standard amino acids, an 
amino acid frequency profile can be converted into a vector with dimensions of 20, in 
which each element represents one standard amino acid and can take the value from 0 
to N-1. These elements discriminate the frequencies of all the 20 standard amino ac-
ids. The bigger the value of the element is, the more probable the corresponding 
amino acid occurs during evolution. We call such vectors N-nary profiles. The above 
process is iterated until all amino acid frequency profiles in the protein sequence fre-
quency profile are converted into N-nary profiles. In other words, a protein sequence 
frequency profile can be converted into k N-nary profiles, where k is the length of 
protein sequence. Compared with binary profiles method, N-nary profiles method 
contains more evolutionary information of the protein sequence frequency profiles. 
The process of generating and converting the protein sequence frequency profile into 
N-nary profiles is shown in Fig. 1. 

2.3   Chi-Square Feature Selection 

In theory, the total number of N-nary profiles is 20N . In fact, only a small part of the 
N-nary profiles occur in the protein sequence. However, when N increases the total 
number of N-nary profiles increases rapidly. Furthermore, most machine learning 
algorithms do not scale well to high-dimensional feature spaces [26]. Thus the so 
called chi-square feature algorithm [27], one of the most effective feature selection 
methods in document classification task [28], is used to reduce the dimension of the 
feature space by removing non-informative and redundant features. The maximum of 
8000 N-nary profiles are selected by chi-square feature algorithm. Details of chi-
square algorithm are available in a related study [27]. 

2.4   Construction of SVM Classifiers and Classification 

In order to exclude differences owing to particular realizations of the SVM-based 
learning algorithm and for best comparability with other methods, we employ the 
publicly available Gist SVM package (http://svm.sdsc.edu) for remote homology 
detection. The SVM parameters are used by default of the Gist Package except for the 
kernel function is set as Radius Basis Function (RBF). Radius Basis Function is as 
follow: 

2(( ( , ) 2 ( , ) ( , )) / 2 )( , ) k X X k X Y k Y Yk X Y e σ∧ − − +=  (3) 

Where the widthσ is the median Euclidean distance from any positive training sam-
ple to the nearest negative sample and k(.,.) is the normalized base kernel acting as a 
similarity score between the pair of input vectors X and Y; i.e., 
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The training protein sequences are transformed into fixed-dimension feature  
vectors by the occurrence times of each N-nary profile and then the vectors are input-
ted to SVM to construct the classifier for a specified family. The test sequences are 
vectorized in the same way as the training sequences and fed into the classifier  
constructed for a given family to make separation between the homology and non-
homology samples. The SVM assigns each protein in the test set a discriminative 
score which indicates a predicted level of homology. The proteins with discriminative 
scores higher than a threshold are classified as homologs and the others as non-
homologs. The above process is iterated until each family is tested.  

2.5   Latent Semantic Analysis 

The Latent Semantic Analysis (LSA) [21] is adopted to get better performances. Re-
cently, latent semantic analysis (LSA) was introduced in computational biology, it 
was used to predict the secondary structure of protein [29] and detect protein remote 
homology [21]. LSA is used to extract and represent the context-usage meaning of 
words by statistical computations applied to a large corpus of text [30]. The process of 
LSA is as follow: 

Firstly, a word-document matrix W of co-occurrences between words and docu-
ments is constructed. The elements of W indict the number of times each word ap-
pears in each document, so the dimensions of W is M×N, where M is the total number 
of words and N is the number of given documents. Each word count is normalized to 
compensate the differences in document lengths and overall counts of different words 
in the document and collection [30]. Secondly, singular value decomposition is per-
formed on the word-document matrix W, as follows: 

TW USV=  (5) 

Where U is left singular matrix with dimensions (M×K), K is the total ranks of W, S is 
diagonal matrix of singular values with dimensions (K×K), and V is right singular 
matrix with dimensions (N×K). Thirdly, the top R (R<<Min (M, N)) dimensions are 
selected for further processing. The dimensions of reduced matrices U, S and V are 
M×R, R×R and N×R respectively. More details of latent semantic analysis are avail-
able in [21].   

In this paper, values of R in the range [50, 500] are selected. Five building blocks 
are treated as the “word”, including N-grams [11], patterns [27], motifs [31], binary 
profiles [20] and N-nary profiles. The protein sequences are viewed as the “docu-
ments”. Through collecting the weight of each word in the documents, the word-
document matrix is constructed and then the latent semantic analysis is performed on 
the matrix to produce the latent semantic representation vectors of protein sequences 
in order to remove noise and compress data. The latent semantic representation vec-
tors are inputted into SVM to give the final result. 
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2.6   Evaluation Methodology 

Three methods are used to evaluate the quality of the methods: the Receiver Operat-
ing Characteristic (ROC) scores [32], the ROC50 scores [32], and the Median Rate of 
False Positive (M-RFP) scores [9]. A ROC score is the normalized area under a curve 
that plots true positives against false positives for different classification thresholds. A 
score of 1 denotes perfect separation of positive samples from negative ones, whereas 
a score of 0 indicates that none of the sequences selected by the algorithm is positive. 
A ROC50 score is the area under the ROC curve up to the first 50 false positives. The 
M-RFP score is the fraction of false positives scoring as high as or better than the 
median score of true positives. The bigger the M-RFP score is, the worse the result is. 

3   Results and Discussion 

3.1   Comparative Results of Various Methods 

Table 1 summarizes the average values of ROC scores, ROC50 scores and M-RFP 
scores of eight different methods, including PSI-BLAST [18], pairwise [10], LA [16], 
N-gram [11], pattern [27], motif [31], binary profiles [20], and the present method (N-
nary profiles). For a detail setup procedures of these methods for comparison, please 
refer to two related studies [20, 21].  

As shown in the table, our method performs well for N from 6 to 12. The detection 
performance increases significantly for N from 2 to 5, since when N<6, there are less 
than 249 N-nary profiles containing limited evolutionary information of protein  
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Fig. 2. Family by family comparison of the methods with LSA and those without LSA. The 
coordinates of each point in the plot are the ROC scores for one SCOP family, obtained by the 
two methods labeled near the axis. 
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Fig. 3. M-RFP score distribution for different methods. Each series corresponds to one of the 
homology detection methods described in the text. 
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Fig. 4. ROC score distribution for different methods 

sequence frequency profiles. When N>12, 8000 N-nary profiles are selected by chi-
square feature algorithm from more than 28407 N-nary profiles which maybe contain 
much noise, this is possibly the reason for decreasing in the detection performance. 

The latent semantic analysis model is adopted to further improve the performance 
of this method. Fig. 2 shows the family-by-family comparison of the ROC scores  
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Fig. 5. ROC50 score distribution for different methods 

between the method with LSA and without LSA when the N-nary profiles are taken 
as the basic building blocks. Each point on the graph corresponds to one of the tested 
SCOP families. When the families are in the left-upper area, it means that the method 
labeled by y-axis outperforms the method labeled by x-axis on this family. Obviously, 
when the N-nary profiles are taken as the basic building blocks, the method with LSA 
can significantly outperform the method without LSA. Such conclusion is also suit-
able for other building blocks: N-grams, patterns, motifs and binary profiles [20, 21]. 

In order to further investigate the results, these methods are compared by their rela-
tive performances by plotting the number of families for a given method above a  
given threshold ROC scores, M-RFP score, or ROC50 score ranging from 0 to 1. Fig. 
3-5 compare the performance of the new method for N=11 with other methods. In 
each graph, a higher curve corresponds to more accurate performance. 

SVM-Ngram, SVM-Pattern, SVM-Motif, SVM-Bprofile and SVM-N-profile refer 
to the SVM-based methods on the five building blocks: N-grams, patterns, motifs, 
binary profiles and N-nary profiles respectively. The methods with LSA suffix refer 
to the corresponding method after latent semantic analysis. Results of SVM-LA 
method are taken from (Saigo et al. 2004, Bioinformatics, 20: 1682-1689). Bold num-
bers indicate the best results in each column. 

As show in Fig. 3, SVM-LA performs well for M-RFP score thresholds less than 
0.05 with a higher number of included families, while both N-nary-profile-based 
methods show an improved performance for a increasing score threshold, especially 
for M-RFP scores between 0.05 and 0.1. Fig. 4 shows SVM-LA performs well for 
ROC score thresholds bigger than 0.95, while SVM-N-profile-LSA method outper-
forms the compared methods for a decreasing score threshold. Fig. 5 shows that 
SVM-N-profile method outperform other methods for ROC50 score thresholds be-
tween 0 and 0.7 and SVM-N-profile-LSA method outperforms compared methods for  
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Table 1. Average ROC, ROC50 and M-RFP scores over all families for different methods 

Average ROC, ROC50 and M-RFP scores 

Methods ROC ROC50 M-RFP 
PSI-BLAST 0.6754 0.330 0.3253 
SVM-Pairwise 0.8259 0.446 0.1173 
SVM-LA (ß = 0.5) 0.9250 0.649 0.0541 
SVM-Ngram 0.7914 0.584 0.1441 
SVM-Pattern 0.8354 0.589 0.1349 
SVM-Motif 0.8136 0.616 0.1246 
SVM-Bprofile (Ph = 0.13) 0.9032 0.681 0.0682 
    
SVM-N-profile    
N = 2 0.5081 0.276 0.5446 
N = 3 0.7718 0.534 0.1441 
N = 4 0.8369 0.652 0.0747 
N = 5 0.8556 0.701 0.0831 
N = 6 0.8886 0.699 0.0613 
N = 7 0.8908 0.695 0.0626 
N = 8 0.8939 0.645 0.0625 
N = 9 0.8883 0.665 0.0712 
N = 10 0.8801 0.636 0.0780 
N = 11 0.9151 0.733 0.0419 
N = 12 0.8928 0.698 0.0614 
N = 13 0.8716 0.666 0.0743 
N = 14 0.8517 0.648 0.1068 
N = 15 0.8520 0.639 0.0915 
N = 16 0.8397 0.578 0.1012 
    
SVM-Ngram-LSA 0.8595 0.628 0.1017 
SVM-Pattern-LSA 0.8789 0.626 0.0703 
SVM-Motif-LSA 0.8592 0.628 0.0995 
SVM-Bprofile-LSA(Ph=0.13) 0.9210 0.698 0.0459 
SVM-N-profile-LSA(N =11) 0.9402 0.736 0.0327 

score thresholds between 0.7 and 0.9, which demonstrates LSA approach can improve 
the performance for a increasing ROC50 score threshold with a higher number of 
included families. 

In summary, table 1 and Fig. 3-5 demonstrate that the SVM-N-profile-LSA method 
significantly outperforms all other given methods. Especially, the ROC50 score of 
SVM-N-profile-LSA method is 0.736, which is higher than the current best method 
for nearly 4 percent. When the LSA model is not used, the SVM-N-profile method is  
highly comparable with SVM-LA method and outperforms other methods. The  
PSI-BLAST [18] method that is based on search techniques and sequence alignment 
gets the lowest performance. The discriminative methods, SVM-LA based on string 
alignment kernels and SVM-Pairwise [10] achieve improved performances.  
The performances of the SVM methods based on N-gram, Pattern, Motif and Binary 
profiles are lower than that of SVM-LA. When the LSA model is used, the  
SVM methods based on the five basic building blocks get better performance. The 
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SVM-LA method outperforms many other methods such as Mismatch-SVM [12] and 
SVM-Fisher [9] as well as FPS [33] and SAM [34], so SVM-LA method is one of 
state-of-the-art methods. Because the N-nary profile method outperforms SVM-LA, 
it is an efficient feature representation scheme of protein sequence for remote  
homology detection. 

3.2   Computational Efficiency 

One important aspect of any homology detection method is its computational effi-
ciency. In this regard, although the training times of LSA-based methods are longer 
than those of the SVM-based method, the testing times of LSA-based methods are 
much shorter than those of the SVM-based method. Compared with other given 
methods, LSA approaches are better than SVM-pairwise and SVM-LA, but a little 
worse than the methods without LSA and PSI-BLAST [21].  

The time complexity of running PSI-BLAST is O (nN), where N is the size of the 
database. In the current situation, N is approximately equal to nl, where n is the num-
ber of training examples and l is the length of the longest training sequence. The im-
portant steps in any SVM-based method are the vectorization step and optimization 
step. The vectorization step has a complexity of O (n2l2) in SVM-pairwise. The time 
complexity of calculation of LA-ekm kernel matrix is same as that of SVM- pairwise 
[16]. The time complexity of the vectorization step of the SVM-N-profile method is O 
(nml), where m is the total number of the words. The SVD process of LSA method 
roughly takes time of O (nmt), where t is the minimum of n and m. The optimization 
steps of SVM-based methods take time of O (n2p), where p is the length of the latent 
semantic representation vector. For SVM-pairwise, p is equal to n, resulting in a total 
time of O (n3). In the LSA method, p is equal to R, while in the method without LSA, 
p is equal to m. Since R << Min(n, m), The SVM optimization step of LSA method is 
much faster than SVM-pairwise and SVM-LA.  

4   Conclusion 

In this paper, we present a simple and efficient building block to represent the protein 
sequences, which contains evolutionary information of protein sequence frequency 
profiles. The new method has been successfully applied for remote protein homology 
detection task and tested on the SCOP 1.53 data set. In comparison with the existing 
methods, the present method significantly outperforms all other related methods. On 
the other hand, the computational efficiency of the LSA approach of the new method 
is better then SVM-pairwise and SVM-LA. Further work will aim at applying the new 
building block for protein to other protein classification tasks. 
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Abstract. We study the problem of finding supermaximal repeats in large DNA 
sequences. For this, we propose an algorithm called SMR which uses an auxil-
iary index structure (POL), which is derived from and replaces the suffix tree 
index STTD64 [1]. The results of our numerous experiments using the 24 hu-
man chromosomes data indicate that SMR outperforms the solution provided as 
part of the Vmatch [2] software tool. In searching for supermaximal repeats of 
size at least 10 bases, SMR is twice faster than Vmatch; for a minimum length 
of 25 bases, SMR is 7 times faster; and for repeats of length at least 200, SMR 
is about 9 times faster. We also study the cost of POL in terms of time and 
space requirements.  

Keywords: DNA sequences, supermaximal repeats, suffix tree, performance. 

1   Introduction 

Searching for repetitive patterns in biological sequences is a major problem in bioin-
formatics research [3]. Repetitive substrings occur to a striking extent in an organism 
genome, especially in higher-order organisms such as eukaryotes. For example, [4] 
indicates that families of repeated sequences account for about one third of the human 
genome. Although the role of these repetitive patterns is still mainly unknown, some 
have been linked to several inherited diseases, and are thought to play a role in major 
events of evolution [4, 5]. A related concern in the repetitive structures is based on the 
notion of maximality. A maximal repeat in a sequence S is a substring that occurs at 
least twice in S, and that cannot be further extended to the left and/or right without de-
stroying it being a repeat. For example, S = AACGTCGACGTTAACGTC is a DNA 
sequence which includes two maximal repeats: ACGT, which occurs three times 
(starting at positions 1, 7, and 13, shown in boldface), and AACGTC, which occurs 
twice (at positions 0 and 12, shown with gray background). Some applications may 
consider other types of repetitive structures [3]. For instance, a supermaximal repeat 
is a maximal repeat that never occurs as a substring of any other maximal repeat.  
In our example, AACGTC is a supermaximal repeat, while ACGT is not, since it  
occurs as a substring of AACGTC. Further, providing a required minimum length of 
supermaximal repeats helps in improving both the search performance and the result 
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quality by filtering out the abundant relatively shorter repeats that mostly occur by 
chance and are believed not to carry structural or functional information. 

Searching for supermaximal repeats is among the basic analysis tasks a biologist 
may perform for finding repeated patterns in a new DNA sequence. Considering the 
exponential rate at which new DNA sequences are being acquired, we need more effi-
cient search techniques to find repetitive structures. While recognizing this need, we 
would like to avoid a common pitfall of providing a separate, standalone technique 
for each sequence search problem. Our approach has been providing a basis for  
supporting versatile search tasks for sequence analysis. In this context, our proposed 
solution here for finding supermaximal repeats (SMR) can be viewed as yet another 
extension of our previous work on searching in biological sequences, in which we in-
troduced a suffix tree index structure STTD64 [1], and showed that it is efficient and 
scalable for various search tasks, including exact and approximate (k-mismatch) 
search, and search for structured motifs. Our solution to SMR problem in this paper is 
part of our ongoing project FASST, available online at http://sepehr.cs.concordia.ca.  

The contributions of this work are two. First, we propose an auxiliary index struc-
ture, called parent-of-leaf (POL). POL is derived from and possibly replaces the 
STTD64 index (when supermaximal repeats of some minimum lengths are only de-
sired). Based on the significantly smaller POL index, we develop the SMR algorithm 
for supermaximal repeats search. Second, we perform extensive experiments using 
real-life data and show that SMR outperforms the enhanced suffix array based solu-
tion included as part of the Vmatch software tool [2]. We also study the cost of build-
ing POL in terms of time and space.  

The rest of this paper is organized as follows. Section 2 provides the necessary 
background and review works related to supermaximal repeats problem. In Section 3, 
we introduce the POL index as well as its construction algorithm, and present our 
SMR search algorithm. In Section 4, we present the experiments done and report the 
results. Concluding remarks and future work are provided in Section 5. 

2   Background and Related Work 

In this section, we review the STTD64 index representation which is used in this work 
for constructing the POL index. We then recall the supermaximal search algorithm 
proposed in [3] and discuss its shortcomings. Last, we review research related to 
searching for supermaximal repeats. 

2.1   STTD64 Index Representation 

Given an input sequence S of size n characters, the suffix tree (ST) is a rooted directed 
tree with exactly n leaves. Each internal node (except the root) has at least two chil-
dren and each edge is labeled with a nonempty substring of S. No two edges out of a 
node can have labels which start with the same character. The key feature of the ST is 
that for any leaf node i, the concatenation of the edge-labels on the path from the root 
to node i exactly spells out the suffix of S that starts at position i, i.e., S [i..n].  

To illustrate the STTD64 index, consider an example sequence S = AGAGAG$, 
where $ is used as a terminal symbol to ensure no suffix of S is a prefix of another 
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suffix. A graphical representation of the ST for this sequence is shown in Fig. 1, in 
which the numbers in squares indicate the order in which the ST nodes are evaluated 
and recorded. The number below each leaf node shows the starting position of the suf-
fix of S represented by this leaf node, and this suffix is encoded by the edge labels on 
the path from the root to this leaf node.  

S  =  A
0

  G
1

  A
2

  G
3

  A
4

  G
5

  C
6

  $
7

 

 

Fig. 1. Suffix Tree (ST) for S 

In Fig. 2, we show the design of branch and leaf nodes in STTD64, and Fig. 3 
shows the actual STTD64 nodes for our example sequence S. Each STTD64 node, re-
gardless of being a branch or a leaf node, occupies 64 bits. For each node v of either 
of these two types, we store in the first 32 bits its left pointer value (lp). This value is 
the sum of the leftmost starting location in S of the substring encoded from the root of 
the ST to node v plus the depth of node v. The depth of a node is defined as the num-
ber of characters from the root to the parent of v. For example, for node 9 in Fig. 1, 
the path from the root to this node encodes the substring “GAG”. The leftmost occur-
rence of this substring in S is at location 1. The depth of node 9 is 1, computed as the 
number of characters from the root to node 3 (i.e., the parent of node 9). Thus, the lp 
value for node 9 which we record in STTD64 is 1+1= 2 (Fig. 3). 

 
                       (a) Branch node           (b) Leaf node 

Fig. 2. STTD64 Representation 

For each STTD64 node shown in Fig 2, in the second field of size 1 bit, we store 
its leaf value. A leaf value 0 indicates that the current node is a branch node, while a 
leaf value 1 indicates the node is a leaf. For each ST node, in the third field of size 1 
bit, we store its rightmost value. Rightmost value 1 indicates that the current node is 
the rightmost child of its parent. In the fourth field of size 30 bits, we store different 
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information depending on whether the current node is a branch node or a leaf. In case 
it is a branch node, in the fourth field we store a pointer to the location in the STTD64 
index where the first child of this branch node is stored. This is used for traversing the 
tree. In case of a leaf node, in the fourth field we store the depth of the leaf node.  

Fig. 3 shows the complete STTD64 index for our example sequence S. The num-
bers on the top (used for illustration purpose only) indicate the node number in the 
suffix tree of Fig. 1. The 32 bits lp values are shown in the second row and the fol-
lowing two rows indicate leaf bit and rightmost bit, respectively. The pointer/depth 
values are shown in the last row. For clarity, leaf nodes are shown in gray and branch 
node pointers are illustrated by the arrows above Fig. 3. For more details on the 
STTD64 index structure, interested reader is referred to [1]. 

 
1 2 3 4 5 6 7 8 9 10 11 12 

6 0 1 7 2 6 4 6 2 6 4 6 
1 0 0 1 0 1 1 1 0 1 1 1 
0 0 0 1 0 0 0 1 0 1 0 1 
0 5 9 0 7 2 4 4 11 1 3 3 

Fig. 3. STTD64 Representation of ST for Sequence S 

As already pointed out, our proposed POL index is constructed using the informa-
tion stored in the STTD64 index. In order to facilitate our description later of the POL 
index construction algorithm, here we explain how to compute the starting position of 
a suffix represented by a leaf node. While shown in Fig. 1 by the number below each 
leaf node, the starting locations in S of the suffixes are not explicitly stored in the 
STTD64 representation (Fig. 3), but rather calculated as follows. For each leaf node x, 
the starting position of the suffix represented by x is determined by subtracting the 
depth value of x from its lp value. For example, the starting location of the suffix that 
is encoded by the path from the root to node 8 is computed by subtracting the depth 
value of node 8 from its lp value, i.e., the starting location of the suffix “AGAGC$” is 
6 – 4 = S[2] (see Figures 1 and 3). Storing the required information needed for this 
calculation in a single node eliminates unnecessary ST traversals, leading to a signifi-
cant improvement on the number of disk I/O operations during the POL index con-
struction. This explains our choice of STTD64 index representation using which we 
build the POL index efficiently. 

2.2   A Supermaximal Repeats Search Algorithm 

In this section, we review a supermaximal repeats search algorithm, taken from  
Gusfield [3]. The algorithm takes a sequence S, its suffix tree index ST, and optionally 
a constraint on the minimum length of the supermaximal repeats as the inputs, and re-
turns the starting positions of all supermaximal repeats in S that satisfy the minimum 
length constraint together with their lengths. For each position i in sequence S,  
the character at position S[i-1] is called the left character of i. A node v is called left 
diverse if there are at least two leaves in the suffix tree subtree rooted at v which  
represent suffixes that have different left characters. A left diverse internal node v 
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represents a supermaximal repeat if and only if all the children of v are leaves, and 
each suffix has a distinct left character. 

Gusfield’s algorithm performs two major steps while traversing the ST index. In 
the first step, it examines all the branch nodes in ST, checking if a particular branch 
node v has only leaf node children and if the length of the possible repeat encoded 
from the root to v is not less than the minimum length required. If yes, the second step 
is executed, in which it compares the left characters of all the suffixes represented by 
the children of v, i.e., the left diversity check. If successful, the starting positions of 
the suffixes represented by the leaf nodes of v are the starting positions of a super-
maximal repeat, and these positions are returned to the user together with the length 
of the repeat, encoded by the edge labels on the path from the ST root to v. 

This algorithm has to traverse and examine all ST nodes, even if a minimum length 
constraint is provided. This results in a significant amount of disk I/Os in order to 
read into main memory the whole ST index from disk, which even if implemented 
efficiently [6], is still an order of magnitude larger than the sequence. Our proposed 
solution addresses this issue and minimizes the disk I/O operations, as explained later. 

2.3   Related Work 

Recently, the suffix trees (ST) and suffix arrays (SA) received considerable attention 
as suitable data structures for indexing large biological sequences. One major draw-
back of these index structures is their considerable size, especially evident for ST. To 
improve the situation, there have been proposals for compressed suffix arrays and suf-
fix trees representations [7, 8, 9]. Such compressed and compact index representations 
are of smaller size, allowing them to fit entirely in the main memory available on 
regular desktop computers. However, this gain in space requirements comes at a cost 
of less efficient search. As studied in [10], compressed suffix array [7] and FM-index 
[8] are much slower than suffix tree and suffix array for exact match search. Perhaps 
this explains why these compressed indexes were not used for finding repeats; we 
could not find any such work.  

There are several software tools for finding repeats, including REPuter [11], Re-
peatMatch [12], RepeatMasker [13], MaskerAid [14]. REPuter, which is based on suf-
fix tree indexing, is a popular tool for computing various kinds of repeats, including 
supermaximal repeats, for which it uses a variation of Gusfield’s algorithm [3] men-
tioned above. RepeatMatch also finds repeats based on suffix trees, however it does 
not support finding supermaximal repeats. RepeatMasker is an implementation of 
Smith-Waterman-Gotoh algorithm [15]. To find repeats, it performs an exact or ap-
proximate search to match the input sequence data against known repetitive patterns 
already stored in its library. MaskerAid is another implementation of the same ap-
proach as RepeatMasker. They both look for repeats of known patterns, however, this 
is different from the problem we address in this paper, namely finding supermaximal 
repeats in a sequence without further knowledge.  

Vmatch [2] searches for supermaximal repeats based on the enhanced suffix array 
(ESA) index [16]. Vmatch subsumes REPuter in maximal and supermaximal repeat 
search for its better space requirements and faster search performance [2]. This is a 
reason why we compare our work in this paper with Vmatch. Further, Vmatch is a 
general software tool for solving various search problems in sequence data, including 
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supermaximal repeat search. Since our ongoing project FASST also aims at providing 
a tool for various types of search tasks in large biological sequences, we consider its 
comparison with Vmatch on performance of supermaximal repeat search as yet an-
other opportunity to evaluate the two competing multipurpose alternatives. 

3   Our Technique for Supermaximal Repeats Search 

In the previous section, we discussed Gusfield’s algorithm for supermaximal repeats 
search, which returns the starting positions and the lengths of existing supermaximal 
repeats in a sequence, by performing sequential access to its entire ST index. How-
ever, very often in practice, biologists are interested in repeats of size longer than a 
particular threshold value. For example, [17] studies different species for repeats of 
size longer than 200 base pairs. Since the algorithm mentioned above examines the 
entire ST index, which is about 13 times larger than the data sequence, and cannot 
take advantage of this additional information on threshold size, it performs a constant 
and significant amount of disk I/O operations. 

The supermaximal repeats search technique (SMR) that we propose here addresses 
this problem. It uses an index structure, called Parent-Of-Leaf (POL), which is de-
rived from and replaces the STTD64 index. The new POL index is considerably 
smaller than the STTD64 index. We organize and store the information in POL in 
such a way that the number of required disk I/O operations is much reduced, resulting 
in considerably improved search time. Next, we present the structure of the POL in-
dex, followed by a description of its construction algorithm. At the end of this section 
we present our SMR algorithm, which searches for supermaximal repeats using the 
POL index. 

3.1   POL Index Structure 

As discussed earlier, each ST node v whose children are all leaf nodes, is a candidate 
that has to be further examined. If all the suffixes represented by the leaves of v have 
distinct left characters (i.e., the suffixes are left diverse), then a supermaximal repeat 
is found, which consists of the common prefix of all the leaf nodes (i.e., the characters 
on the path from the root to v).  

Our POL index is a collection of records related to such candidate nodes v. Each 
record consists of two parts, the header and data, as shown in Fig. 4. In the first 27 
bits of the header, we store the number of characters on the path from the root of 
STTD64 index to node v, which represents the length of the potential supermaximal 
repeat. In the remaining 5 bits of the header, we record y, the number of the leaf chil-
dren of v, which is equivalent to the number of occurrences of the repeat in the se-
quence S. The data part of the record for candidate node v contains exactly y blocks, 
each of size 32 bits. In each block, we store the start location in sequence S at which 
the suffix represented by a particular leaf of v occurs.  

The chosen sizes of the index fields allows for POL indexing of DNA and protein 
sequences of sizes up to 232 characters (4GB), in which the length of the longest su-
permaximal repeat is at most 134 million characters. First, the 4 GB limit is due to the 
fact that each data block, in which we record a sequence location, is of size 32 bits, 
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i.e., the address space is limited to 232. Next, recall from the ST definition, that no two 
edges out of a node can have labels which start with the same character. Thus, the 
number of children of any ST node is bounded by the alphabet size, i.e., 6 for DNA 
data (including N and the terminal symbol $) and 24 for proteins. In order for POL 
index to be applicable for both DNA and protein data, we allocate 5 bits for the sec-
ond part of the header in which we record the value y (at most 32) for the number of 
leaf children for each candidate node v. Last, the remaining 27 bits in the header part 
are used for recording the length of the repeat, which leads to the limitation on the su-
permaximal repeat length of 227 characters, i.e., around 134 million nucleotides or 
amino acids.  

                     32 bits 
  

Header Data 

length No.of occ. occurrence 1 occurrence 2 …… 
 

         27 bits     5 bits    32 bits          32 bits 

Fig. 4. POL Index Representation 

The POL index is implemented as an array of 32 bit blocks. Fig. 5 shows the POL 
index for our example sequence S = AGAGAGC$. The information about candidate 
nodes 5 and 9 (in Fig. 1) is recorded respectively in the first 3 and the last 3 POL 
blocks. The length of the repeat represented by node 5 is 4 nucleotides (i.e., size of 
“AGAG”), and node 5 has 2 leaf children. Thus, in the header of the record for node 5 
(block 1 in Fig. 5), we store values 4 and 2. The next 2 blocks, as indicated by the last 
5 bits of the header, are used for recording the starting locations in the sequence at 
which this repeat occurs. The children of node 5 are nodes 7 and 8, which represent 
suffixes starting at locations 0 and 2, stored in the second and third POL block. Simi-
larly, since the length of the repeat “GAG” represented by node 9 is 3 nucleotides, 
and node 9 has 2 leaf children, we store values 3 and 2 in the header of the record for 
node 9 (block 4 in Fig. 5). The children of node 9 are nodes 11 and 12, which repre-
sent suffixes starting at locations 1 and 3, stored in the last 2 POL blocks.  

4 2 0 2 3 2 1 3 

 

Fig. 5. The POL Index for Sequence S 

To further improve the support for searching supermaximal repeats of length 
greater than a particular threshold value, we store the POL records in descending or-
der, with respect to the length of each potential supermaximal repeat (recorded in the 
first 27 bits of its header). In this way, the SMR algorithm would terminate exploring 
the POL candidate nodes, once the length of a particular supermaximal candidate be-
comes smaller than the threshold value. 

Record for node 9Record for node 5
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We remark that in POL we do not record all ST candidate nodes, since otherwise 
this results in large POL index sizes (comparable to the size of the STTD64 index) 
and consequently slow POL construction times, without improving much the search 
performance. In our experimental study, we consider 4 POL index structures for dif-
ferent repeated lengths: POL10, POL25, POL100, and POL200. In POL10 we record 
all candidate nodes with repeat length of at least 10 nucleotides. This allows for  
improving the search time for supermaximal repeats of size at least 10 nucleotides. 
Similarly, POL25, POL100, and POL200 will result in faster search for supermaximal 
repeats of at least 25, 100, and 200 nucleotides, respectively. In Section 4, we study 
the cost of these 4 indexes, both in terms of construction time and storage space. 
However, our implementations of the POL construction algorithm and SMR search 
algorithm are flexible and allow for creating and using a POL index with repeat 
lengths that are relevant to the requirements of a particular application.  

3.2   POL Index Construction Algorithm 

The POL index construction algorithm is presented in Fig. 6. The algorithm takes as 
input (1) the STTD64 index of the sequence to be searched for supermaximal repeats, 
and (2) a user-defined minimum repeat length (len) of the candidate nodes that are to 
be recorded. The output is the POL_len index, which supports efficient search for su-
permaximal repeats of size at least len. 

Algorithm POL_len construction (index STTD64, minimum repeat length len) 
      //scan all ST nodes;  
      node = first ST node; 
1.   while (there are unexamined ST nodes) 
2.       if (node is a branch) node ++, go to step 1; 
3.       else // node is a leaf 
4.           if (node.depth < len) node++, go to step 1; 
5.           else 
6.               while (node is not a rightmost node) 
7.                    node++; // move to its sibling 

  8.                    if (node is branch) node++, go to step 1; 
9.                    else  

      10.                       counter of leaves ++, go to step 6; 
      11.              end while; 

12.              header.length = depth (node); 
….              header.number of occurrences = counter; 
……..         data = starting positions of suffixes; 
13.              node++, go to step 1; 
14.         end else 
15.     end else 
16.  end while 
17.  sort records in descending order on header.length;  

     End 

Fig. 6. POL Index Construction Algorithm 
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The construction algorithm traverses the STTD64 index sequentially, examining 
the leaf nodes. For a leaf node x, the algorithm compares its depth to len (Step 4) to 
eliminate ineligible nodes. Recall that the depth of a node is defined as the number of 
characters on the path from the root to the parent of the node. Thus, this step correctly 
identifies if a branch node v - the parent of x, meets the minimum length criterion. In 
Steps 6 to 11, the algorithm checks if all siblings of x are leaf nodes. If positive, a 
POL record for this candidate is created (Step 12). The POL construction method is 
completed in Step 17 by sorting the POL records. 

Consider the suffix tree in Fig. 1 with len = 2. For node 7, which is a leftmost leaf 
with depth > 2, the algorithm performs the while loop in Step 6 to check if node 8 
(node 7’s right sibling) is a leaf node. Since this is the case and since node 8 is a 
rightmost child, the algorithm goes to Step 12 to create a record representing the 
branch node 5 - the parent of leaf nodes 7 and 8 (see Fig. 5). The same steps are exe-
cuted when node 11 is processed, which results in creating a record in the POL index 
representing node 9. Last, the candidate node records are sorted based on the repeat 
length in descending order, but in our example this is already the case. Fig. 5 shows 
the final POL index for this example.  

Assuming that the STTD64 index has been already created, the POL construction 
algorithm reads the entire STTD64 index in strictly sequential order, which results in 
O(n) constant time operations, where n is the number of nodes in STTD64. The sort-
ing in Step 17 is done in O(r log r) time, where r is the number of records in POL. 
Since r is much less than n, the overall time complexity of POL construction algo-
rithm is O(n log n). 

3.3   Our Supermaximal Repeats Search Algorithm 

Our proposed SMR algorithm is presented in Fig. 7. The algorithm takes as input the 
sequence to be searched, its POL index, and a user-defined parameter threshold, 
which indicates the requested minimum length of the supermaximal repeats. The out-
put of the algorithm contains the starting positions in the sequence and the lengths of 
all supermaximal repeats of size equal to or greater than the threshold value. 

As shown in Fig. 7, starting from the first POL record, the SMR algorithm com-
pares the length of each candidate to the threshold value (Step 2). If the current record 
represents a candidate with a length at least equal to threshold, the algorithm reads the 
repeat occurrence positions from the data blocks of this record (Step 4). In Step 7, the 
left diversity of these occurrences is examined, and if successful, the discovered su-
permaximal repeats are produced as output (Step 8). The process of examining POL 
records continues either to the last POL record or until the length of a candidate be-
comes smaller than the threshold. Since the records are sorted in descending order, no 
other supermaximal repeats with length at least equal to threshold may exist and the 
SMR algorithm correctly terminates. 

Let us consider the running sample sequence S and a threshold value 4. The SMR 
algorithm starts with reading the first POL record, which represents the candidate re-
peat at node 5, whose length being 4 characters satisfies the threshold value. Then 
SMR reads the two subsequent data blocks (as instructed by y = 2) and retrieves the 
two positions S[0] and S[2], where the candidate supermaximal repeat starts. Since 
left character of the suffix starting at position S[0] of any sequence is different by  
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default from any characters in the sequence, the two suffixes are left diverse and 
hence SMR outputs the supermaximal repeat found, which is of length 4 and its two 
occurrences start at positions S[0] and S[2]. The algorithm then reads the next POL 
block, which is the header for the candidate repeat at node 9. Since its length is 3, 
which is less than threshold, there is no need to further examine the sorted POL index 
and the search process terminates. 

Algorithm SMR(Sequence S, index POL, requested minimum length threshold) 
      // read index POL and sequence S into memory 
1.    POL record = first; 
2.    while (POL.header.length > threshold) 
3.        read header.number of occurrences 
4.        loop:  
5.            find a starting position of an occurrence from POL.data 
6.            retrieve left character for the occurrence from sequence S  

       end loop 
7.        compare left characters of all occurrences 
8.        if (all left characters are distinct) 

record a supermaximal repeat of size POL.header.length nucleotides is 
found at starting locations: S[POL.data[1]], …, S[POL.data[y]]) 

9.        record++; 
10.  end while 
End 

Fig. 7. The SMR algorithm using a POL index 

The main advantage of our SMR algorithm over the Gusfield’s algorithm [3] is that 
it does not read the entire ST but rather accesses only a considerably smaller index. 
Using POL, which replaces the ST index, avoids an initial major step of Gusfield’s 
algorithm for finding suitable parent nodes from ST. This leads to considerable de-
crease in the number of disk I/O operations, which in turn results in significant de-
crease in search times for SMR. We next study performance of the SMR technique. 

4   Experiments and Results 

In this section, we first study the cost of construction of POL both in terms of time 
and storage space. We then experimentally evaluate the performance of our proposed 
SMR technique on real-life DNA sequences, using four POL indexes of different re-
peat lengths. We compare our search times with Vmatch. 

In our experiments, we used the 24 human chromosomes as input sequences to be 
searched for supermaximal repeats. The data was obtained from [18]. We removed all 
the unknown nucleotides (indicated by character N), resulting in sequences of size 
range 26 to 238 million bases. 

All experiments are performed on a typical desktop computer with Intel Pentium 
4@3GHz, 2GB RAM, 300GB HDD, and 2MB L2 cache, running Linux kernel 
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2.6.14. The construction and search times reported are real times in seconds  
(measured using the time command in Linux). The POL construction and SMR search 
algorithms are implemented in C. The SMR search service is available online for ex-
periments and use from the project web site at http://sepehr.cs.concordia.ca. 

4.1   POL Index Construction 

As discussed in Section 3.1, recording “all” candidate nodes from ST will result in 
huge POL indexes. Instead, we consider 4 alternative minimum repeat lengths, i.e., 
10, 25, 100, and 200 nucleotides, for which we construct the corresponding POL in-
dexes POL10, POL25, POL100, and POL200. Fig. 8 reports the construction times (in 
seconds) and storage requirements for these four indexes. 

Construction of POL indexes for various min lengths
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Fig. 8. Construction of POL Indexes for Various Minimum Repeat Lengths 

The POL construction times in this figure are the sum of the index construction 
times for all the 24 chromosomes. For the index size, the figure shows the average in-
dex size for all the 24 chromosomes. As can be seen, the POL200 index has the fast-
est construction time and the smallest storage requirements - on average 6% of the  
sequence size, or 200 times smaller than the STTD64 index. This index records all 
candidate ST nodes whose repeat length is at least 200 nucleotides. POL200 can be 
used to improve the search performance of SMR only if the threshold value on the su-
permaximal repeats length is at least 200 nucleotides. POL100, POL25, and POL10 
can be used for smaller threshold values, at the cost of increased construction time 
and storage space, since decreasing minimum repeat length leads to more candidate 
nodes to be identified and recorded in POL. For example, POL25 requires additional 
140 seconds in order to record 8 times more candidate nodes compared to POL200, 
but it supports efficient SMR search for threshold value 25 or more nucleotides.  
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Constructing the POL10 requires almost twice the construction time of POL200 and 
results in a 60 times larger index (but still 3 times smaller than STTD64), which sup-
ports searching for supermaximal repeats of almost all practical sizes. 

The choice of an “appropriate” minimum repeat length for the POL index construc-
tion is application dependent. Our construction algorithm allows the user to define a 
value for this parameter that will best fit the needs of a particular application, and 
provide a suitable trade-off between construction time and storage space on one hand, 
and search time on the other. However, we note that for the 24 human chromosomes 
considered, searching for repeats with minimum lengths smaller than 10 nucleotides 
is not practical in general, as discussed later in Section 4.3. 

4.2   SMR Search Performance 

In our second set of experiments, we evaluate the search time performance of SMR 
when using the 4 POL indexes. In these experiments, we used 14 different threshold 
values for the supermaximal repeats, ranging from 1 to 10,000 nucleotides. If the 
threshold is smaller than the minimum repeat length in a particular POL index, the 
SMR algorithm uses the general STTD64 index instead. Fig. 9 reports the measured 
cumulative search times (for all 24 chromosomes) for the four SMR runs and Vmatch.  
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Fig. 9. Vmatch vs. SMR with different POL index 

We make the following two important observations. First, if the requested repeats 
length is greater than the minimum length of two or more POL indexes, the SMR algo-
rithm provides the same search time performance, regardless of which POL index is 
used. For example, SMR exhibits very similar search times using POL10 and POL25 
for threshold values larger than 24 nucleotides. Also, SMR exhibits identical perform-
ance using any of the 4 POL indexes for threshold values above 199 nucleotides. This 
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is explained by noting that regardless of which particular POL index is used, the num-
ber of candidate nodes that represent supermaximal repeats of desired lengths is the 
same. Since the records in POL about the candidate nodes are kept in descending or-
der, the SMR algorithm processes the same number of POL records, which leads to 
identical search times using any of the 4 POL indexes. This observation implies that if 
a particular search application requires only finding supermaximal repeats of size hun-
dreds or thousands of nucleotides, then POL200 would be suitable index choice due to 
its fast construction and small storage requirements. 

Second, we note that SMR provides significantly faster supermaximal repeats 
search compared to Vmatch, for many of the cases considered. For example, for a 
threshold value of 10 nucleotides, SMR with POL10 is 2 times faster than Vmatch; 
for a threshold value 25, SMR is 7 times faster using either POL10 or POL25. SMR is 
more than 8 times faster for a threshold value 100 using any of POL10, POL25, or 
POL100 indexes; and above 9 times faster for threshold values at least 200 nucleo-
tides, using any of the four POL indexes. On the other hand, for threshold values less 
than 10 nucleotides, the construction of a POL index is not recommended for being 
too costly. While cases with threshold values less than 10 may not be frequent in 
practice, our proposed SMR algorithm in such cases can directly use the STTD64 in-
dex, resulting in only about 10% slower times compared to Vmatch. 

The above results are based on the assumption that a POL index is already  
constructed and available to SMR. However, an important practical question is: how 
many requests for computing supermaximal repeats should be posed against a particu-
lar sequence so that the cost of POL construction is justified and amortized, thus  
making SMR preferable to Vmatch solution? For lack of space we do not show our 
analysis here, but recommend our approach if: (i) there are 2 or more searches with 
minimum repeat length of 100 nucleotides; (ii) 3 or more searches with length at least 
25 nucleotides; or (iii) 4 or more searches with length at least 10 nucleotides are to be 
performed on the same sequence. 

4.3   Number of Supermaximal Repeats 

In our last set of experiments, we investigated the number of supermaximal repeats 
found in the 24 human chromosomes and present the results in Fig. 10.  

Increasing the minimum repeat length in the range from 1 to 10 nucleotides does 
not lead to a significant decrease in the number of supermaximal repeats found (in 
Fig. 10 these two lines overlap). For such small threshold values, we find almost half 
a billion repeats in the collection of 24 chromosomes with total size of around 2.8 bil-
lion bases. Such answer size contradicts with the idea of supermaximal repeats search, 
which is intended as a high-level and concise investigation tool for initial analysis of 
repetitive structures in biological sequences. Further, there is a high possibility that 
most supermaximal repeats of size less than 10 nucleotides found in sequences con-
taining tens and hundreds million bases occur purely by chance, and thus do not carry 
any structural or functional information. For these reasons, we believe searching with 
threshold values less than 10 nucleotides should not be viewed as a primary applica-
tion of supermaximal repeats search in large DNA sequences, and about a 10% drop 
in performance of SMR in such cases would not pose a restriction in its use.  
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Fig. 10. Occurrences found for various threshold values 

5   Conclusions and Future Work 

We studied the problem of finding exact supermaximal repeats in large DNA se-
quences, a major task in bioinformatics applications. Our proposed technique consists 
of two parts: (i) a new index structure, POL (parent-of-leaf); and (ii) an efficient 
search algorithm SMR, which uses the POL index. A web-based interface for SMR 
service is available online at http://sepehr.cs.concordia.ca. 

The POL index is derived from and designed to replace a more general, but con-
siderably larger suffix tree based index. Our experiment results indicate that a practi-
cal POL index for large DNA sequences, such as the 24 human chromosomes, can be 
constructed very efficiently by processing the STTD64 index [1] and has 3 to 200 
times smaller space requirements. Further, our results show that by using the POL in-
dex, our proposed SMR algorithm significantly outperforms the ESA based solution, 
provided as part of the Vmatch package. The search time improvement achieved by 
SMR over Vmatch was in the range to 2 to 9 times, when searching for supermaximal 
repeats of size at least 10 and at least 200 nucleotides, respectively.  

Other advantages of our technique are its flexibility and applicability. The POL  
index can be tailored towards the needs of a specific supermaximal repeats search  
application. Depending on a desired minimum length for supermaximal repeats in a 
sequence, the user has control over the amount of information stored during the con-
struction process of the POL index, thus selecting a suitable trade-off between index 
construction time and storage space on one hand, and the search time performance on 
the other. Further, a POL index created for a specific minimum repeats length, len, 
can be used for searching repeats of any length equal to or greater than len. This fea-
ture could be extremely useful in the process of iterative supermaximal repeats search, 
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until a desired trade-off between the number of repeats found and their lengths is 
reached. 

As part of our ongoing research, we are investigating the use of POL index for 
other types of repetitive structures search, such as maximal repeats, tandem repeats, 
etc. We also plan to extend our technique for approximate repeat search. 
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Abstract. Motif discovery recently received considerable interest from
both computational biologists and computer scientists. Identifying motifs
is greatly significant for understanding the mechanism behind regulating
gene expressions. Although many algorithms have been proposed to solve
this problem, only some of them use prior information about motifs. In
this paper, we propose a method to limit the search space of the exist-
ing methods for motif discovery. Our method is based on the following
observation: if some elements are conserved, then these elements may be
part of a conserved motif. Further, the proposed approach is based on
the divide and conquer concept, where we divide each DNA sequence
into four subsequences, one subsequence per each of the four letters, rep-
resentatives of the nucleotides, namely {A, C, G, T}. Then, we consider
the subsequences for G as the major source for deciding on candidate
motifs because G is found in almost all the transcription factors bind-
ing sites; the decision is supported and enhanced by the subsequences
of the other three letters. We have applied this idea to yst04 and hm03r
datasets; the results are encouraging as we have successfully predicted
the locations of some of the motifs hidden within the analyzed sequences.

Keywords: motif discovery, gene expression data, sequence analysis,
conserved motifs, divide and conquer.

1 Introduction

Transcription regulation is arguably one of the most important foundation of
the cellular function, since it exerts the most fundamental control over the abun-
dance of virtually all of cell’s functional macromolecules. A predominant feature
of transcription regulation is the binding of regulatory proteins, transcription fac-
tors (TFs), to cognate DNA binding sites in the genome, known as transcription
factor binding sites (TFBS). The computational identification of TFBS through
the analysis of DNA sequence data has emerged in the last decade as a major
new technology for the elucidation of transcription regulatory networks.

With the increasing volume of the available biological sequences, finding regu-
larities among the sequences as motifs could be identified as one of the emerging
important biocomputing problems that received considerable attention in the
research community. A motif, in the context of biological sequence analysis, is
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a consensus pattern of DNA bases or amino acids which accurately captures a
conserved feature common to a group of DNA or protein sequences. DNA mo-
tifs are sometimes termed signals: examples are regulatory sequences, scaffold
attachment sites, and messenger RNA splice sites.

Motif discovery is the act of identifying and characterizing motifs; the process
underlies a number of important biomedical activities. In other words, the prob-
lem of motif discovery may be stated as follows. Given a set of sequences, which
we have good reason to believe that they share a common binding motif, i.e., they
have the same function, the target is how do we go about extracting these often
degenerate patterns from the set of sequences. For example, the identification
of regulatory signals has applications for gene finding in sequenced genomes,
understanding of regulatory networks, and the design of drugs for regulating
specific genes; and protein motifs are routinely used to identify the functions of
newly-sequenced genes and to understand the basis of protein’s cellular function.

The automatic motif discovery problem is a multiple sequence local alignment
problem under the assumption that the motif model gives the optimal score for
some appropriate scoring function. There are several cases for this problem:

The simple sample: each sequence in the data set contains exactly one motif
instance,

The corrupted sample: an instance may not appear in every sequence,
The invaded sample: more than one instance may exist in some sequences,
The multiple patterns: the sequences may contain more than a single com-

mon motif.

There are many methods already described in the literature and widely used
by researchers to discover motifssuch as MEME [1,2], BioProspector [17], Alig-
nACE [12], Consensus [9], MDScan [18], and Weeder [27], among others. In
real-life applications, a biologist would select one of these tools, but the main
question that may arise is which one a biologist has to use?

There is no comparative study which compares the significance of motifs ex-
tracted from different motif discovery tools. A recent study published in NA-
TURE BIOTECHNOLOGY [31] highlighted the statistical significance of the
motifs discovered by the currently available tools. The authors have shown that
Weeder is the most significant tool. In their study, they allowed only the best mo-
tif to represent the analyzed data set. They compared the statistical significance
of the discovered motifs. However, by considering the real case from biological
perspective, a gene can be regulated by more than one transcription factor. This
means that there may be more than one motif per one dataset. Another inter-
esting study described in [23] showed that the sequence feature of DNA binding
sites reveal structural class of associated transcription factor. Given a data set of
the upstream sequences, they could classify those sequences into different classes.
Each class contains the genes which are regulated by transcription factors of the
same structure.

In this study, we propose a new motif discovery method which may be clas-
sified as a divide and conquer based approach. The proposed approach consists
of several steps. Since the genes within each of the two datasets yst04r and
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hm03r have the same function and are regulated by the same transcription fac-
tor, we applied the motif discovery process directly to these datasets. Further,
realizing the complexity of the motif discovery process in general, we decided
to apply a divide and conquer type of approach that helps reducing the search
space for a target solution. Our motivation is the argument that a motif is a
trend that occurs within each sequence in a cluster, and hence each of the four
letters, namely {A, C, G, T }, should follow a certain trend within the motif.
Based on this, we split each sequence into 4 subsequences, one per letter. The
result will be four different matrixes, one per letter to keep track of its posi-
tions within each sequence. In other words, each row in a matrix corresponds
to a sequence to reflect with the sequence the locations of the particular letter
represented by the matrix. Note that it is not necessary for a letter to have
same number of occurrences within all sequences. So, we consider the number
of occurrences of the letter within each sequence and take the maximum as the
number of columns; for rows with less number of occurrences, the extra entries
are assigned the value −1. Finally, we apply the following process on each of the
four matrixes.

We find subsequences of certain length such that the two extremes of the
subsequence are p positions away from each other in the original sequence; in
this study we consider p between 5 and 10. Then, we find the average dis-
tance from the head instance of the subsequence to each of its remaining in-
stances. A subsequence is anticipated to be part of a candidate motif when
it has the same length p and almost the same average distance within each
subsequence of a particular letter. This way, analysis of the four matrixes re-
turns possible subsequences of different candidate motifs. After this point, we
are interested only in their positions within the original sequences. We consider
subsequences for one of the letters as the major deciding factor with the sub-
sequences of the other three letters as providers for supportive information to
help in better ranking the former subsequences. The major subsequences in this
study are those that correspond to the letter G. Letter G is selected as the ma-
jor factor because it is found in almost all the TF binding sites. Also, many
studies showed that some classes of TF, like Cys2His2, have conserved bind-
ing sites of G elements only. Locations of the subsequences that have similar
length are ranked by the number of supporting rows within the same matrix
and then by the number of other matrixes (of the other 3 letters) supporting
them. Finally, we scan the ranked list from top to bottom by feeding the an-
ticipated motif candidates to three of the existing tools, namely MEME [1,2],
AlignACE [12], and Weeder [27]. Candidates confirmed by these tools are re-
ported as the actual motifs. To sum up, the main contribution of this paper is
the divide and conquer approach combined with ranking to identify positions of
potential motifs.

The rest of this paper is organized as follows. Section 2 presents the related
work. Section 3 covers the proposed approach. Section 4 reports the experimental
results. Section 5 is discussion and conclusions.
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2 Related Work

Motif discovery has received considerable attention as evident by the large num-
ber of related approaches described in the literature, e.g., [14,21]. Different statis-
tics and machine learning techniques have been successfully adapted to the motif
discovery process, including clustering, regression, joint probability, genetic algo-
rithms, hidden Markov model, etc. For instance, some approaches, e.g., [4,5],are
based on the fact that genes with similar expression levels should have homo-
geneous motifs, and hence their basic step is to cluster the genes first and then
investigate motifs within each cluster by employing some of the existing motif dis-
covery tools like MEME [1,2], BioProspector [17], AlignACE [12], Consensus [9],
MDScan [18], and Weeder [27], among others. Other researchers employed re-
gression on gene expression data for motif discovery, e.g., the Reduce method
of Bussemaker et al [13], the Rim-Finder system of Zilberstein et al [34], the
linear regression method called Motif Regressor of Conlon et al [7], the Logic-
Motif approach of Keles et al [15] which uses two-step logistic regression on a
single gene expression experiment. Finally, joint probabilistic approaches have
also demonstrated successful in motif discovery, e.g., [3,10].

Expectation maximization (EM) can be used to simultaneously optimize a po-
sition weight matrix (PWM) description of a motif, and the binding probabilities
for its associated sites [1]. Another approach, which is a stochastic implemen-
tation of EM, is Gibbs sampling [30]. The motif is typically initialized with a
randomly selected set of sites, and every site in the target sequences is scored
against this initial motif model. At each iteration, the algorithm probabilisti-
cally decides whether to add a new site and/or remove an old site from the
motif model, weighted by the binding probability for those sites.

Weeder [27] is a commonly used tool for motif discovery. The idea of this
algorithm is to enumerate all the oligos of or up to a given length, in order to
determine which ones appear, with possible substitution, in a significant fraction
of the input sequences, and finally to rank them according to statistical measure
of significance.

Various approaches and tools have been proposed to handle the motif dis-
covery problem using genetic algorithms (GA). For instance, both single and
multi-objective GA have been used for discovering motifs in multiple unaligned
DNA sequences [32].Stine et al [32] presented a structured GA to evaluate can-
didate motifs of variable length. Fitness values were assigned as a function of
high scoring alignment performed with BLAST. Many other recent studies are
using suffix trees for motif discovery, e.g., [20], and they have showed promising
results.

One of the most common approaches to handle the motif discovery problem
is multiple sequence alignment (MSA) [3]. Those approaches are found using
dynamic programming. This approach has both advantages and drawbacks. The
main advantage of MSAs for motif discovery is that they do not lose any infor-
mation contained in each sequence. However, they have several disadvantages:
they do not generalize the sequence data, and therefore are of limited help for
biological understanding.
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Hidden Markov Models (HMMs) have proved particularly useful for describ-
ing conserved sequences [8], being both flexible and better able to identify dis-
tant homologues than other approaches. Neural Networks have also been used
to recognize and classify patterns in biological sequences [32]. Neural networks
pose two significant problems when applied to motif discovery: (i) their relative
inflexibility when mapping sequence data to inputs; and (ii) the difficulty of in-
terpreting neural models, particularly when hidden layers are present within the
network. Finally, three interesting studies for motif discovery have been recently
published by Hartemink et al [23,24,25]. They used prior information about the
TF binding sites to predict the location of the motif. In addition to this, they
have shown that information nucleosome occupancy may improve the motif dis-
covery process.

3 The Proposed Methodology

In this section, we describe the methodology developed to discover motifs in DNA
sequences. The process consists of several steps. First, each sequence is split into 4
different subsequences, one per letter; and then, the subsequences are analyzed to
identify candidate motifs which are fed into three motif discovery tools to report
the actual motifs. Finally, it is worth mentioning that a preprocessing stage is
required to cluster the genes to obtain sequences that share common motifs.
However, such step is not described in this paper; we merely concentrate on how
to derive motifs from a set of homogeneous sequences, which may equivalent to
a certain cluster. In particular, we apply a divide and conquer based approach
as described next.

3.1 Identifying Positions of Potential Candidate Motifs

The basic step of the method for motif discovery works by considering each set of
homogeneous sequences (this may be considered equivalent to a cluster). For each
group of homogeneous sequences, Algorithm 1 is invoked to identify and return
positions for potential candidate motifs within each of the considered sequences.
Algorithm 1 first splits the original sequences and produces four matrixes, one
per each of the four letters {A, C, G, T }. Each of the four matrixes is used as
input to Algorithm 2. The latter algorithm returns the positions for the potential
candidate motifs. Here, it is worth noting that it is possible to report multiple
potential motifs per sequence. However, at the end of the process only strong
motifs are retained after employing the three motif discovery tools AlignACE,
MEME and Weeder on all the returned potential motifs.

As we base the analysis on the indices of the letter G as the major deciding
factor, we will use the letter G to illustrate the process of Algorithm 1. First a
matrix called G is constructed to contain one row per sequence; each row contains
the positions of the letter G within the corresponding sequence. Algorithm 1
invokes Algorithm 2 which finds from each row of matrix G all subsequences
of positions such that each subsequence has h occurrences of G, where 6 <
h < 15. Since each subsequence contains positions, we determine the average



Motif Location Prediction by Divide and Conquer 107

Algorithm 1. Identifying Positions of Potential Candidate Motifs in One Clus-
ter
1: Given the input cluster R, consider four matrixes A, C, G, and T ;
2: for each sequence Sj in cluster R, (j = 1, size(R)) do
3: Let dA=0, dC=0, dG=0, dT =0;
4: for i=1 to length(Sj) do
5: if (sj = ‘A′) then
6: A[j, dA] = i;
7: dA = dA + 1;
8: else
9: if (sj = ‘C′) then

10: C[j, dC ] = i;
11: dC = dC + 1;
12: else
13: if (sj = ‘G′) then
14: G[j, dG] = i;
15: dG = dG + 1;
16: else
17: if (sj = ‘T ′) then
18: T [j, dT ] = i;
19: dT = dT + 1;
20: end if
21: end if
22: end if
23: end if
24: end for
25: end for
26: WA=Find-Subsequences(R,A); (Algorithm 2)
27: WC=Find-Subsequences(R,C);
28: WG=Find-Subsequences(R,G);
29: WT =Find-Subsequences(R,T );
30: Rank all the returned subsequences for the letter G according to the following

criteria:
1) appears in more sequences within cluster R,
2) supporting in majority of the other three results WA, WC , and WT ;

31: Return the final ranked list of potential positions for candidate motifs;

distance from the first position in the subsequence to all following positions
within the same subsequence. For instance, the following result reflects for each
of the seven sequences in the yst04 data, S-1 to S-7, the information related to all
subsequences with 8 occurrences of the letter G; we mainly report the position
P of the first occurrence of the letter G and the average distance D within the
analyzed subsequence.

S-1 (P-407.D-7) (P-626.D-8) (P-636.D-7)
S-2 (P-4.D-6) (P-387.D-7) (P-749.D-5) (P-766.D-5) (P-817.D-7)
S-3 (P-1.D-6) (P-32.D-5) (P-83.D-5) (P-93.D-8) (P-121.D-6) (P-150.D-6) (P-443.D-7)

(P-795.D-6)
S-4 (P-102.D-7) (P-106.D-6) (P-292.D-7) (P-432.D-9)
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Algorithm 2. Find-Subsequences(R, M)
1: R is the input cluster and M is one of the four matrixes;
2: for i = 0 to size(R) do
3: for j = 0 to NumberOfColumns(M) do
4: Find from row i each subsequence of length between 6 and 15;
5: For each such subsequence, find the average distance from its head to each

instance in the subsequence;
6: end for
7: for j = 6 to 15 do
8: if (there exist in each row of M at least one subsequence of length j such that

all have similar average distances) then
9: Report the position of each subsequence as location for potential candidate

motif within the corresponding original sequence i in cluster R;
10: end if
11: end for
12: end for
13: Return all the reported potential positions;

S-5 (P-88.D-6) (P-131.D-5) (P-187.D-7) (P-207.D-7) (P-282.D-6) (P-292.D-7)
(P-312.D-4) (P-352.D-8) (P-366.D-6) (P-405.D-5) (P-455.D-8) (P-488.D-8)

S-6 (P-220.D-5) (P-294.D-6) (P-415.D-5) (P-416.D-8) (P-524.D-5) IP-694.D-6)
(P-695.D-8) (P-795.D-5)

S-7 (P-169.D-6) (P-174.D-7) (P-186.D-6) (P-317.D-6) (P-321.D-6) (P-674.D-7)

The first pair of values in S-1 may be read as follows: there is in sequences S-1
a subsequence that contains 8 G’s, it starts at position 407 in S-1 and 7 is the av-
erage distance for the distribution of G within the subsequence. This way, we are
able to identify, in the rows of matrix G, subsequences that have the same length
and the same average distance, regardless of the actual positions included in each
subsequence. Algorithm 1 initially identifies pairs of length and average distance
that repeat at least once in most of the rows of matrix G as frequent candidates
for further investigation. Frequent candidates are located in the other three ma-
trixes by the same way. Algorithm 1 ranks frequent candidates from matrix G
based on the occurrence of some supportive frequent candidates from the other
three matrixes. Supportive frequent candidates do not need to have same length
and average distance pair as the corresponding frequent candidates in G; they
are rather providers of supportive information as the actual positions within the
sequence are concerned. In other words, a frequent candidate from matrix G and
all its supportive frequent candidates from the other three matrixes should have
close-by corresponding positions in the original sequence. After predicting the
first positions of the highly ranked subsequences that have similar distribution
of G, we extend the subsequences by 5 positions in both directions because it is
not necessary to have G occurring on both ends of a motif. The point here is to
reduce the large sequences into small subsequence of shorter length which have
one nucleotide aligned correctly in all the sequences. After we classify and obtain
the extended subsequences, we feed them to MEME, ALignACE and Weeder.
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Then, we get the motifs discovered by these three tools and we find the TF
binding site using TFSEARCH.

4 Results

To justify the effectiveness and applicability of the divide and conquer process
described in this study, we have conducted experiments using yst04r and hm03r
datasets, which were downloaded from the TRANSFAC database. These datasets
were used because they are very well studied and corresponding results are re-
ported in the literature. We have used the TFSEARCH tool for TF binding
site discovery. Also, we have used three motif discovery tools; in particular, we
decided to use AlignACE, MEME and Weeder because it has been shown by
Tompa et al [31] that these three tools give the statistically significant motifs,
in addition to their popularity among researchers who are interested in Motif
discovery.

In the first part of the experiments, we want to demonstrate that the three
tools, namely AlignACE, MEME and Weeder, are not always capable of dis-
covering motifs which are biologically significant. So,we applied the three tools
on yst04r and hm03r and obtain all the candidate motifs produced by these
tools. Then, we used the TFSEARCH tool for testing the biological significant
of the reported motifs. For each produced motif, we just checked whether it has
a corresponding TF binding site or not. Explicitly, we have used TFSEARCH
to discover the significant TF binding sites within the yst04 and hm03r data
sets. TFSEARCH returned the binding sites of the following TFs: HSF, ADR1,
GCR1 and RAP1 in yst03r, and cdxA, oct-1, GATA, SRY, AML-1a, c/EBPB,
deltaE, Nkx-2, AP-1 and MZF1 for hm03r. When we feed TFSEARCH with
the candidate motifs from the tools we used, we discovered that the three tools
could only discover binding sites of HSF and GCR1 transcription factors in the
yst04 data. As the hm03r data is concerned, Weeder was able to discover the
binding sites of CdxA, Nkx-2, USF,and SRY. On the other hand, MEME could
only discover SRY and AP-1 binding sites. We see from these results that none
of the tools could discover all the TF binding sites; more than that, none of them
explicitly consider the biological aspect in finding the motifs. As a result of this
step, we have shown that, although the three tools could discover some signif-
icant motifs, none of them is able to discover all the TF binding sites hidden
within the upstream sequences. Based on these results, we may argue that none
of the tested three motif discovery tools is fully capable of producing biologically
significant results. However, we realized that Weeder is still the tool which could
discover more than the others, so we decided to use Weeder for motif discovery.

For the sake of the experiments conducted to demonstrate the power of the
proposed approach, we assumed that if there is a set of sequences which have
conserved element at specific position, then the other elements may be conserved
in this set of sequences. We found all the subsequences of length from 6 to 15,
which have 3 or 4 Gs and rank high based on the ranking criteria applied in this
paper. In other words, we consider subsequences of G that repeat in most if not
all the given sequences, and which are maximally supported by subsequences of
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the other three letters. Maximally supported means that most if not all of the
three letters have some trends that repeat in most if not all of the sequences and
in the same areas discovered by G; having positions of the trends returned for
the four letters overlapping is the best targeted case. Here it is worth mentioning
that it is trends for the same letter should have the same length, but the length
should not be reserved between letters.

The 3 or 4 length was selected for G based on the notion that most TF
binding sites are 15-20 bp. We tried to discover the core of the motif first, and
then extend this core in both directions, along the right and left sides. If we find a
set of subsequences of the same length and have the same average distance value
D, then these subsequences were candidate locations to search for motifs. When
we tested the binding sites of GCR1 reported by TRANSFAC, we observed that
the scores are between 86-95 according to TFSEARCH. Our candidate motifs
could predict binding sites of GCR1 of scores between 70-88. We have ranked
the candidate location of motifs based on the support from the other elements,
namely A, T , and C. The obtained results showed that when we set the length
to be 6, having 3 Gs and D is 4, supportive elements were 4-5. This means that
there are 7-8 aligned elements in those locations. All the candidate locations
have GCR1 binding site of scores between 70-84. Other candidate locations of
supportive values of 4, which have GCR1 binding site were predicted, such as
motifs of length 7 and 8, which have 3 Gs and D is taken as 5 and 7, respectively.
But, it was observed that only 4 out of the seven predicted locations have the
GCR1 binding site. We have noticed that, for subsequences of length 6-8 and
bounded by Gs and have one G within the subsequences have high rank and
high supportive values. They also showed to have the target TF binding sites.
Furthermore, our candidate locations showed to hide the TF binding sites of
HSF and ADR1. These results are in agreement with Scot et al [33]. Apart from
this, we noticed that the predicted locations of GCR1 are 0-100bp apart from
the real GCR1 binding site location. For some locations, there was overlap, but
others are 60-100 apart.

5 Discussion and Conclusions

In this work, we tried to investigate the biological importance of the motifs
discovered by three of the most frequently used motif discovery tools, namely
MEME, AlignACE, and Weeder. It has been shown that, although the results
they produce are statistically significant, they are not biologically significant,
in general. None of the tools consider the biological aspect, while searching for
motifs.

Most of the algorithms dealing with the motif discovery problem do not use
prior information on the location of the motif. Recently, many studies have been
shown to be using prior information, either from Nucleotide occupancy or from
TF binding sites [23,24,25]. Inhere, we tried to benefit from divide and conquer
based algorithm and from Similar distribution of one element supported by the
other elements, namely G and supported by A, C and T .
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We can predict the location of a motif by dividing the data into four subsets,
each has the indexes of one element, then benefiting from the similar distribution
of one element in substrings from different sequences. In other words, we use
information from the distribution of G to predict motif locations. We looked
for subsequences of length 6-15, which are bounded by Gs and hide some Gs
within it because most of the reported motifs have length of 10-20. Also, we
have set the length of the candidate location to be 20 for the same reason. This
idea showed to be promising to predict the location of motifs. In this work, we
could discover the location of HSF and ADR1 transcription factors. This result
is as good as the other tools. Our approach could discover the binding site of
ADR1 which has been shown to have zinc fingers, which agree with our prior
information about the binding sites of zinc finger transcription factors. We have
also predicted locations for the real transcription factor in the considered data,
which is GCR1. The predicted locations were so close to the real locations.

In conclusion, in this study we have shown that using prior information from
the distribution of one element is a promising idea for further works; the discov-
ery becomes stronger when supported by information related to the other three
elements. Using this approach we could reduce the research space of the motif
discovery tools to 20-100 bp instead of 1000 bp. We are expecting our approach
to be more efficient for data with longer motifs (30-70), since that will reduce
the false positive motifs, which have the same distribution of an element.
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Abstract. The thermodynamics of RNA-RNA interaction consists of
two components: the energy necessary to make a potential binding region
accessible, i.e. unpaired, and the energy gained from the base pairing of
the two interaction partners. We show here that both components can
be efficiently computed using an improved variant of RNAup. The method
is then applied to a set of bacterial small RNAs involved in translational
control. In all cases of biologically active sRNA target interactions, the
target sites predicted by RNAup are in perfect agreement with literature.
In addition to prediction of target site location, RNAup can also be used
to determine the mode of sRNA action. Using information about target
site location and the accessibility change resulting from sRNA binding we
can discriminate between positive and negative regulators of translation.

1 Introduction

A series of high-throughput transcriptomics projects, among them ENCODE
[1] and FANTOM [2] have demonstrated that mammalian genomes are perva-
sively transcribed, and that a large fraction of the transcripts does not code
for proteins. Concurrently, small RNAs, in particular microRNAs and siRNAs
have been identified as crucial regulators of gene expression, reviewed e.g. in [3].

� The first two authors contributed equally to this work.
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Fig. 1. Interaction between two RNAs of comparable length. Since each molecule forms
intramolecular structures, the accessibility for an interaction differs along the molecule:
Unstructured regions can easily take part in an interaction. Regions that are involved
in an intramolecular structure, e.g. the left hand side of the molecule drawn as a bold
line, are not easily accessible for intermolecular binding.

Genome-wide mapping of small ncRNAs [4] revealed novel classes of ncRNAs,
implying that ncRNAs act by several, if not many, different mechanisms.

MicroRNAs, siRNAs and snoRNAs require the direct interaction of ncRNAs
and their target by means of base-pairing [5]. The same is true for many of the
bacterial small RNAs discovered during the last decade, see e.g. [6]. Compu-
tational evidence [7] suggests, furthermore, that a significant fraction of RNA
candidates with evolutionary conserved RNAs [8] binds to mRNAs.

These observations have triggered increasing interest in methods to predict
“targets” via the evaluation of RNA-RNA interactions. For microRNAs, the
available tools are almost too numerous to list (see [9,10] for recent reviews),
targetRNA [11] is frequently used for bacteria, and a specific heuristic for orphan
snoRNAs was presented recently [12]. In the most simple case, only the base pair-
ing between the two interacting partners is taken into account [13,14,15,16,11].
In most cases, however, RNA-RNA interaction does not cover the entire target.
This is maybe most evident in the case of short siRNAs or miRNAs targeting long
mRNAs. It becomes necessary in such cases, to explicitly consider the structure
of the target. In [17], anti-sense targets are predicted as unpaired regions on the
target molecules. For siRNA and microRNA it was shown that the accessibility
of the target site correlates directly with the efficiency of cleavage [18,19].

Instead of treating the target independent of its binding partner, it seems
more appealing to compute the structure of the interaction complex. Just as the
folding problem with pseudoknots [20], finding the energetically optimal inter-
action structure is NP-complete [21]. It is, however, not even desirable to solve
the general “RIP” problem, because too highly entangled structures typically
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are not formed in nature. Practical approaches therefore restrict the set of inter-
action structures that are searched. So far, four classes of structures have been
investigated in some detail:

1. Only base-pairs between the interacting RNAs are considered, no base pairs
are allowed within each structure. As argued above, disregarding the internal
structure of the interaction partners may be too crude an approximation.

2. Interactions between the two molecules are restricted to the external bases of
the two partners. Such structures can be computed by means of a straightfor-
ward generalization of the usual pseudoknot-free folding algorithm [22,23].
This class of structures, however, is still too restrictive as it rules out frequent
motifs such as kissing-hairpins [24].

3. The other extreme is to consider all “tangle-free” interaction structures.
This leads to a rather expensive algorithm with a runtime O(m3 ·n3), where
m and n are the lengths of the interacting sequences, and quartic memory
consumption [25,21,26,27], which is prohibitive for many large-scale applica-
tions. Another problem is that the interaction structures contain many types
of complex loops for which energy parameters are unknown.

4. The RNAup approach [28] restricts the region of interaction to a single in-
terval on each of the interaction partners, while arbitrary pseudoknot free
structures are allowed elsewhere, see Fig. 1. This model is sufficient for most
but not all known RNA-RNA interactions. For example, the OxyS–fhlA in-
teraction [29] contains two separate kissing complexes and therefore can not
be predicted using RNAup. Most bacterial sRNAs however show one well de-
fined interaction with a typical interaction length from 9 bp up to 60 bp and
variable degrees of complementarity between ncRNAs and target sequence
[30,31]. In [28], only the target molecule was assumed to be structured, while
the ncRNA partner was assumed to be a miRNA or siRNA without internal
structure. Here we will drop this restriction.

Instead of directly computing the interaction structure, RNAup decomposes
the problem into three steps: For each subsequence (with bounds i and j) of an
RNA, we compute the probability P [i, j] that it is unpaired. This probability is
equivalent to the free energy of making the binding regions accessible. The opti-
mal interaction structure is then computed by assessing all possible combinations
of binding sites of both partners.

This conceptual decomposition of RNA/RNA binding into an unfolding and
an interaction contribution has most recently been adopted by several groups.
Long et al. [32] developed a model for modeling the interaction between a miRNA
and a target as a two-step hybridization reaction: nucleation at an accessible tar-
get site, followed by hybrid elongation to disrupt local target secondary structure
and formation of the complete miRNA-target duplex. Lu & Mathews [33] pre-
dicted the cost of opening base pairs in the mRNA for hybridization to siRNA
by calculating the structure once without constraints and then once with the
constraint that the nucleotides in the hybridization site are forced to be single-
stranded. A similar approach is taken in Tafer et al. [34] where accessibility
is computed using the RNAplfold program [35]. Kertesz et al. [19] devised a
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parameter-free model for microRNA-target interaction that computes the differ-
ence between the free energy gained from the formation of the microRNA-target
duplex and the energetic cost of unpairing the target to make it accessible to
the microRNA.

In the following sections we first describe an algorithmic improvement in the
computation of P [i, j] that leads to a significant speed-up of RNAup. Then we
show how to include secondary structure information of both interaction partners
in the computation of the free energy of binding. In the results section, we report
how these improvements allow us to more precisely describe translational control
by bacterial sRNA.

2 Algorithm

RNAup calculates the energetics of RNA-RNA interactions in a stepwise process.
The free energy of binding ΔG consists of the “breaking energies” ΔGu that are
necessary to render the binding site on each molecule accessible and a contribu-
tion ΔGh that describes the energy gain due to hybridization:

ΔG = ΔGA
u + ΔGB

u + ΔGh, (1)

where A and B denote the two interacting molecules. In principle, Eq. 1 has to
be evaluated for every possible combination of interacting regions in molecule A
and B. In practice, our algorithm first computes the accessibilities ΔGu for all
regions up to a maximum size w and then combines these regions to compute
the hybridization energies ΔGh.

In order to compute free energies of binding we cannot rely on finding a sin-
gle optimal structure only. Instead, we have to compute the partition functions
associated with these three free energy terms. This can be done with (suitably
modified) variants of the algorithm introduced by McCaskill [36] and imple-
mented in the Vienna RNA package [37]. Recall that the equilibrium partition
function is defined as

Z =
∑
S

exp(−βF (S)) , (2)

where F (S) is the free energy of a secondary structure S, and β = 1/(RT ) is the
inverse of the temperature times Boltzmann’s constant (here expressed as the gas
constant, i.e. for energies per mol). Note that individual secondary structures
are assigned temperature dependent free energies with entropic contributions
arising from the ensemble of microscopic conformations that are assigned to
a single secondary structure as macro state. Energy parameters used here are
taken from [38].

2.1 Calculation of Accessibility

Partition functions for subsequences contain the information necessary to com-
pute the frequency of structural motifs, in the simplest case individual unpaired
bases or base pairs [36].
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Here, we are interested in the probability Pu[i, j] that the sequence interval
[i, j] is unpaired, which is equivalent to the energy ΔGu[i, j] = −RT ln(Pu[i, j])
necessary to make the subsequence from i to j single-stranded. An unpaired
interval [i, j] is either “exterior”, i.e. not enclosed by a basepair, or there exists
an enclosing base pair (p, q) such that p < i < j < q and there is no other pair
(s, t) such that p < s < i < j < t < q. We can therefore express Pu[i, j] in terms
of restricted partition functions for these two cases:

Pu[i, j] =
Z(1, i− 1)Z(j + 1, n) +

∑
p<i

∑
j<q Ẑ(p, q)Zpq[i, j]

Z(1, n)
(3)

where Ẑ(p, q) is the partition function outside base pair (p, q), and Zpq[i, j] the
partition function inside a base pair (p, q) given that the interval [i, j] is unpaired.
Here we introduce an improved recursion for Ẑ(p, q)Zpq[i, j] that reduces the
CPU requirements of the previous implementation of RNAup [39] from O(n3 ·w)
to O(n3), where n is the length of the sequence and w is the maximal size of the
unstructured region [i, j].

As in [39], we start from the observation that Zpq[i, j] consists of three contri-
butions, of which the summation of all multi-loop energies is the most complex
one. This multi-loop part is again split into three parts, depending on whether
the unpaired region is to the left or to the right of all components of a multi-loop
or in between them, Fig. 2:

Zmult[i, j] =
∑

p<i<j<q

Ẑ(p, q)×

⎛
⎜⎝ZM2(p + 1, i− 1)e−βc(q−i)︸ ︷︷ ︸

left

+ ZM2(j + 1, q − 1)e−βc(j−p)︸ ︷︷ ︸
right

+ ZM (p + 1, i− 1)e−βc(j−i+1)ZM (j + 1, q − 1)︸ ︷︷ ︸
in-between

⎞
⎠

(4)

The crucial improvement is obtained by replacing the double sum in Eq. 3 by
two separate summation steps. For the last, “in-between”, summand we use the
auxiliary variables

ZMM (q)[i] =
∑

1≤p<i

Ẑ(pq)ZM (p + 1, i− 1) (5)

For ZM
l (q)[i] where the unpaired region [i, j] is to the left of all multi-loop

components, we introduce

ZM
l (q)[i] =

∑
1≤p<i

Ẑ(p, q)ZM2(p + 1, i− 1)e−βc(q−i) (6)
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Fig. 2. Decomposition for calculating multiloop contributions: Base pair [p, q] that
includes the unpaired region [i, j] is drawn as an arc connecting bases p and q. The
unpaired region [i, j] is drawn as a bold black line. In the one-sided multiloop case (A)
a structured region containing at least two structure components is on one side of the
unpaired region. In case (B) the unpaired region [i, j] is between two structured regions.
In case (B) we have to take care to make a unique decomposition of the multiloop into a
3’ part that contains exactly one component and a 5’ part with at least one component.

and an analogous term is used for the “right” contribution. Computing these
values costs O(n3). By using them, we can compute

Zmult[i, j] =
∑
j<q

ZMM (q)[i]e−βc(j−i+1)ZM (j + 1, q − 1)

+
∑
p<i

ZM
r (p)[j]

+
∑
j<q

ZM (j + 1, q − 1) + ZM
l (q)[i]

(7)

in O(n2 · w) time, i.e., the entire algorithm is O(n3). The computations for
hairpin and interior loop contributions are handled in the same way.

In comparison to McCaskill’s partition function algorithm, RNAup needs to
store five additional matrices (ZM2, ZMM , Zl, Zr and one additional matrix
for the interior loop case). Hence we buy the speed-up by O(w) by increasing
the memory requirements by only about a factor of 2. A comparison of the
execution times of the old and the new version of RNAup shows that the new
version is 20 times faster for the default settings (w = 25) and sequence lengths
below 400 nucleotides. For sequence lengths between 400 and 2000 nucleotides
the speed up decreases with increasing sequence length, but the new version is at
least 12 times faster. This substantial performance gain considerably facilitates
large-scale applications.

2.2 Free Energy of Interaction

In [39] we used Pu[i, j] for the (long) target mRNA only, assuming that the
siRNA or miRNA is unstructured due to its short length. This approximation
cannot be justified for most bacterial small RNAs, however. Hence, we extended
RNAup to take the secondary structure of both interacting molecules into account.

Suppose the interaction region covers the intervals [i∗, j∗] and [i, j] in the
two RNAs. As in RNAhybrid and related programs, we allow interior loops and
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bulges in the interaction region. The partition function over all these binding
conformations is obtained by the following recursion:

ZI [i, j, i∗, j∗] =
∑

i<k<j
i∗>k∗>j∗

ZI [i, k, i∗, k∗]e−βI(k,k∗;j,j∗). (8)

where I(k, k∗; j, j∗) is the energy contribution for the interior loop delimited by
the base pairs (k, k∗) and (j, j∗).

As we want to avoid having to keep track of a four dimensional array, we
compute the partition function Z∗[i, j] over all structures where region [i, j] in
the longer molecule is involved in the interaction. While doing this, we keep track
of the region where ZI [i, j, i∗, j∗] is maximal. The recursion for the calculation
of Z∗[i, j] is shown in Eq 9.

Z∗[i, j] = PA
u [i, j]

∑
i∗>j∗

PB
u [i∗, j∗]ZI [i, j, i∗, j∗]. (9)

From Z∗[i, j] we can readily compute ΔG[ij], the free energy of binding given
the binding site is in region [i, j]. For visual inspection, ΔG[ij] can be reduced
to the optimal free energy of binding ΔG[i] at a given position i, see Eq 10. The
memory requirement for these steps is O(n · w3), the required CPU time scales
as O(n ·w5), which, at least for long target RNAs, is dominated by the first step,
i.e., the computation of the Pu[i, j].

ΔG[i, j] = −RT ln Z∗[i, j].
ΔG[i] = mink≤i≤l{ΔG[k, l]}.

(10)

The positional free energy, ΔG[i], referring to position i in the target molecule,
is written to a file. For the region with maximal ZI [i, j, i∗, j∗], we use RNAduplex
to print out the optimal interaction structure.

3 Results

To test whether the changes in RNAup improve its applicability, we studied ex-
perimentally verified interactions between bacterial small RNAs (sRNAs) and
their targets [30]. Bacterial sRNAs are ideally suited to examine the usefulness
of the inclusion of the secondary structure of both interaction partners into the
free energy calculations, since sRNAs are long enough to be highly structured.
Furthermore the binding region usually spans only part of the sRNA binds.
Therefore, the secondary structure of the sRNA will critically influence the ex-
act location of the binding site.

As a first test we compared the binding sites predicted by the old version of
RNAup, which neglects sRNA structure, with the predictions of the new version
that computes the contributions of both structures. As expected, when omitting
the structure within the sRNA the binding energy was markedly higher (mean
−24.97± 5.97) than in the new version (mean −15.54± 1.99).
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When comparing binding site location with the location of experimentally ver-
ified binding sites, see Table 1, we found that the new version predicts binding
sites more accurately than the old version. In the new version 3 binding sites were
predicted with perfect accuracy (the predicted binding site did not deviate by
more than one base pair from the binding site reported in literature), and 7 bind-
ing sites deviate by at most 17 base pairs, see Table 1. Neglecting sRNA struc-
ture, on the other hand, predicts no binding site with perfect accuracy, 9 binding
sites show a deviation between 4 to 45 base pairs, (4, 11, 12, 16, 27, 33, 39, 39, 45),
and one binding site prediction was wrong, i.e. far away from the site reported
in literature.

This comparison emphasises the importance of the inclusion of secondary
structure information of both binding partners when predicting sRNA-mRNA
interactions. Neglecting the structure of the sRNA results in an overestimation
of the length of the predicted interaction and in most cases hinders the clear
localization of the proper target site boundary.

In addition to the location of the binding site, the regulatory effects upon
binding of the sRNA to the its target mRNA was studied. We used a data
set consisting of 9 small regulatory RNAs from E.Coli, their 9 reported mRNA
targets and the fold-change in protein concentration induced by all 81 possible
mRNA-ncRNA interactions [30]. Among those interactions, 8 targets were down-
regulated, 2 were upregulated, and no or only marginal changes were detected
for the others (see Table 1). Downregulation usually occurs when the hybridi-
sation of the ncRNA with its cognate mRNA blocks the ribosome entry sites
on the target (for a review see [40]). In contrast, upregulation typically takes
place when the sRNA-mRNA hybridization disrupts intrinsic inhibitory struc-
tures that sequester the ribosome binding site and/or the start codon [41,42,43].
In many cases the sRNA-mRNA interactions are assisted by the RNA chaperone
protein Hfq [44].

Target prediction was performed with the mRNA constructs (117-689 nts)
described in [30] and the full length sRNAs (69-220 nts). The mRNA constructs
included a long 5’UTR sequence (57-565 nts) and a comparably short fragment of
the CDS (35-139 nts). Both the hybridisation energy and the target site position
were computed with RNAup for all sRNA-mRNA combinations.

For each sRNA we tested which of the mRNA constructs was predicted to
bind most strongly. To our satisfaction the most favorable binding energy for
each sRNAs was found for its cognate target (see Table 1).

Since the most common mechanism of translational control is to influence
ribosome binding at the Shine-Dalgarno (SD) sequence, we checked the position
and structural effects of the predicted interactions. For each of the 8 interactions
that resulted in downregulation, we found the binding site to be at or close to
the Shine-Dalgarno sequence. This type of inhibition can thus be predicted by
comparing RNAup predictions with sequence features that are easy to recognize
in bacterial genomic sequences.

Our data set contains only two examples of upregulation, namely binding
of DsrA and RprA to rpoS. In both cases, binding leads to the disruption of a
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Table 1. Binding site summary for the 10 functional interactions published by Urban
et.al [30]. Column ΔΔG shows the optimal binding energy calculated with RNAup.
Column Position gives the binding position relative to the start codon. Column Position
lit. gives the binding position found in the literature.

mRNA sRNA regulation ΔΔG Position Pos.lit. cite

RyhB sodB - -11.50 -18,+4 -4,+5 [45]
DsrA hns - -14.60 -10,+11 +7,+19 [46]
MicA ompA - -13.60 -21,-6 -21,-6 [47]
MicC ompC - -15.80 -30,-15 -30,-15 [48]
MicF ompF - -17.80 -11,+9 -11,+10 [48]
Spot42 galK - -17.00 -18,+30 -19,+21 [49]
SgrS ptsG - -17.33 -28,-10 -28,+4 [50]
GcvB dppA - -17.30 -30,-7 -31,-14 [31]
DsrA rpoS + -14.52 -126,-97 -119,-97 [42]
RprA rpoS + -15.90 -134,-94 -117,-94 [42]

Fig. 3. Opening energy, ΔGu plotted versus sequence position for the interaction of
DsrA with textitrpoS. The vertical gray line marks the position of the start codon.
The black line represents the average breaking energy for all E. Coli mRNAs. The
dark gray line represents the opening energy of unbound rpoS, the light gray line the
opening energy after binding DsrA. Unbound rpoS is less accessible than average (dark
gray area), while bound rpoS is more accessible than average (light gray area).

helix which normally sequesters the Shine-Dalgarno sequence as well as the start
codon. We remark that this is an example of the modifier RNA mechanism that
was proposed in [51,52].
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To assess the ability of RNAup to predict upregulating interactions we first
compared the accessibility of the region around the start codon of all 9 mRNAs,
with the mean accessibility of all 4463 genes in the E.Coli genome. Mean ac-
cessibility was computed for regions of 401 nts, centered at the start codon. For
comparability we used the same 401 nts regions of our 9 target genes rather than
the constructs used above. The accessibilities and corresponding opening ener-
gies were computed with RNAup for unpaired regions of length 4. The screen
against the E.coli genome with all 9 sRNAs took 16 CPU days on one core of
an Intel Core2 duo CPU with 2 GB RAM running at 2.40GHz.

With a local opening energy of 4.51 kcal/mol rpoS is the most inaccessible
transcript among the 9 transcripts presented here. Genome-wide only 8.8% of
the transcripts have a less accessible start codon than rpoS. In contrast, the eight
downregulated transcripts showed a higher than average (2.23 kcal/mol) acces-
sibility, ranging from 0.30 kcal/mol for ompA to a maximum of 1.27 kcal/mol
for ryhB.

After binding DsrA, the accessibility of the rpoS start codon changes dramat-
ically. With only 1.40 kcal/mol, bound rpoS is much more accessible than the
average transcript and belongs to the 33% most accessible genes, see fig. 3. The
same effect is seen upon binding with RprA, with a local accessibility after bind-
ing of 1.90 kcal/mol. Technically, accessibilities after binding can be computed
easily by adding the constraint that nucleotides in the binding site remain single
stranded.

4 Conclusion

Translational control by sRNAs is an important regulatory function throughout
all bacteria. In contrast to e.g.micro RNAs, these regulatory RNAs are mostly
structured. We have improved RNAup to take both target and sRNA structure
into account. As we have also increased the speed of RNAup, it is now suitable
for the computational identification of mRNA targets of bacterial sRNAs.

Furthermore, we find that RNAup can be used to predict the regulatory effect of
sRNA binding by investigating the location of the binding site and the structural
changes induced by binding in the vicinity of the start codon of the mRNA. A
predicted binding close to the start codon or the Shine-Dalgarno sequence is a
clear indicator for downregulation. While results look promising for upregulation,
a bigger data set is needed to confirm that RNAup can also accurately predict it.

Our algorithm captures the most common types of interaction between reg-
ulatory RNAs and their targets, even though more complicated types of inter-
actions, such as H/ACA snoRNA with their target rRNAs or OxyS–fhlA, are
neglected. The speed of RNAup is clearly sufficient for genome wide searches for
sRNA–mRNA interactions in bacteria. In principle, the approach is equally ap-
plicable to interaction search in higher organisms. However, the larger genome
size and longer UTR regions pose challenges both in terms of computation time
and false positives.
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Abstract. Ab initio protein structure prediction usually tries to find a ground 
state in an extremely large phase space. Stochastic search algorithms are often 
employed by using a predefined energy function. However, for each valid con-
formation in the search phase space, there are usually several counterparts that 
are reflective, rotated or reflectively rotated forms of the current conformation, 
imprecisely called isometric conformations here. In protein folding, these iso-
metric conformations correspond to the different rotation states caused by ad-
missible protein structure transitions. In structure prediction, these isometric 
conformations, owning the same energy value, not only significantly increase 
the search complexity but also degrade the stability of some local search algo-
rithms. In this paper, we will prove that there exists a subspace that is unique 
(no two conformations in the space are isometric) and complete (for any valid 
conformation, there exists a corresponding conformation in the subspace that 
is a reflective or rotated form of it). We demonstrate that this subspace, which 
is about 1/24 of the conventional search space in the 3D lattice model and 1/8 
in the 2D model contains the lowest energy conformation, and all other iso-
metric lowest energy forms can then be obtained by protein rotation. Our ex-
periments show that the subspace can significantly speed up existing local 
search algorithms. 

1   Introduction 

Proteins support life by carrying out important biological functions that are primarily 
determined  by their structures. Methodological advances in DNA sequencing resulted 
in a dramatic increase of data about protein sequences, whereas only a small portion of 
protein sequences have their structure experimentally determined exactly. Thus, struc-
ture prediction is an important first step of the sequence-to-structure-to-function para-
digm and has been widely applied to protein design, Biocatalysis and Bioengineering.    

Given a polypeptide chain and the molecular potential, how can one find the native 
state conformation? Ab initio methods represent a physical approach to predict the 
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structure of a target protein only from its amino acid sequence. The methods are based 
on an energy function, which is often the contact potentials, and the native state con-
formation of a protein is the free energy minimum for the amino acid sequence. Com-
putational methods are employed to find the global minimum of the energy function 
for the target protein. Ab initio methods often need a mathematical model to represent 
a protein. The lattice model is one of the most simple and popular options. Though the 
simplified lattice model clearly loses the details of protein structures and functions, it 
does not lose the physical essence of protein folding features, such as the existence of 
cooperativity and the primary sequence pattern that determines its uniquely defined 
native 3D conformation. 

Even in the simplest lattice model, the protein folding problem has been recog-
nized to be “NP-complete” [1] and is therefore assumed to be not solvable in  
polynomial time. In most cases, the number of conformations in the search space is 
extremely large and it is impossible to traverse all the conformations in order to find 
the optimum solution. Attempts to alleviate the difficulty have been mainly into two 
directions. One is using powerful optimization methods, such as simulated annealing 
[2, 3], genetic algorithm [4, 5], Monte Carlo-minimization [4] and Tabu search [6]. 
The other one is to develop appropriate move sets. 

In this paper, different from the above two classes of methods, we try to reduce the 
conventional phase space instead.  By phase space, we mean all 3D protein structures 
regardless of the types of the amino acids. A big advantage of our method is that al-
most all existing search algorithms can benefit from this reduction on the search 
space. Our method comes from our investigation to the symmetry in the conventional 
phase space of protein folding.   

In protein folding space, for each valid conformation, there are often several 
counterparts that are reflective, rotated or reflectively rotated forms of the current 
conformation, imprecisely called isometric conformations here. These isometric 
conformations correspond to the different rotation states caused by the protein 
movement. The isometric conformation exists in almost all available protein mod-
els, such as lattice model, off-lattice model and all-atom models.  

In the paper, we will prove that there exists a subspace where each conformation is 
unique (no reflective or rotated forms for any valid conformation) and complete (for 
any valid conformation, there is a corresponding conformation in this subspace that is 
a reflective or rotated form of it). We demonstrate that the subspace, which about 1/24 
of the conventional search space in the 3D lattice model and 1/8 in the 2D model, 
contains the lowest energy conformation, and all other isometric conformations can 
then be obtained using some simple mappings. Our experiments show that the sub-
space search method can significantly improve existing search algorithms. 

2   Stochastic Search Algorithms for Protein Folding 

Energy landscapes are a convenient tool to analyze protein folding algorithms. For-
mally, a landscape is denoted by ),,( SufL = , where f is the energy function to opti-
mize and u is the modification operator (often called Move Set) applied to elements of 
the search space S. The landscape heavily depends on the move set, which in turn 
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depends on the structure representation. In protein structure prediction algorithms, 
there are two kinds of representation mechanism that are widely used. 

2.1   Available Structure Representations 

3D Coordinates 
In 3D protein structure representation, 3D coordinates are no doubt the most popular 
representation. The method can precisely show the distribution of each amino acid. A 
large number of protein storage and visualization methods, such as PDB format [7, 8], 
and search algorithms [9] are using this representation. However, the method is very 
sensitive to coordinate shifting. For example, by shifting the conformation in Fig. 1a 
we can get Fig.1b. In the 3D coordinate presentation, both structures are different. 
Thus, when used in search algorithms, 3D coordinate presentation often needs to em-
ploy some extra control in order to alleviate redundancies arising from coordinate 
shifting. 

     
(a) (b) 

Fig. 1. The 3D coordinate representation of a protein in the lattice model 

Torsion Angle Representation (TAR) 
In a 3D protein structure, if the length of the bond between two adjacent residues is 
known, one can define any unique conformation by only providing the torsion an-
gles. In a lattice model, at each point, the chain can only turn 90° left or right, turn 
90° up or down or continue ahead relative to the orientation of last bond. For sim-
plicity, we denote these directions with char L, R, U, D and F, respectively. By add-
ing char B, we indicate the backward direction when necessary, and we use six chars 
F, L, R, U, D and B to represent all the possible conformations of a protein in the 
lattice model. In addition, this torsion angle representation is independent of the co-
ordinate shifting. For example, the two conformations in Fig.1 are both represented 
by “FFLRL”. Furthermore, the torsion angle representation can be easily trans-
formed into 3D coordinates when necessary. The torsion angle representation has 
diverse applications in energy landscape analysis algorithms, especially the ones 
based on the pivot move set. 

In theory, if the torsion angle between the residues in a 3D protein structure are 
classified by discrete states, the alphabet representation can be used to represent any 
protein model, e.g. such as the off-lattice model [10, 11]. The alphabet representation 
of real protein structures has already been intensely investigated and widely applied to 
protein structure matching and browsing [12, 13]. For simplicity, in this paper, we  
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 (a) (b) (c) 

Fig. 2. Three different isometric conformations of the protein from Fig.1.a that have different 
relative string representations. a) a reflective form of Fig.1.a with TAR as “FFRLR”, b) a ro-
tated form of Fig.1a with TAR as “LFLRL” and c) a reflectively rotated form of Fig.1a with 
TAR as “LFRLR”. 

represent our algorithm by using the lattice model. However, our conclusions can be 
easily extended to other models or real proteins by using TAR.   

Though torsion angle representation can avoid the redundancy of coordinate shift-
ing, there are still plenty of redundant forms for each protein conformation; for exam-
ple, the isometric conformation we mentioned before. In structure prediction, these 
isometric conformations own the same energy value and significantly increase the 
search complexity. 

2.2   Move Sets for Protein Folding  

Pivot Move Set 
When using the relative string representation, the pivot move set [14, 15] can be sim-
ply described by changing one and only one char in a relative string representation of 
a conformation in order to obtain a new conformation. Since we cannot guarantee that 
the new conformation is self-avoiding, we must discard the invalid conformations or 
utilize additional strategies to avoid invalid conformations [16]. An example of pivot 
move is given in Fig.3.   

Pull Move Set 
In polymer physics, the motion of a mobile polymer chain moving through a confin-
ing environment is governed by slack entering at the ends of the polymer and diffus-
ing along its length [17]. Lesh et al. proposed the pull move set [18] based on this 
observation and the experiments show that the pull move set has a better performance 
than the pivot move set [18, 19]. The pull move set can guarantee that the new con-
formation is always valid. 

Move Set Comprised of Several Specific Local Mutations 
In some papers [20-22] three types of local chain moves are used as the a move set: 
one-bead terminal swing, one-bead corner flip, and two-bead crankshaft moves. Liang 
and Wong [23] extended the above move set with an extra k-point mutation.  
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 (a) (b) 

Fig. 3. An example for the pivot move set: with a single pivot move applied to the bond be-
tween residue 5 and residue 6 (from “F” to “L”), conformation a changes to conformation b 

2.3   Stochastic Algorithms   

Many stochastic search algorithms are a variant of or based on the Metropolis Monte 
Carlo (MMC) algorithm. MMC algorithms starts from a random conformation S1 with 
energy E1 and then make a single random modification in order to obtain a new con-
formation S2 = u(S1) with energy E2 . If E2 ≤ E1, then the transition is accepted; other-
wise, acceptance of the transition if  

)exp( 21

kc

EE
Rnd

−
< , 

where Rnd is a random number between 0 and 1. If ck is gradually decreased (cooled), 
the method is called simulated annealing. 

3   Proposed Subspace 

It is well known that proteins have often a fixed orientation when folding. For protein 
structure presentation in lattice models, we can state the following: 

Lemma 1. In a lattice model, the chain can turn 90° left or right, turn 90° up or down 
or continue ahead or backward relative to the orientation of the last segment of the 
chain. We denote these directions with char L, R, U, D, F and B, respectively. The 
phase space with F being the first element and L being the first non-F element is 
unique and complete relative to the protein rotation.  

To prove this lemma, we only need to prove two propositions below. 

Proposition 1. The subspace described above is complete, i.e., for any valid confor-
mation there is a corresponding conformation in this subspace that is its reflective or 
rotated form.  

Proof. Firstly, it is obvious that any conformation representation starting with non-F 
char can be rotated to the one with F being the first element. An example of rotating a 
conformation starting with B into the one starting with F is shown in Fig. 4.   
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                                              (a)                                                    (b) 

Fig. 4. An example of rotation: a conformation “BFLRL” can be rotated to a conformation 
“FFRLR” 

Secondly, one can see that any conformation representation with F being the first 
element and the first non-F element being R, U or D can be rotated to a conformation 
representation with F being the first element and L being the first non-F element. 
Fig.5 illustrates how a simple protein conformation can be rotated into the one in the 
proposed subspace and any 3D structure can be treated in the same way. Since B is 
used only as the first element of conformation representations, we can conclude that 
any conformation with F being the first element and non-L being the first non-F ele-
ment can be rotated into a conformation with F being the first element and L being the 
first non-F element.  

Proposition 2. The subspace described above is unique. That is, it is impossible to 
find two different conformations in this subspace that are isometric. 

 

Fig. 5. An example of rotation. Left: Conformation “FFRLR”; Right: Conformation “FFURL”; 
Bottom: Conformation “ FFDLR”. All of them can be rotated to a conformation “FFLRL”. 
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Proof. Assume that there are N amino acids. For each residue, there are M different 
states for each torsion angle. For the proposed subspace, all the possible conforma-
tions can be represented as follows, where * denotes M-2 possible choices of U, D, F, 
L and R:  

44444 844444 76

L

L

M

L

L

1

*

***

****
−N

LFFFFF

LFFFF

LFF

LF

                                                

(1) 

                                            FFFFFF L  

Firstly, one can see that two conformations with different number of starting Fs are 
not isometric. Without loss of generality, we assume that there are two conformations, 
one with x starting Fs and the other with y starting Fs and x > y as shown below: 

a.  L
44 844 76

L ∗LFFF
x

 

                                       b.  L
48476

L ∗*LFF

y

 (2) 

In conformation a, the distance between the first amino acids and the y+1-st amino 

acids is 12 +y . In conformation b, the distance between the first amino acids and 

the y+1-st amino acids is y. Since rotation to a conformation does not change the dis-
tance between two amino acids inside, conformations a and b are not isometric. 

Secondly, we prove that two relative string representations with the same number 
of starting Fs cannot be rotated to each other. Assume there is a conformation as fol-
lows:   

L
44 844 76

L ∗LFFF
x

.                                             (3) 

The 3D coordinates of the first amino acid are (0,0,0); the x-th amino acid is at (0,0,x) 
and the x+1-th amino acid is at (0,0, x+1). These three amino acids determine a 
unique plane Γ in the 3D space. If we rotatea a protein in whatever way, plane Γ will 
also rotate and cannot cover (0,0,0), (0,0,x), (0,0, x+1) any more. Hence, the new con-
formation obtained by rotation cannot have the form as given in Equation (3). There-
fore, we obtain that two relative string representations from the subspace with the 
same number of starting Fs cannot be rotated to each other. 

Lemma 2: The proposed subspace is a small portion of the whole phase space.  

To prove this, we assume that for fixed-length sequences the ratio of invalid confor-
mations to all TAR char combinations is very small and therefore can be omitted, 
which is true in almost all practical cases. We know that the whole phase space con-

tains 2)1( −− NMM conformations. Based on Equation (1), the number of conforma-
tions in the proposed subspace is 
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The ratio r of the proposed subspace relative to the whole phase space is  
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(5) 

Since N >>1, the approximation in the above equation holds. In the 2D lattice model, 
we have M = 4 and r ≈ 1/8. In a 3D case, we have M = 6 and therefore r ≈ 1/24. 

4   Results 

Since the proposed subspace is much smaller than the whole phase space, all existing 
algorithms can benefit from this. In this section, we tested the proposed subspace for 
two stochastic search algorithms. 

We have tested the proposed subspace for 3D lattice models. For interacting poten-
tials between amino acids, we use HP and the Miyazawa-Jernigan Matrix [24, 25]. In 
the HP lattice model, which is often regarded as the simplest model of protein folding, 
the linear sequence is composed of only two types of amino acids: H(hydrophobic) 
and P(polar). The energy function is  

∑
<

−Λ=
ji

jivv ji
eH )( rr

                                                      

(6) 

where )( ji rr −Λ is 1 if ri and rj adjoining non-diagonal lattice sites and 0 otherwise; 

jivve can be eHH, eHP, ePH or ePP with eHH = -1 and eHP = ePH = ePP = 0. The energy func-

tion can be simply described as: -1 for each direct contact of non-bonded hydropho-
bic-hydrophobic residues and 0 for the others.  

In the lattice model with MJ Matrix, the interaction energy for 
jivve , where vi and 

vj can be any one of the 20 amino acids, taken from the Miyazawa-Jernigan matrix. 
The main factor to be compared is the energy of the current conformation after the 

same number of successful mutations between two algorithms, one searching the 
whole phase space, and the other searching the proposed subspace. Since the per-
formance of stochastic search algorithms depends on the random number generator, 
each experiment is executed multiple times and the average value is taken for the final 
result.  

The following benchmark sequences are analysed in our comparison: in the 3D HP 
lattice model, a sequence with 64 residues1 is taken [2, 18]. For the simulated anneal-
ing algorithm, the experiment is executed 20 times and the average energy value 
changes with respect to the number of successful mutations is given in Fig. 4a.  The 
genetic algorithm [2] was also executed 20 times with 100 generations each. There  
 

                                                           
1 The sequence is “HHHHHHHHHHHHPHPHPPHHPPHHPPHPPHHPPHHPPHPPHHPPHH 

PPHPHPHHHHHHHHHHHH”. 
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Fig. 6. Performance comparison between algorithms searching in the conventional space and in 
the proposed subspace by using the 3D HP model: a) the simulated annealing algorithm, b) the 
genetic algorithm 
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are 200 successful mutations for each single MC step. The average energy value for 
every generation after the crossover is given in Fig. 6b. 

For the 3D lattice model based upon the MJ matrix, a sequence with 36 residues2  
[26] is tested and the results are given in Fig. 7. 
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Fig. 7. Performance comparison between algorithms searching in the conventional space and 
the proposed subspace by using the 3D lattice model with MJ matrix: a) the simulated anneal-
ing algorithm, b) the genetic algorithm      
                                                           
2 The sequence is "KMIKDVIERACDHCMHKFVKDVMEHMIKDVCKDCAK". 
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5   Discussion 

It is well known that isometric forms of the protein structure enormously increase the 
complexity of protein folding prediction. In some papers, the authors try to alleviate 
the effect of the symmetry on protein folding prediction. A popular idea is to keep a 
short or long memory of the folding path and to avoid any conformation whose iso-
metric form is in the memory. When simulating a real protein folding process, this 
idea actually assumes that protein folding somehow keeps track of the folding path. 
However, there is no proof showing that the protein folding has such an ability. On 
the contrary, many experiments (see [27] for a review) seem to show that protein 
folding can be characterized as a "memory-less" stochastic process. Consequently, 
most of the existing symmetry-reduction algorithms can be seen as computational 
optimization methods rather than biological simulations. Being completely different 
from the available algorithms, our method shows that there is no necessity for a pro-
tein folding mechanism to remember the folding path in order to avoid isometric 
conformations. 

Though our simulation is successful in the lattice model simulation, the case for real 
protein folding may be more complicated. For example, it is obvious that there exist 
several subspaces similar to the one we used. It is likely that the real protein folding 
does not use one subspace only, but maybe two or several of them in order to arrive in 
the native state. A more systematic study of real protein folding is under way.     
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Abstract. Identifying the disulfide bonding pattern in a protein is critical to un-
derstanding its structure and function.  At the state-of-the-art, a large number of 
computational strategies have been proposed that predict the disulfide bonding 
pattern using sequence-level information. Recent past has also seen a spurt in 
the use of Mass spectrometric (MS) methods in proteomics. Mass spectrometry-
based analysis can also be used to determine disulfide bonds. Furthermore,  
MS methods can work with lower sample purity when compared with x-ray 
crystallography or NMR.  However, without the assistance of computational 
techniques, MS-based identification of disulfide bonds is time-consuming and 
complicated.  In this paper we present an algorithmic solution to this problem 
and examine how the proposed method successfully deals with some of the key 
challenges in mass spectrometry. Using data from the analysis of nine eu-
karyotic Glycosyltransferases with varying numbers of cysteines and disulfide 
bonds we perform a detailed comparative analysis between the MS-based ap-
proach and a number of computational-predictive methods. These experiments 
highlight the tradeoffs between these classes of techniques and provide critical 
insights for further advances in this important problem domain.  

1   Introduction 

Cysteine residues have a property unique among the amino acids, in that they can pair 
to form a covalent bond, known as a disulfide bond.  These bonds are so named be-
cause they occur when each cysteine’s sulfhydryl group becomes oxidized following 
the reaction 

    S-H + S-H → S-S + 2H                                                     (1) 

Because disulfide bonds impose length and angle constraints on the backbone of a 
protein, knowledge of the location of these bonds significantly constrains the search-
space of possible stable tertiary structures which the protein folds into.  The disulfide 
bond pattern of a protein also can have an important effect on its function.  For exam-
ple, in [1] it is shown that the sterical structure formed by disulfide bonds in ST8Sia 

                                                           
* Equal contributors. 
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IV is critical for it to catalyze the polysialylation of NCAM, the neural cell adhesion 
molecule.  NCAM has an important role in neuronal development and regeneration.  

At the state-of-the-art, techniques for disulfide bond determination can be classi-
fied into three primary groups: (1) Crystallographic techniques producing high-
resolution three dimensional structures of proteins, where the disulfide bonds can be 
observed directly. (2) Algorithmic techniques that predict (or infer) the disulfide con-
nectivity based on sequence data. (3) Mass-spectrometry-based techniques that detect 
disulfide bonded peptides by analyzing a mixture of peptides obtained by targeted 
digestion of an intact protein. 

Crystallographic methods can be used to study a subdomain of the protein that is 
sufficiently soluble and may form crystals.  However, such methods can rarely be 
used in medium or high-throughput settings.  Consequently, in the recent past, signifi-
cant attention has been given to computational methods that can predict disulfide 
connectivity based on sequence information alone [2-10, 27].  An important advan-
tage of these predictive methods lies in the fact that they require only sequence-level 
data to make predictions.  Recent results in this area have reported high accuracies 
with Qp values (fraction of proteins in the test set with disulfide connectivity correctly 
predicted) in the 70 – 78% range.  These methods also report high Qc (sensitivity) 
values. However, in interpreting, extrapolating, and understanding these performance 
values, the following considerations are especially critical: 

1. Most of the reported results use a dataset called SP39 of non-redundant se-
quences derived from the SWISS-PROT database (release no. 39) proposed in 
[5].  To ensure quality, this dataset only includes sequences containing infor-
mation from PDB for which intra-chain disulfide bonds are annotated. Further, 
disulfide assignments described as “by similarity”, “probable”, or “potential” 
are excluded.  Two issues emanating from the use of this standard dataset need 
to be emphasized.  On one hand, it undeniably leads to uniformity and ease in 
comparing results.  However, it also invariably leads to methods being opti-
mized in context of a fixed standard.  For this reason alone, care needs to be 
taken in extrapolating the performance on SP39 to arbitrary data.  It must be 
noted, that certain methods (such as [7, 8]) have used multiple datasets in addi-
tion to SP39, in assessing performance.  

2. In many methods, learning and testing have often been done in a cross-
validated settings rather than involving independent datasets.  This leaves open 
the issue of training bias and its possible impact on the performance of these 
methods on completely novel datasets. 

3. In SP39 as well as the other datasets used, only a limited disulfide-bonding to-
pology (consisting of intra-bonded cysteines) is considered.  This has putative 
implications regarding the applicability of these methods to more complex 
bonding topologies.  

In contrast to computational-predictive methods, mass spectrometric approaches, 
which involve direct measurements, provide a conceptually different approach to 
disulfide bond determination.  The choice between these two classes of methods re-
quires studying the tradeoffs between the model-and-predict strategy used in predic-
tive methods and the direct measurement principle underlying mass spectrometric 
techniques.  The investigations presented in this paper are motivated by the above 
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discussion. Specifically, we pursue two goals. First, we investigate some of the key 
computational challenges associated with mass-spectrometry-based disulfide bond 
determination. Second, through experimental studies conducted on nine eukaryotic 
Glycosyltransferases with varying numbers of cysteines and disulfide bonds, we  
investigate the aforementioned tradeoffs between purely predictive methods and an 
MS-based approach.  

2   Previous Work 

A variety of techniques have been proposed for determining disulfide bonding pat-
terns including crystallographic approaches, computational predictive strategies, and 
methods combining mass spectrometric and algorithmic techniques.  A comprehen-
sive review of algorithmic methods for this problem is presented in [11].  Broadly 
speaking, algorithmic approaches can be classified into two major classes: (1) tech-
niques that predict (or infer) the disulfide connectivity based on sequence data, and 
(2) techniques that algorithmically analyze a mixture of peptides obtained by targeted 
digestion of an intact protein using mass spectrometry and thereby seek to detect 
disulfide bonds.  

Techniques based on sequence data are based on characterizing a heuristically de-
fined local sequence environment and address one of two correlated problem formula-
tions.  The first, residue classification, involves distinguishing the bonded cysteine 
residues from the free residues.  Early techniques for residue classification either 
analyze the statistical frequency of amino acid residues in neighborhoods around the 
cysteines [12] or encode the local sequence environment of residues and solve the 
classification problem using machine learning methods in a supervised setting [13, 
14]. Other methods [15], have combined the use of both local and global descriptors 
and/or hybrid classifiers [16].  While it is difficult to directly compare the prediction 
performance of these methods due to differences in datasets, most descriptor and 
classifier choices in the aforementioned works lead to prediction accuracies of greater 
than 78% with [16] reporting prediction accuracy of 87.4% on chains containing two 
or more cysteines and 88% overall accuracy. Other techniques, such as [12,15] have 
also reported prediction accuracies in the 82% - 84% range. 

The second formulation, connectivity prediction, employs techniques that seek to 
define the complete disulfide connectivity pattern of a protein.  In [17], the connec-
tivity pattern was determined by first constructing a completely connected graph G.  
Four different formulations of contact potential were used for weighting the edges 
and the disulfide connectivity was defined as the solution of the maximum weight 
perfect matching problem on G.  In [18], a recursive neural network (RNN) was used 
for scoring undirected graphs that represent connectivity patterns by their similarity 
to the correct graph.  The idea of RNN formed the basis of the DISULFIND predic-
tion server [19].  In [20] the notion of utilizing the specificities in the sequence 
neighborhood of cysteines was extended to take advantage of cysteine distributions 
in secondary structure elements.  In [8], the chain classification problem was ad-
dressed using evolutionary information and kernel methods.  Other approaches to 
this problem include the use of cysteine separation profiles [9, 10] and comparisons  
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with an annotated database, as done in the CysView server [22].  The highest Qp 
scores (fraction of correctly assigned proteins) reported were in the 70% – 78% 
range [8, 22]. 

The basic strategy for determining disulfide bonds using mass spectrometry con-
sists of the following steps: First, the protein of interest is cleaved in its non-reduced 
state between as many of the cysteine residues as possible using proteases like trypsin 
or chymotrypsin.  Second, the resultant peptides, including disulfide-linked peptides, 
are separated and analyzed by electrospray ionization (ESI) or matrix-assisted laser 
desorption/ionization (MALDI). These mass spectrometry techniques allow peptide 
and protein molecular ions to be put into the gas phase without fragmentation.  The 
analysis is a two step process and involves measuring the mass-to-charge (m/z) ratio 
of the ionized disulfide-linked peptides (also called the parent or precursor ion) along 
with measurement of the m/z ratio of the product ions.  Subsequently, the peptides’ 
ions are fragmented to confirm the sequence identity of the disulfide-linked peptides 
and thereby the location of one of the protein’s disulfide bonds.  

In spite of the seeming simplicity of this process, the determination of disulfide 
bonds using mass spectra is complex.  This is because the number of possible disul-
fide bonding models grows rapidly with the number of cysteines and the number of 
expected disulfide bonds. Furthermore, measurements of fragment-based bonding 
patterns can be influenced by noise and need to be coalesced into an overall connec-
tivity pattern that is physically consistent. These issues constitute the key challenges 
for an algorithmic approach that seeks to utilize mass-spectrometric data for disulfide-
bond determination.    

3   Disulfide Bond Determination Using Mass Spectrometry Data 

Based on the above discussion, we identify three main computational challenges: (1) 
efficiently searching the combinatorial space of peptides and fragmented peptides to 
determine (mass-based) correspondences with the mass spectrum/tandem mass spec-
trum. These correspondences would indicate putative disulfide bonds. (2) Ranking 
and filtering the correspondences to exclude effects of noise. (3) Determining the 
global pattern of disulfide bonds for the molecule.  

3.1   Basic Definitions and Computational Formulation 

A cysteine-containing peptide C is a defined to be a peptide that has at least one of its 
amino acids identified as a cysteine residue.  A disulfide bonded peptide structure 
consists of one or more cysteine-containing peptides that contain one or more disul-
fide bonds.  The disulfide bond mass space DMS = {Dmi} is the set of masses of 
every possible disulfide bonded peptide structure for a protein. During LC/ESI, pre-
cursor ions are generated.  A precursor ion is a peptide or disulfide bonded peptide 
structure that has been ionized, so that a charge to mass ratio associated with it ap-
pears as part of the mass spectrum of a protein.  A precursor ion mass list PML = 
{Pmj} is the set of numbers that represent the masses of the precursor ions obtained 
from a LC/ESI-MS/MS experiment.  The PML is a representation of the mass spec-
trum that has been processed to remove noise from the experimental procedure, and 
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has been expanded to address uncertainties in the charge state of the ion, as well as 
neutral loss.  A precursor match between DMS and PML occurs when the difference 
between their values is below a predefined threshold. We denote the set of precursor 
matches as the Initial Match IM = between PML and DMS.  During the MS/MS step, 
peptides undergo collision-induced dissociation (CID), generating peptide fragments. 
The fragments produced are mostly either b-ions containing the peptide’s N-terminus 
or y-ions containing its C-terminus.  A cysteine-containing peptide fragment is a pep-
tide fragment that has at least one of its amino acids identified as a cysteine residue.  
A disulfide bonded peptide fragment structure consists of one or more cysteine-
containing peptide fragments that contain one or more disulfide bonds.  The disulfide 
bonded fragment mass space FMS = {Fmi} is the set of the masses of every disulfide 
bonded fragment structure that can be obtained from a disulfide bonded peptide struc-
ture. A MS/MS mass list TML = {Tmi} is the set of numbers corresponding to the 
masses of the peptide fragments obtained from a precursor ion in a LC/ESI-MS/MS 
experiment.  A MS/MS match between TML and FMS occurs when the difference 
between the corresponding elements of TML and FMS is less than a predefined 
threshold. We denote the set of MS/MS matches as the Confirmed Match CM be-
tween TML and FMS. 

The number of elements in a Confirmed Match is an indication of the degree to 
which the LC/ESI-MS/MS data supports the presence of a particular disulfide bonded 
peptide fragment.  In our case the identification of the peptide structure shows us 
which cysteine residues are participating in disulfide bonds.  Thus, by aggregating the 
all the Confirmed Matches for a protein analyzed by LC/ESI-MS/MS, we can arrive 
at the overall disulfide bond pattern for the protein. In doing so, we need to ensure not 
only that the overall connectivity pattern is physically consistent (no cysteine partici-
pates in more than one disulfide bond) but also that the pattern is the most likely one 
given the data.  The primary challenges for determining the disulfide-bond connec-
tivity therefore include:  

1. Finding an efficient way to obtain the initial match IM between the PML and the 
disulfide bond mass space DMS.   

2. For each initial match, efficiently determining the confirmed match between the 
disulfide bonded fragment mass space FMS and the TML.   

3. Aggregating the confirmed matches into a weighted graph enabling the computa-
tion of the overall disulfide bond pattern. 

 
3.1.1   Determining the Initial Match 
We first examine how to construct the DMS for a disulfide bond topology consisting 
of an arbitrary number of peptides.  For this analysis, let k denote the number of sites 
where an arbitrary protein A can be cleaved with a certain protease.  As a result, A is 
divided into k+1 peptides.  For most proteins and proteases, each peptide contains at 
most one cysteine residue.  These peptides can form interbonded disulfide bonds with 
other peptides.  If a peptide contains two or more cysteines, an intrabonded disulfide 
bond may be present.  For this case, the time needed to construct of the DMS equals 
the time required to search each peptide to determine which peptides contain two or 
more cysteine residues.  Because there are k+1 peptides, the overall complexity to 
construct the DMS for this topology is O(k).  Extending this line of argument, it can 
be shown that for the n-peptide case, the mass space requires O(kn) time to compute.  
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This complexity can be reduced if the data structure used to construct and search the 
DMS does not require computing the mass of every member of the DMS.  Such a data 
structure can be constructed by identifying every possible disulfide bonded peptide 
structure and then storing each as an element in a pre-computed state.  For example, if 
a protein has the three cysteine-containing peptides p1, p2, and p3, this space consists 
of {p1+p2, p1+p3, p2+p3}.  Here, each element contains the amino acid sequence of 
each unique peptide combination. The next step is to arrange these elements in such a 
way that they are approximately sorted by mass.  This can be done without computing 
the mass of each peptide combination by noting that the number of amino acids in a 
peptide is directly proportional to its mass.  Based on this idea, we store the DMS in a 
hash table with its key the number of amino acids in the peptide combination.  Next 
the elements of the PML must be converted to an equivalent number of amino acids in 
order to index into the DMS for matches.  This can be done by use of the expected 
match index, as defined below:  

Definition 1. The Expected Match Index ie is defined as the number used to index into 
a sorted or approximately sorted data structure to arrive at the region where a match is 
likely to be found.  The match index is constructed for mass tables that represent 
strings of amino acids a by ie = mj/me , where mj is a value from a mass list and me is 
the expected amino acid mass. We defined the expected amino acid mass in [23] as 
the weighted mean of all 20 amino acids, i.e, me = ∑iwim(ai), where {wi}denotes the 
relative abundance of each amino acid, and m(ai) is the mass of an amino acid residue.  
Using published values for masses and relative abundances of each amino acid [24], 
we obtain me = 111.17 Da, with a weighted standard deviation of σe = 28.86 Da.  

For each member of the PML, an index is calculated by dividing the member by ie. 
These indices are then used to access the corresponding buckets in the hash table. Fi-
nally, the mass of each peptide pair in a bucket is computed and compared with the 
corresponding peak value to determine a match.  Because only the disulfide bonded 
peptide configurations that are indexed have their masses computed, we call this tech-
nique generative indexing. As discussed earlier, the construction of the mass space 
requires O(kp) time, where k is the number of cysteine-containing peptides following 
proteolytic digestion, and p is the maximum number of peptides in a disulfide bonded 
peptide structure. Thus the overall time complexity of this step is O(kp+|DMS|+|PML|).  
In nature, p greater than 3 are rarely observed, and p greater than 5 has not been re-
ported to our knowledge.  Consequently the effective complexity of this step is cubic. 

3.1.2   Determining the Confirmed Match 
Consider a peptide with intrabonded cysteines. For the general case, the total number 
of y- and b-ions combined is a constant and depends only on the number of amino 
acid residues in the peptide, denoted ||p||.  Thus, the construction of the disulfide 
bonded fragment mass space for this case requires O(||p||) time.  We note that the 
expected match index can be used to improve on this time complexity by only consid-
ering those elements that are likely to match an element of the TML.  For an inter-
bonded pair of peptides, let p1 denote a peptide with its set of possible y-ions denoted 
y1 and b-ions denoted b1, and y2 and b2 denotes the y-ions and b-ions for peptide p2.  
Since p1 and p2 are in a disulfide bond, four types of fragments may occur: y1+y2, 
y1+b2, b1+y1, and b1+b2.  A simple way to compute and display the FMS is to gen-
erate four tables based on these four types of fragment combinations.  Then, for this 
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MS/MS mass table the mass of any element T[i, j] equals m(i) + m(j) - 2 Da.  If the 
two peptides consist of ||p1|| and ||p2|| amino acid residues, respectively, the total 
number of elements to compute is (||p1||+1)( ||p2||+1). If the ions used to form the 
mass tables are arranged in order of increasing number of amino acids, the matrices 
will be sorted.  Again, the expected match index can be used to generate only those 
elements that are likely to match an element of the TML.  These elements correspond 
to a diagonal region in a mass table.  This leads to a time complexity to search for a 
match of O (||p||), if ||p1|| ≈ ||p2||. The extension of this analysis to construct the FMS 
for a n- peptide disulfide bonded structure is now straightforward.  The FMS for a n-
peptide structure consists of 2n n-dimensional sorted tables.  Given an expected match 
index value, the region where matches are likely to be found has n-1 dimensions.  
Thus, the time complexity to determine a match with an element of the TML is O(2n 
||p||n-1). Based on the previous discussion on the number of fragments that have been 
observed in the disulfide bonded peptide structure, the effective complexity reduces to 
cubic. 

3.1.3   Aggregating Results to Compute the Overall Disulfide Bond Pattern 
The output of the previous step is a collection of confirmed matches between pairs of 
cysteines.  Let the confirmed match CMa,b denote a match obtained from a disulfide 
bonded peptide structure with cysteines Ca and C b.  To convert each CMa,b into a 
single number that is assigned to the weight of an edge between the pair, we apply the 
notion of the match ratio r, which is defined as the number of matches divided by the 
size of the tandem mass spectrum, i.e. r = |CM|/|TML|. To compute the overall disul-
fide connectivity, we construct a weighted graph G where each vertex represents a 
cysteine residue in the protein.  If there is a match ratio r a,b that is greater than 50%, 
this number is assigned to the weight of the edge between vertex a and vertex b.  Thus 
each edge represents a Confirmed Match for a disulfide bond between a pair of cys-
teine residues. Subsequently, the maximal weight matching problem is solved on this 
graph (using the algorithm by Gabow [25]) to obtain the overall disulfide-bond topol-
ogy. The complexity of this step is O(|C|3). This leads to an overall cubic complexity 
for our method, which we call MS2DB. 

4   Experimental Evaluation 

The data used in experiments consisted of the primary sequences (obtained from the 
Swiss-Prot database [24]) and the DTA files obtained from LC/MS/MS analysis using 
an LCQ ion trap mass spectrometer (Finnigan, San Jose, CA) for nine eukaryotic 
Glycosyltransferases with varying numbers of cysteines and disulfide bonds.  For 
each protein, all DTA files are used collectively from an LC run.  The proposed 
method was used with the following parameters: bond mass tolerance bmt = 3.0 Da, 
maximum peak width pw = 2 Da, threshold t = 2% of the maximum intensity, and the 
limit l = 50 peaks.  Further, the MS/MS mass tolerance was set to fmt = 1.0 Da, except 
when intramolecular bonded cysteines were identified, when a value of 1.5 Da was 
used.  The protease was set to what was used in the actual experiment(s).  The number 
of missed cleavages allowed was set to mmax= 1. Three different sets of experiments 
were performed. In the first experiment the gains in efficiency that are achieved by 
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utilizing the generative indexing technique were experimentally studied.  In the sec-
ond experiment, the proposed method was compared with MS2Assign [26], which is 
a mass spectrometry-based method for determining cross-linkages.  In the final ex-
periment, a detailed comparative study was conducted where the disulfide connec-
tivity determination capabilities of the proposed mass spectrometry-based method was 
compared with three well established methods using the model-and-predict methodol-
ogy, namely DiANNA [7], DISULFIND [27], and PreCys [28]. The results from each 
of the methods were analyzed in terms of well established statistical metrics of sensi-
tivity, specificity, accuracy, and Matthew’s correlation coefficient. 

4.1   Experimental Analysis of the Proposed Approach 

To quantify the gains in efficiency achieved by utilizing the generative indexing tech-
nique, the fraction of the MS mass space that was actually searched for each of the 
Glycosyltransferases was determined.  For this, the number of mass computations was 
tracked and divided by the total number of entries in the hash table (i.e. the MS mass 
space).  Fig. 1 (left plot) shows the results obtained.  It may be noted that the fraction 
of the mass space that had to be searched decreased as the number of precursor ions 
increased, thus underlining the effectiveness of the proposed search strategy.  For data 
obtained after the tandem mass spectrometry step, the efficiency gain was measured 
by dividing the number of mass computations made by the size of the MS/MS mass 
space, which is essentially the size of the four tables of b- and y-ion combinations.  
Fig. 1 (right plot) shows that while a larger fraction of the mass space is accessed by a 
MS/MS mass peak, a saturation level of about 50% is rapidly achieved.  This is be-
cause the proposed approach saves mass table entries across searches so that the same 
element is not recomputed.  

In order to quantify the ability of the proposed method to efficiently determine the 
overall bonding pattern, we first must determine the size of the solution space from 
which the disulfide bond pattern has to be identified.  In Table 1, the first column 
shows the size of this space if there is no knowledge as to whether any one cysteine is 
bonded with any other.  In other words, the cysteine graph for this protein is fully 
connected. The second column shows the number of possible patterns that are ob-
tained if all edges with match ratios less than .50 are removed in the cysteine graph. 
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Fig. 1. Experimental analysis of the proposed indexing-based search strategy. The generative 
indexing approach results in the computation/search of only a fraction of the theoretical mass 
space. 
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Table 1. Effectiveness of the proposed approach in reducing the number of disulfide bond 
patterns that need to be considered for determining the final connectivity 

Protein  Number of theoretically possi-
ble disulfide bond patterns from 
fully connected cysteine graph 

Number of theoretically possible 
disulfide bond patterns from cysteine 
graph with edges for match ratios 
exceeding 0.50 

C2GnT-I  945 67 

ST8Sia IV  15 4 

FT VII  15 11 

Lysozyme  105 61 

Lactoglobulin 15 2 

FT III  15 10 

β1,4-GalT  61 25 

Aldolase  124 2 

Aspa  124 1 

4.2   Comparison with MS2Assign 

To compare the proposed method with MS2Assign we identified the DTA files that 
were used to obtain match ratios for C13 to C59 (true positive identification) and 
C199 to C413 (false positive identification) of C2GnT-I.  The fragment ion m/z por-
tions of the file were then copied to use for the Peak List in MS2Assign.  In the true 
positive identification case, for MS2Assign, the number of matches obtained was 
1646 out of 1774 peaks input, giving a match ratio of 0.93.  For our method, the cor-
responding number of matches was 48 out of 50 peaks, giving a match ratio of 0.96.  
In the false positive identification case, for MS2Assign, the number of matches we 
obtained was 1791 out of 2169 peaks, giving a match ratio of 0.78, while for our 
method, the number of matches we obtained was 44 out of 50 peaks, giving a match 
ratio of 0.72.  While preliminary, the results from this study seem to indicate that the 
accuracy of the proposed approach is indistinguishable from MS2Asssign (the pro-
posed approach performs marginally better in recognizing true positives and scores 
false positives lower than MS2Assign).  However, it should be noted that unlike 
MS2Assign, the proposed method is fully automated; in MS2Assign the DTA files 
have to be manually analyzed to identify the mass spectrum and retain the mass val-
ues (MS2Assign does not provide such parsing functionality).  

4.3   Comparison with Predictive Methods 

In this experiment the proposed mass spectrometry-based method was compared with 
three predictive methods (DiANNA [7], DISULFIND [27], and PreCys [28]) and the 
results extensively analyzed.  The disulfide bonding pattern determined using each 
method is shown in Table 2.   It may be noted that across the entire dataset, using the  
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Table 2. Dataset and comparison of MS2DB with some prediction servers.  The first column 
displays the name (or abbreviation) of the protein, followed by its Swiss-Prot accession num-
ber.  Column 3 lists the experimentally determined disulfide bond pattern of each protein.  For 
example for protein C2GnT-I, eight cysteines are engaged in four disulfide bonds, while the 
remaining three are unbonded.  One of these bonds is between the cysteine at amino acid posi-
tion 59 and the cysteine at amino acid position 413.  Columns 4  to 6 show the results for three 
prediction servers, given the primary sequence of each protein as input.  Note that DISULFIND 
does not support the prediction of proteins with more than 10 cysteines. 

Protein (Swiss-
Prot ID #)

Number of 
Cysteines

Disulfide 
Bond 
Structure

DiANNA 1.1 DISULFIND PreCys MS2DB

C2GnT-I
(Q09324)

11 C59-C413
C100-C172
C151-C199
C372-C381
C13, C217, 
C234 free

C13-C172, 
C59-C217, 
C151-C234, 
C199-C372, 
C381-C413

Not supported C59-C381 
C100-C372 
C151-C172 
C199-C413  

C59-C413
C100-C172
C151-C199
C372-C381
C13, C217, 
C234 free

ST8Sia IV 
(Q92187)

6 C142-C292
C156-C356
C11, C169 
free

C11-C156, 
C142-C292, 
C169-C356

all free C142-C356 
C156-C292  

C142-C292
C156-C356
C11, C169 
free

FT VII 
(Q11130)

6 C68-C76
C211-C214
C318-C321

C68-C321, 
C76-C211, 
C214-C318

C76-C318 C68-C76 
C211-C214 
C318-C321   

C68-C76
C211-C214
C318-C321

Lysozyme 
(P00698)

9 C24-C145
C48-C143
C82-C98
C94-C112
C10 free

C24-C145, 
C48-C133, 
C82-C98, C94-
C112

C24-C145
C48-C133
C82-C98
C94-C112

C82-C145  C24-C145
C48-C143
C10, C82,
C94, C98,
C112
free

Lactoglobulin 
(P02754)

7 C82-C126
C3, C12, 
C135, C137, 
C176 free

C12-C137, 
C82-C176, 
C126-C135

all free all free C82-C126
C3, C12, 
C135, C137, 
C176 free

FT III 7 C81-C338
C91-C341,
C16, C129, 
C143 free

C16-C91, C81-
C143, C129-
C338

none C81-C91  C81-C338
C91-C341

β1,4-GalT 7 C134-C176
C247-C266
C23, C30, 
C342 free

C23-C176,
C30-C144,
C266-C341

none C134-C247 
C176-C266     

C134-C176
C247-C266

Aldolase 8 C73, C135, 
C115, C178, 
C202, C240, 
C290, C339
free

C73-C339,
C135-C290,
C115-C240,
C178-C202

none none none

Aspa 8 C4, C60, 
C66, C123, 
C145, C151, 
C217, C275 
free

C4-C275,
C60-C217,
C66-C151,
C123-C145

none none C145-C349

Qp 0.0 0.0 0.22 0.78

 

proposed method a Qp score (representing the fraction of molecules with disulfide 
bonds correctly identified) of 0.89 was obtained. While DiANNA, DISULFIND, and 
PreCys are known to perform well on the SP39 dataset, their performance on these 
nine Glycosyltransferases was significantly inferior. 
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To further analyze these results, we created connectivity tables for all of the proteins 
that we studied in a manner similar to what is shown in Table 2.  Table 3 is one of the 
connectivity tables we created. Subsequently the four commonly used metrics of sensi-
tivity, specificity, accuracy, and Matthew’s correlation coefficient were calculated. 

These four metrics are defined as: 

• Sensitivity = TP/(TP+FN) 
• Specificity = TN/(TN+FP) 
• Accuracy = (TP+TN)/(TP+FP+TN+FN) 
• Matthew’s correlation coefficient =  

))()()(( FNTNFPTNFPTPFNTP

FNFPTNTP

++++
×−×

 

In the above formulae the following abbreviations are used: TP (true positive), 
TN(true negative), FP (false positive), and FN (false negative). In seven out of the 
nine cases, the metrics for the proposed mass spectrometry-based method were supe-
rior those of the predictive methods.  However, the proposed method had difficulty 
with Lysozyme, where two disulfide bonds were observed to occur in a complex 
topology with one inter-peptide bond sandwiched by cysteines participating in an 
intra-peptide bond.  Currently, MS-based methodologies lack the resolution to disam-
biguate such patterns. Interestingly however, the predictive methods all performed 
well for this case.  It should also be noted that in practice, researchers consider false 
negative results to have a more deleterious effect on protein characterization than 
false positive results.  Our results, summarized in Table 4, show that MS2DB gener-
ates fewer false negative results than the prediction servers we considered. 

Table 3.  Connectivity table summarizing validation testing results for two proteins.  Below 
diagonal: β1,4-GalT.  Above diagonal: Lactoglobulin.  The experimentally determined disulfide 
bond pattern is shaded in gray.  The diagonal is shaded black.  Only match ratios greater than 
0.5 are included into the table. 

 3 12 82 122 135 137 176 Cysteine 
location 

23  TN TN TN TN TN TN 3 
30 TN   TN TN TN TN TN 12 
134 .71 

FP 
TN   TN TN TN .88 

TP 
82 

176 .62 
FP 

TN .92 
TP 

  TN TN TN 122 

247 TN TN TN TN   TN TN 135 
266 TN TN TN .6 

FP 
.82 
TP 

  TN 137 

342 TN TN .64 
FP 

TN TN TN   176 

Cysteine 
location 

23 30 134 176 247 266 342  
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Table 4. Overall performance results, shown as a collection of sub-tables, one for each protein.  
The results for the protein C2GnT-I using DiANNA are not reported as proteins with > 10 
cysteines are not supported.  A zero in the denominator of the performance metric results in it 
having a value of Undefined. 

C2GnT-I TP TN FP FN Accuracy Sensitivity Specificity Matthew's Corr. Coeff.
DiANNA 0 46 5 4 0.84 0 0.9 -0.09
DISULFIND > 10 cys
PreCys 0 47 4 4 0.85 0 0.92 -0.08
MS2DB 4 45 6 0 0.89 1 0.88 0.59

Lysozyme TP TN FP FN Accuracy Sensitivity Specificity Matthew's Corr. Coeff.
DiANNA 3 31 1 1 0.94 0.75 0.97 0.72
DISULFIND 4 32 0 0 1 1 1 1
PreCys 1 32 0 3 0.92 0.25 1 0.48
MS2DB 2 23 9 2 0.69 0.5 0.72 0.15

Aldolase TP TN FP FN Accuracy Sensitivity Specificity Matthew's Corr. Coeff.
DiANNA 0 24 4 0 0.86 ? 0.86 ?
DISULFIND 0 28 0 0 1 ? 1 ?
PreCys 0 28 0 0 1 ? 1 ?
MS2DB 0 27 1 0 0.96 ? 0.96 ?

ASPA TP TN FP FN Accuracy Sensitivity Specificity Matthew's Corr. Coeff.
DiANNA 0 24 4 0 0.86 ? 0.86 ?
DISULFIND 0 28 0 0 1 ? 1 ?
PreCys 0 28 0 0 1 ? 1 ?
MS2DB 0 28 0 0 1 ? 1 ?

ST8Sia IV TP TN FP FN Accuracy Sensitivity Specificity Matthew's Corr. Coeff.
DiANNA 0 9 3 3 0.6 0 0.75 -0.25
DISULFIND 0 13 0 2 0.87 0 1 ?
PreCys 0 11 2 2 0.73 0 0.85 -0.15
MS2DB 2 13 0 0 1 1 1 1

FucT VII TP TN FP FN Accuracy Sensitivity Specificity Matthew's Corr. Coeff.
DiANNA 0 9 3 3 0.6 0 0.75 -0.25
DISULFIND 0 11 1 3 0.73 0 0.92 -0.13
PreCys 3 12 0 0 1 1 1 1
MS2DB 3 12 0 0 1 1 1 1

Lactoglobulin TP TN FP FN Accuracy Sensitivity Specificity Matthew's Corr. Coeff.
DiANNA 0 17 3 1 0.81 0 0.85 -0.09
DISULFIND 0 20 0 1 0.95 0 1 ?
PreCys 0 20 0 1 0.95 0 1 ?
MS2DB 1 20 0 0 1 1 1 1

FT III TP TN FP FN Accuracy Sensitivity Specificity Matthew's Corr. Coeff.
DiANNA 1 17 2 1 0.86 0.5 0.89 0.33
DISULFIND 0 19 0 2 0.9 0 1 ?
PreCys 0 19 1 1 0.9 0 0.95 -0.05
MS2DB 4 16 1 0 0.95 1 0.94 0.87

b1,4-GalT TP TN FP FN Accuracy Sensitivity Specificity Matthew's Corr. Coeff.
DiANNA 1 17 2 1 0.86 0.5 0.89 0.33
DISULFIND 0 19 0 2 0.9 0 1 ?
PreCys 0 17 2 2 0.81 0 0.89 -0.11
MS2DB 2 15 4 0 0.81 1 0.79 0.51  

5   Conclusions 

In this paper we have presented a comparative analysis of disulfide bond determina-
tion using computational-predictive and mass spectrometry-based methods. The pro-
posed mass spectrometry-based method seeks to efficiently search the combinatorial 
space of possible peptide fragments and find high-quality correspondences with 
measurements from tandem mass spectra.  Subsequently, the correspondence scores 
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(match ratios) are used to solve a maximal weight matching problem to obtain a 
globally optimal disulfide bond assignment.  This approach contrasts significantly 
from the core philosophy of computational predictive methods, where the challenge 
lies in determining the optimal machine learning algorithm, the features to be used, 
and selection of the training data set.  The experimental results show that in general, 
the direct measurement philosophy underlying mass spectrometry-based methods 
can outperform the model-and-predict method.  At the same time, specificities of 
protease-dependent digestion combined with specificities of collision-based frag-
mentation imply that certain bonding topologies can be more reliably discerned  
using prediction-based methods.  To the best of our knowledge, the comparative 
investigations presented in this paper (and the underlying questions researched) are 
unique at the current state-of-the-art.  We believe that these results provide important 
cues for future development of both computational-predictive methods as well as 
mass spectrometry-based algorithmic techniques.  
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Abstract. We describe a new method for the exploration of evolutionary rela-
tions between protein structures.

The approach is based on the ESSM algorithm for detecting structural muta-
tions, the output of which is then used for construction of fold space graphs. Fold
space graphs can be regarded as a convenient tool for visualization and analysis
of evolutionary relationships between protein structures, providing more infor-
mation than traditional phylogenetic approaches.

We have applied the method for analysis of evolutionary relations between
CATH protein domains. The experiments allowed us to obtain estimates of the
distribution of probabilities for different types of fold mutations, detect several
chains of evolutionary related protein domains as well as to explore the most
probable β-sheet extension scenarios.

1 Introduction

In this paper a new method for the exploration of evolutionary relations between pro-
tein structures is described. The method essentially uses a combination of two separate
techniques: prediction of possible structural mutations between protein domains, which
is be done by the ESSM algorithm, and construction and analysis of fold space graphs.

The method has been applied for exploration of potential evolutionary relationships
between CATH [14] protein domains and several facts about the evolutionary relation-
ships between these domains have been established. It should be noted however that this
is not the method for making the high certainty predictions about structure evolution,
but rather a convenient tool that allows to detect easily potential evolutionary relations,
which then should be verified individually.

Generally our approach is based on the assumption that protein structures, similarly
to sequences, have evolved by a stepwise process, each step involving a small change in
the protein fold. Such a model is unlikely to provide a full picture of structure evolution
(a full picture of structure evolution and appropriate model is not known yet). How-
ever, there are a number of studies demonstrating that such an approach is useful in
the exploration of basic tendencies in evolution of the protein structures and functions
[3], [6], [13], [19].
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The traditional method to study and represent evolution is visualization of the evo-
lutionary relationship between taxonomic groups by means of phylogenetic trees. A
classical phylogenetic tree is a specific type of cladogram where the branch lengths
are proportional to the predicted or hypothetical evolutionary time between organisms,
proteins (sequences or structures), etc. [2], [11].

Cladograms cannot be considered completely true and accurate descriptions of the
evolutionary history of organisms, because they only illustrate the probability that two
organisms (sequences or structures) are more closely related to each other than to a
third organism. If the underling data is unsufficient for unambiguous explanation of
evolution, cladograms still shows just one possible evolution scenario.

In almost all cases cladograms are the best way to represent results of studies in the
field of evolution, but to explore evolutionary relations between proteins other graphical
methods are sometimes more appropriate.

Here we consider fold space graphs – graphs where vertices represent proteins but
edges show possibly evolutionary relationships between them, and we demonstrate that
this is a convenient method for the exploration of CATH fold space.

Special types of graphs and the assumption about stepwise process of fold evolution
have already been used in the studies of Matsuda et al. [13], when the connectivity of
the fold space has been explored under the assumption that most of the fold mutations
are extensions of a β-sheet with a new β-strand at its end.

The exploration of evolution in the fold space using step-by-step small fold changes
have been done by Przytycka et al. [16], where the authors do not directly consider fold
mutations, they propose 4 ”folding motifs“ from which a large part of all known β-folds
can be constructed, and also by Viksna and Gilbert [19], where an attempt to estimate
the frequencies of different types of fold mutations has been made.

Our combined method for exploration of the CATH fold space consists of two stages:

– All-against-all comparison of the CATH domains by the ESSM software [9]. This
software is based on the SSM tool for structure comparison [7],[8] and permits
the discovery of ”structural mutations”, which correspond to small changes in sec-
ondary structure elements (SSEs) between two protein structures;

– Construction of fold space graphs on the basis of discovered ”structural mutations”
along with methods for their visualization and automated analysis.

The basic motivation for the creation of fold space graphs (the second stage of our
combined method) was potential interest of biologists [3], [6] in an automated method
for search of non-trivial (e.g. consisting of at least three elements) chains of structures
F1, ...,FN , such that evolutionary relations between structures Fi and Fi+1 seem feasible,
but can’t be directly detected between structures Fi and Fi+k for k > 1.

Our results showed that fold space graphs really allow to find chains of CATH do-
mains according to the put forward conditions. Extracted chains of domains from CATH
class 2 (mainly β) gave us a possibility to explore the most probable β-sheet extension
scenarios using terms of stepwise process of the fold evolution.

Besides, the analysis of fold space graphs allows to propose the possible evolutionary
mechanisms employed in the fold space (such as possible origins inside the group of
CATH domains and connections between different CATH homologous superfamilies
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or between subgroups of one superfamily) and gives magnificent possibility to explore
domain/protein clustering in the fold space.

2 Methods

2.1 Fold Mutations

The definition of fold mutations involves β-strand (E), α-helix (H), loop, β-hairpin
– two adjacent β-strands that also hold adjacent positions in a β-sheet (S2), and 3-β-
meander – three adjacent β-strands that also hold adjacent positions in a β-sheet (S3).

The following set of fold mutations (each of them can occur in both directions) has
been used in this work:

1. Insertion (deletion): loop←→ E ,
2. Insertion (deletion): loop←→ H,
3. Insertion (deletion): loop←→ S2,
4. Insertion (deletion): loop←→ S3,
5. Substitution: E ←→ H,
6. Substitution: S2 ←→ E ,
7. Substitution: S2 ←→ H,
8. Substitution: S3 ←→ E ,
9. Substitution: S3 ←→ H.

This set is largely based on the types of fold mutations proposed in [3], [6]. Addi-
tionally, it includes insertions/deletions and substitutions of β-hairpins (the existence of
such changes was suggested in [19]). The set consists of possible fold mutations that
could occur during protein evolution and each of them is confirmed by real biological
examples [3], [6], [19]. Most of these fold mutations are presumably the result of accu-
mulated point-mutations (insertions/deletions and substitutions of single amino acids)
in the protein sequence.

There are two more types of fold mutations that are not considered here, since their
prediction by the ESSM tool have been too unreliable [9]: β-hairpin swaps – exchange
of the order of β-hairpin strands in a β-sheet [3] and circular permutation of SSEs –
changes in protein connectivity that can be visualized through ligation of the termini
and cleavage at another site [4], [15], [18], [21].

2.2 CATH Fold Space

Representative set CATH-95 (latest version 3.1.0) provided by the CATH database and
containing proteins with less than 95% sequence similarity was used for experiments.
Additionally, protein structures obtained with NMR technology and crystallized struc-
tures with resolution greater than 3 Å were removed.

The main reason for using a representative set and not CATH in the whole was to
exclude protein structures that for a number of reasons are overrepresented in CATH
(a more detailed discussion and motivation for using specifically CATH-95 is given
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in [19]). Also the number of protein domains in this study had to be limited due to com-
putational restrictions (computational time needed to make all-against-all comparisons).

The obtained representative set for CATH class 1 (CATH1) contains 2502 domains,
for class 2 (CATH2) 3314 domains and representative set class 3 (CATH3) contains
6102 domains.

2.3 ESSM Algorithm for Recognition of Fold Mutations

ESSM (Evolutionary Secondary Structures Matching) tool has been recently developed
to compare protein structures and automatically identify different types of fold muta-
tions [9].

This tool was created to detect a structural changes in proteins and could be used ei-
ther directly for the comparison of two structures, or for searching for structural changes
within a database of known protein structures.

The ESSM tool is based on the SSM (Secondary Structures Matching) algorithm for
protein structure comparison [7], [8] and uses the so-called 3D graphs approach [20].
For the pair of proteins ESSM detects not only structural similarity but also possible
fold mutations between these proteins (Figure 1).

As a result of pairwise comparison ESSM produces two structural similarity scores:
tradicional RMSD score and ESSM score – measuring the quality of SSEs matching, as
well as the alignment of SSEs and the number of fold mutations of each particular type.

A more detailed description of the ESSM algorithm is given in [9].

Fig. 1. Schema of ESSM tool. The ESSM tool consists of two parts: 1. Preprocessing. SSEs
are detected using SSE prediction tools (DSSP or Promotif) or obtained from external database
(like CATH) than 3D graph construction is performed for every protein/domain. 2. Comparison
procedure. Pairwise comparison based on the detection of the largest common subgraph is per-
formed for given pair of proteins/domains. The results of ESSM, SSEs alignment and different
scores, are stored in the database.
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2.4 Construction of Fold Space Graphs

We have constructed fold space graphs specifically for CATH protein domains, but the
same approach could be applied to an arbitrary set of protein structures.

In initial phase all-against-all comparisons of CATH domains using the ESSM pro-
gram have been performed. This starts with construction of 3D graphs for these protein
domains (Figure 1 – ESSM preprocessing stage). Three decisions have been made to
minimize the number of pairwise comparisons (Figure 1 – second ESSM stage):

– Sets CATH1, CATH2 and CATH3 were treated separately, because few “short”
evolutionary relations was to be expected between these groups;

– Only domains with more than three SSEs were considered:
NSSE(Pi)≥ 4, where NSSE is the number of secondary structure elements in domain;

– Only CATH domain pairs with a difference in the number of SSEs less than or
equal to four were chosen:
NSSE(Pi)−NSSE(P j)≤ 4.

After pairwise comparison by using the ESSM for each pair of domains the similarity
between protein sequences was computed by using the ssearch implementation of the
Smith-Waterman algorithm [17]. The sequence similarity between two domains Pi and
Pj was represented by a normalized score, computed by

SWnorm = SWscore(Pi,P j)/max{SWscore(Pi,Pi),SWscore(P j,P j)}.

The score can be interpreted as the percentage similarity between two domains.
For every pair of CATH domains Pi and Pj under examination ESSM results (num-

ber of fold mutation of each particular type, RMSD score, ESSM score) and sequence
comparison result (SWnorm score) were obtained.

The graph construction and visualization program is based on a part of the system
modeling tool GRADE [5].

In fold space graphs vertices represent proteins/domains and edges show possibly
evolutionary relations between them. PDB codes and CATH classification are used for
labeling of domains in graphs.

The strength of our construction method is flexibility in the choice of criterion for
evolutionary relationships between proteins, where a combination of different scores
(RMSD, sequence similarity and number and types of fold mutations between proteins)
is used and user choice defines the thresholds for values of the scores. This means that
the construction and visualization processes could be parameterized so that different
possible evolutionary relations are emphasized. The following parameters and thresh-
olds were used in this work:

– Parameter for data filtering: ESSM score ≥ T1, where in the frame of this work
T1 = 0.8.

– Parameters for graph construction: RMSD score ≤ T2, where T2 = {2 Å ,3 Å ,4 Å
,5 Å }; SWnorm score≥T3, where T3 = {0,10,20,25,30}; Number of fold mutations
≤ T4, where T4 = {1,2,3,4,5}.

– Parameters for graph visualization: Vn = {yes/no}, where n = 1,...,9. Parameter
Vn = yes means that edge (Pi, Pj) will be marked out on the graph if there is fold
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mutation of type n (according to the fold mutation number in section 2.1) between
Pi and Pj; V10 = {yes/no}, where ”yes“ means that vertices Pi and Pj will be marked
out if labels of CATH classification for Pi and Pj differ, but there is an edge (Pi, Pj)
on the graph.

The schema for graph construction is given in Figure 2.

Fig. 2. Schema of fold space graph construction. There are two main aspects in the graph
creation procedure: data filtering and selection of thresholds for the construction and visualization
procedures.

As input data for program file with PDB codes and CATH classification of pairs of
domains under examination and their structure and sequence comparison results was
used, as well as list of values for thresholds (T1, T2, T3, T4) and list of values for visual-
ization parameters (Vn, where n=1,...,10).

In the resulting graphs two vertices i and j are connected if scores for corresponding
domains (Pi, Pj) are in admissible limits. In such a way graphs represents the protein
fold space (respectively for CATH classes 1, 2 and 3), in which possibly evolutionary
related proteins are connected.

3 Results

3.1 Distribution of Probabilities

Comparative probabilities of different types of fold mutations were computed for each
CATH class (1, 2 and 3) in order to compare results of the ESSM with results obtained
in previous studies [19] and to check the correspondence between probabilities of fold
mutations of particular type and structural features of CATH classes.

For the computation of probabilities for fold mutation types formulas presented in
[19] were used: value m(X,d)/n(d) gives the probability distributions for type X mu-
tation, where m(X,d) is the number of observed mutations of type X between pairs of
proteins that have RMSD score less than 3 Å and sequence similarity d, and n(d) de-
notes the total number of protein pairs in a test set with sequence similarity d.
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Fig. 3. Distribution of probabilities for insertion/deletion of β-strands (Eins) and α-helices (Hins).
The values on the x axis represent normalized scores of sequence similarities. The values on the
y axis show computed probabilities.

Figure 3 represents the probability distributions for the most probable fold mutation
types [19]: insertion/deletion of single β-strands and α-helices.

For CATH1 the overall distribution of probabilities, if only insertion/deletion of β-
strands (Eins) and α-helices (Hins) are considered, is 17% and 83% respectively. For
CATH2 this distribution looks different: 92% for β-strands insertion/deletion and only
8% for α-helices indels. Finally for CATH3 distribution is almost bisected: 56% for
β-strands and 44% for α-helices insertion/deletion.

By comparison with previous studies of the distribution of probabilities for fold mu-
tation types [19], we were able to estimate the insertion/deletion of α-helices and our
results seem to be realistic taking into account the CATH division into classes.

3.2 Evolutionary Relationships between CATH Domains

In this section three examples of fold space graphs (one example for each CATH class)
are considered (Figure 4).

Domain clustering. The first example (Figure 4 part I) shows the partitioning of CATH
class 2 domains into clusters that could be found in the fold space graphs.

A number of fold space graphs were created for CATH2 using T3 = 0 (sequence
similarity was out of consideration) and different thresholds T2 (RMSD score) and T4

(number of fold mutations). Clusters that were found in the fold space graph mainly
correspond to the CATH classification by homologous superfamilies and in all cases
correspond to the CATH topologies. In some cases superfamilies are partitioned into
several clusters - each cluster consists of domains with particular number and types of
β-sheets (β-hairpin, β-meander, n-stranded β-sheet). Such subclusters disappear with
the increase of thresholds T2 and T4.

The overall number of superfamilies in the dataset of CATH2 that appear in our fold
space graph is 51 (after the data filtering procedure). The number of obtained clusters is
73 where 27 of them were considered as non-trivial (consisting of more than 2 domains)
clusters.
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The size of obtained clusters varies significantly due to different populations in
CATH2 homologous superfamilies. For CATH1 and CATH3 the clustering is also core-
lated with CATH superfamilies, but often there tend to be several clusters within a single
superfamily.

Although at first look this may appear to be hardly surprising, we think that this ob-
served relation between clusters and superfamilies is quite non-trivial fact. Up to some
extent this shows that are biological reasons for structure division into superfamilies
and they are not just the notion that has been invented for classification convenience.

The second and third examples (Figure 4 parts II and III) demonstrate how explo-
ration of the fold space graphs might allow to propose the possible evolutionary mech-
anisms employed in the fold space.

Detection of possible evolutinary mechanisms. The second example (Figure 4 part II)
represent the part of the fold space graph for CATH class 3 concerning CATH homolo-
gous superfamily 3.30.500.10 ”Murine Class I Major Histocompatibility Complex, H2-
DB, subunit A, domain 1“. All domains of this superfamily are connected to three par-
ticular domains: 1zt1A01, 1kjvA01 and 1k5nA01, where each pair (any domain from
the superfamily and one from the three listed domains) could be evolutionary related
through two fold mutations: E insertion/deletion and H insertion/deletion.

These results might reflect the evolutionary mechanisms employed in fold space of
the 3.30.500.10 superfamily, where structural domains might have evolved from three
particular domains.

Detection of non-trivial relationships between CATH domains. The last example
(Figure 4 part III) demonstrates how the usage of fold space graphs could help to
find non-trivial relationships between CATH domains (connections between different
CATH homologous superfamilies). Connections between different CATH homologous
superfamilies were highlighted for CATH1 using features of our graph construction
and visualization program which allow accentuation of specific vertices of the graph
(V10 = yes). Figure 4 part III shows how domain 1ycsB01 from the homologous su-
perfamily 1.25.40.20 “Cell Cycle,Transcription” is used as a connector between this
superfamily and another one - 1.10.220.10 “Protein And Metal Binding Protein”.

Structures of domains from the superfamily 1.10.220.10 which are connected with
1ycsB01 are practically identical to half of this domain structure. At the same time there
are very few sequence similarities between them.

In the fold space graph for CATH2 we found that domains in the superfamily
2.60.40.30 “Fibronectin type III” are in many cases connected to immunoglobulin con-
stant domains from the superfamily 2.60.40.10 [10]. Some domains from the superfam-
ily 2.60.40.760 “Allergens” are also connected to immunoglobulin fold [12].

It should be noted however, that generally the observed connections between do-
mains of different superfamilies are somewhat less credible than connections within
the same superfamily – they are the one of the first that dissappear with the in-
crease of the threshold T3 for sequence similarity. Thus, they generally should be used
only for guidance, and the observed connections require some additional biological
verification.
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Fig. 4. Fold space graphs for CATH. In all three parts of the figure edges colored with red show
β-hairpin insertion/deletion. Vertices colored with blue highlight change-overs between homolo-
gous superfamilies. I Part of the CATH2 fold space graph showing the partitioning into clusters.
Thresholds: T2 ≤ 4 Å T4 ≤ 3 and T3 = 0. CATH homologous superfamily 2.60.40.10 defines
the largest cluster which contains all domains from this superfamily. At the same time domains
from the superfamily 2.60.120.200 are partitioned into several subclusters. II Part of the CATH3
fold space graph for homologous superfamily 3.30.500.10. Thresholds: T2 ≤ 3 Å T4 ≤ 5 and
T3 = 20. III Part of the CATH1 fold space graph for homologous superfamilies 1.25.40.20 and
1.10.220.10. Thresholds: T2 ≤ 3 Å T4 ≤ 5 and T3 = 0.
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3.3 Exploration of β-Sheets

The most challenging usage of fold space graphs is the extraction of evolutionary path-
ways where every two proteins in a neighborhood are evolutionary related.

Evolutionary pathway might be defined as a chain of structures F1, ...,FN when N >
2, such that an evolutionary relationship between structures Fi and Fi+1 is feasible. The
pathway also defines fold mutations between proteins F1 and FN .

CATH class 2 (mainly - beta) has been chosen as a fold space for the exploration of
β-sheet extension scenarios, since this CATH class contains domains with rich β-sheet
structures.

Different possible evolutionary pathways were found in the largest homologous su-
perfamily of CATH2 – 2.60.40.10 “Immunoglobulins”. However, observed fold muta-
tions mainly belong to two types:

– insertion/deletion of β-strand at the C-termini of domains (Figure 5 a↔ b: β-strand
a; Figure 5 b↔ c: β-strands a and a′);

– insertion/deletion of β-hairpins at the places of cross-overs between two main β-
sheets (Figure 5 a↔ b: β-hairpin c′ c′′; Figure 5 e↔ f: β-hairpin f′ f′′).

The following statistics are obtained for the Immunoglobulins: in 27% of comparison
pairs one domain consists of 4-stranded and 7-stranded β-sheets (Figure 5d) and in 50%
of pairs there are 4-stranded and 6-stranded β-sheets (Figure 5c).

These results might reflect the process of β-sheet evolution when 2-stranded β-sheet
becomes a part of a larger β-sheet (Figure 5 e↔ d and f↔ e: 2-stranded β-sheets a′ b′

and a h), at the same time two β-strands are united into the single one (Figure 5 e↔ d
and f↔ e: β-strands b and b′).

In most of the cases domains from the Agglutinin homologous superfamily
2.60.120.200 (95% of explored domains) consists of two large (at least 7-stranded)
β-sheets (Figure 6b and Figure 6c) and one or two β-hairpins (Figure 6b: β-hairpin c b;
Figure 6c: β-hairpins c b and c′ c′′).

The pair of domains (Figure 6 a ↔ b) demonstrates the possible forma-
tion/destruction scenario of two 7-stranded β-sheets:

– β-meander is extended in N-termini with two β-strands and in C- termini with one
β-strand (Figure 6b: k′, k′′′ and a′). These changes together with a small β-strand
insertion (Figure 6b: e′) on the place of loop between two main β-sheets lead to the
formation of a 7-stranded β-sheet (Figure 6b: e′ a′ k′′′ e j k k′).

– The insertion of β-strand between the 2- and 4-stranded β-sheets (Figure 6b: k′′)
leads to the formation of 7-stranded β-sheet (Figure 6b: a d k′′ f g h i).

The insertion/deletion of β-hairpin is frequently observed fold mutation in the Ag-
glutinin superfamily (Figure 6 b↔ c: β-hairpin c′ c′′).

Scenarios of fold changes concerning extension of β-sheets in others homologous
superfamilies of CATH2 are similar to the already described ones for superfamily
2.60.40.10.
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Fig. 5. Representative chain of changes in the CATH2 Immunoglobulin homologous superfam-
ily (2.60.40.10). a ↔ b: insertion/deletion of β-strand and β-hairpin; b ↔ c and c ↔ d: inser-
tion/deletion of β-strands; e ↔ d and f ↔ e: two β-strands fusion and formation of 4-stranded
β-sheet, 5- and 2-stranded β-sheets unification; f ↔ e: insertion/deletion of β-hairpin. The most
frequently observed folds are c) (4-stranded and 6-stranded β-sheets) and d) (4-stranded and 7-
stranded β-sheets). Ribbon-style representations of domains generated by Pymol [1].

Fig. 6. Representative chain of changes in CATH2 Agglutinin superfamily (2.60.120.200). a↔ b:
β-meander extension, 2- and 4-stranded β-sheets unification; b↔ c: β-hairpin insertion/deletion.
Ribbon-style representations of domains generated by Pymol [1].
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4 Summary and Conclusions

We have described a combined method based on detection of structural changes by
the ESSM tool and subsequent construction of fold space graphs for visualization and
analysis of evolutionary relationships between protein structures.

The method has been applied for the exploration of CATH fold space separately for
classes 1, 2 and 3. Our results showed that such an approach is a convenient way to
explore evolutionary relations between protein domains and it could be used either for
detection of ”interesting” evolutionary relationships between the structures (although
most of the examples that we have identified turned out already been studied and rec-
ognized as ”interesting” by biologists, it should be noted that we have detected these
examples automatically), or for formulation of more general hypotheses about evolution
of protein folds.

The analysis of CATH protein domains that we have performed allowed us to obtain
better estimates of the distribution of probabilities for different types of fold mutations,
to detect several chains of evolutionary related protein domains, as well as to explore
the most probable scenarios of extension of β-sheets.
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Abstract. We present experimental results on benchmark problems for
two local search procedures that utilise the pull-move set: (i) simulated
annealing with logarithmic cooling schedule and (ii) guided local search
that traverses the energy landscape with greedy steps towards (potential)
local minima followed by upwards steps to a certain level of the objective
function. The latter method returns optimum values on established 2D
and 3D HP benchmark problems faster than logarithmic simulated an-
nealing (LSA), however, it performs worse on five benchmarks designed
for the Miyazawa-Jernigan energy function, where LSA reaches optimum
solutions on all five benchmarks. Moreover, the number of function eval-
uations executed by LSA is significantly smaller than the corresponding
number for Monte Carlo simulations with kink-jump moves.

1 Introduction

Proteins regulate almost all of the cellular functions in an organism. Their func-
tionality is determined by the 3D structure, also referred to as tertiary structure
[1]. According to Anfinsen’s thermodynamic hypothesis, proteins fold into states
of minimum energy and, moreover, the tertiary structure can be predicted from
the linear sequence of amino acids [2]. The contradiction, though, between the
actual, very short folding time and the huge number of possible conformations
that have to be searched in order to find the lowest energy structure, motivated
C. Levinthal [3] to suggest that the native protein state might have a higher
energy value than the theoretical free-energy minimum, if the latter is not ki-
netically accessible. This is referred to as the Levinthal’s paradox and implies
that the protein might be able to avoid kinetic traps of local minima or quickly
escape them and therefore to find a greedy path to the native protein state [4].

Protein folding simulation has attracted many researchers from the combina-
torial optimization community [5]. In a simplified version, protein folding sim-
ulation has been shown to be NP-complete [6,7] and, consequently, a variety of
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search-based methods has been proposed to tackle the problem. In this context
it is interesting to note that, to the best of our knowledge, little progress has
been made in incorporating research on chaperone-mediated protein folding [8,9]
into simulation methods. From a computational point of view, chaperonin com-
plexes seem to act like an oracle in complexity theory [10], where the information
provided by the oracle can be used to speed-up computations or to analyse the
inherent complexity of a problem subject to the oracle complexity. The utilisa-
tion of mechanisms that determine the functionality of such chaperonin folding
machines [8] in local search procedures, for example in associated neighbourhood
relations, will certainly open up new avenues for more efficient protein folding
simulations.

In the present paper, we employ a stochastic local search method that is
based on the genetic local search algorithm devised in [11], and we further ex-
tend the approach presented in [14] to a new, more realistic objective function.
The protein folding simulations are executed in 2D and 3D lattice structures
with two types of the objective function, namely the HP-model function [15]
and the Miyazawa-Jernigan energy function [16]. The neighbourhood relation
is determined by the pull-move set [17,18,19]. The three components, i.e. the
set of conformations in lattice structures, the objective functions and the neigh-
bourhood relation, define an energy landscape. As described in [11], we employ
information about approximations of the maximum value Γ of the minimum
escape height from local minima in a landscape induced by a particular protein
sequence. In our approach, the search procedure traverses the energy landscape
with greedy steps towards (potential) local minima followed by escapes up to
the level of Z + Γ , where Z denotes the value of the objective function of the
preceding local minimum. The procedure starts with a population of randomly
selected initial conformations, and after a certain number of steps a part of the
best solutions found so far plus some additional conformations are selected for
the re-start with a new population. Due to the random neighbourhood steps, it
then creates a diversity of conformations.

2 HP and MJ Energy Functions

2.1 The HP Model

In the HP model proposed by Dill et al. [15], a protein is a connected chain of
beads which can either be hydrophobic (H) or polar (P). The whole chain is
embedded into either a rectangular 2D grid or a 3D cubic lattice. The potential
free energy of an HP sequence is computed by a pairwise energy function, which
gives value −1 to all non-covalent H-H bonds and 0 to the rest, namely H-P and
P-P. Hence, minimizing the free energy of a conformation is equivalent to max-
imizing non-covalent HH bonds, resulting in native conformations of compact
shape with a hydrophobic core surrounded by P acids. A major shortcoming of
the HP model is the high degeneracy, meaning that one sequence can have many
different native structures. In other words, it is difficult to prevent a sequence
from folding into a different structure than the one it was designed to fold to.
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There are HP sequences of unique optimal foldings, but this is not sufficient
to classify them as protein-like sequences. Another problem inherent to the HP
model is the limited range of different possible energy values, which yields large
plateau regions in the energy landscape. Due to these facts, the performance of
local search algorithms is usually degraded as a consequence of trapping them
into a random walk on these plateaus. Finally, two-letter alphabets, such as H
and P, exhibit several weaknesses that are highlighted in a variety of papers. In
[22], for example, the author provides an explanation, from a thermodynamic
point of view, why the two-letter alphabet is a poor choice for structure design.
In [23], a statistical method is invoked to show that adopting a two-letter alpha-
bet discards useful structural information. Finally, Li et al. demonstrate in [24]
that the Miyazawa-Jernigan energy function [16] can improve the designability
of sequences and reduce their degeneracy, thus justifying our choice to study a
more realistic energy function.

2.2 The Miyazawa-Jernigan Energy Function

The MJ energy function is a pairwise interaction matrix, extracted from the
distribution of contacts as they occur in real proteins, and for which the struc-
ture has been resolved into PDB format. In the original paper [16], where this
energy function is introduced, there are two different interaction matrices. The
first matrix, often referred to as MJa in the literature, stands for the actual en-
ergy value of each bond, while the second matrix, MJb, stands for the pairwise
contributions to the total free energy related to the fact that two amino acids
are forced to expel a solvent molecule and form a contact. In our study, we use
the second matrix. This choice is motivated by the fact that benchmarks with
provably optimal energy value in the cubic lattice exist for this matrix, thus
helping to better understand the potential of our local search methods. For a
comparative study of the two MJ matrices in the context of the induced energy
landscapes we refer the reader to [25].

The total free energy under the MJ pairwise interactions is given by the
equation 1, where {ri} is the set of bead coordinates that define a conformation,
{si} represents an amino acid sequence and eij are the entries of MJb matrix.
The contact function D(ri − rj) is 1 if beads i and j form a contact (that is not
a covalent linkage) and is 0 otherwise.

E({ri}, {si}) =
N∑

i>j

eijD(ri − rj). (1)

Regarding the MJ function, many methods are based on Monte Carlo sam-
pling algorithms that aim at examining the validity of protein folding theories,
like the properties of the sequence landscapes [25]. The MJ matrix has also been
employed in protein threading and fold recognition [26]. On the other hand,
a variety of structure prediction algorithms has been tested in the HP model,
including a number of stochastic local search and evolutionary algorithms.
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3 Related Algorithmic Methods

The first genetic algorithm applied to protein folding simulation, presented in
[20], used pivot moves for the mutation step and a single point crossover opera-
tor. Several extensions followed that mainly focused on different recombination
strategies, such as the multipoint crossover [27] or optimized strategies of se-
lecting individuals for crossover [28]. Some genetic algorithms coped with the
problem of non-self-avoiding conformations resulting from recombination, either
with backtracking techniques [29] or by introducing penalty terms in the ob-
jective function [30]. There are also evolutionary techniques employing methods
for a constraint search of the conformational space as in [31] and the evolution-
ary Monte Carlo approach in [32], where secondary structure constraints were
introduced. Finally, an evolutionary approach hybridized with tabu search was
presented in [33].

Among the stochastic algorithms for HP model, there are some examples
with better performance than genetic algorithms. This includes PERM [34],
SISPER [35], the ant colony optimization algorithm ACO-HPPFP-3 [36], the
replica exchange Monte Carlo method [37] and GTabu search [17], where pull-
moves were first introduced. For a more comprehensive discussion of local search
methods, we refer the reader to [38].

4 Population-Based Local Search

Our local search algorithm resembles the genetic local search algorithm described
in [11]. It starts from a random initial population of protein conformations and
creates future generations of off-springs by repeatedly applying mutation and
elitism. The mutation step consists of a quasi-determinist local search with con-
tinuous improvements of the objective function for all individuals in the popu-
lation, meaning that downward steps may have a random component, i.e. the
neighbours with improved values of the objective function might be chosen ran-
domly. The choice of upward steps, until escaping from a local minimum, is
random as well. The elitism is applied after a certain number of mutation steps,
where the whole process is restarted with the best individual seen in the previous
step. We should emphasize that no recombination operator is employed, since
no suitable encoding of protein conformations was found that allows exchanging
any part between two conformations and results in a conformation at least close
to a self-avoiding conformation. Usually, only a few pairs at each generation
can produce a feasible conformation after recombination and, in fact, checking
the feasibility of a conformation and then recombining off-springs until a feasible
conformation is achieved has a significant (negative) impact on the performance.
Alternatively, we examined the possibility of fixing infeasible conformations, but
this would require a number of pull-moves that is difficult to predict and would
consequently spoil building blocks of good solutions, whereas recombination aims
at preserving them in the population.

Apart from this specific problem with crossover, additional negative examples
can be found in the literature: in [12], the authors examine the performance of a
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genetic algorithm with and without crossover for solving the Travelling Salesman
Problem. Similar to our case, the feasibility of solutions obtained by crossover
is not trivial. The authors observed that without crossover the performance was
better and although they cannot argue on the speed of convergence, they provide
a proof of convergence for their non-crossover genetic algorithm. In another
example [13], the efficiency of crossover is examined for the Subset Sum Problem.
The authors stress the fact that candidate solutions can have similar fitness and
yet be quite different, which is true for the case of our protein conformations as
well. In this setting, they show that crossover can lead to a sharp divergence if
the mutation rate approaches a critical value.

We are now going to present the details of the proposed local search algorithm.
The algorithm requires the specification of the following parameters:

1. The population size: popSize.
2. The number of mutation steps before the whole local search is restarted:

KSteps.
3. The number of solutions selected to be put in the restart population:

MBestSolutions.
4. The maximum escape from any local minimum: Γ .
5. The number of trials performed, including transitions to conformations of

the same energy, before reporting a potential local minimum: Ltrials.

Algorithm 1. The population based local search
1: Starting from straight line conformations, initialize a population

of popSize structures, by performing 5000 random pull-moves on each individual,
Si

2: for all Si in the population do
3: Energy[i] = CalcFitness(Si)
4: Mode[i] = Downwards
5: Neighbors[i] = NULL
6: plateauTransitions[i] = 0
7: end for
8: repeat
9: RecordBestConformations(MBestSolutions)

10: SelectMutations(Ltrials) /*For each individual randomly choose a neighbor*/
11: ExecuteMutations(Gamma) /*Accept the neighbor according to being in either

downwards or upwards steps mode*/
12: if KSteps are completed since last restart then
13: ElitismRestart(MBestSolutions) /*Restart population with popSize

MBestSolutions

copies of the individuals gathered by RecordBestConformations*/
14: Discard the best individuals gathered in previous KSteps.
15: end if
16: until Minimum Energy Conformation is found.

We further specify the sub-procedures SelectMutations and ExecuteMuta-
tions. The treatment of plateaus and variants of RecordBestConformations with
respect to performance is also discussed.
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The procedure RecordBestConformations is responsible for storing the best
overall solution as well as for gathering solutions for the re-start with a new
population, including the best overall conformation found so far. Re-starting
with only the best conformation proved to provide the best performance (in the
HP model) among the alternatives tested for gathering solutions. Alternative
strategies include accumulating the best individuals every Xsteps, so that half
of the population is re-started with the best individual and the other half with
individuals already accumulated. Also, instead of picking the best individual
every Xsteps, we tried to accumulate popSize/2 local minima that were found
during the previous KSteps, so as to re-start the population with half of the
individuals being copies of the best overall conformation and the other half
being the local minima we have accumulated.

Algorithm 2. PerfomMutations(Ltrials)
1: for all Si in the population do
2: if there was a transition from another conformation to Si then
3: if plateauTransitions[i]+VisitedNeighbors(Si) ≥ Ltrials then
4: Change Mode /*Downwards → Upwards , Upwards → Downwards*/
5: if Mode was Downwards then
6: Report Si as a local minimum and free all its neighbors so that they can

be revisited.
7: end if
8: end if
9: Compute the neighborhood, Neighbors[Si] and mark all of them as free.

10: else
11: if All neighbors are visited or VisitedNeighbors(Si) == LTrials then
12: Report local minimum/maximum
13: Change Mode and mark current Neighbors[Si] as free to be revisited.
14: else
15: Pick randomly a neighbor Xi from Neighbors[Si].
16: end if
17: end if
18: end for

In order to deal with the problem of plateaus, we only accept plateau
transitions up to some extent before we switch the direction of steps. When
hitting a plateau for the first time, the algorithm includes any successive tran-
sitions to conformations of the same energy as being on a potential local min-
imum/maximum. Then the mode switches when the plateau transitions added
to the number of discarded transitions exceed LTrials (see line 3 of SelectMuta-
tions). In case, though, the sequence of accepting conformations with the same
energy is interrupted by a rejection of a conformation, then the plateau transi-
tions are neglected (see line 11 of SelectMutations) for the decision of switching
mode, unless the algorithm performs another plateau transition. The assumption
we make here is that a future plateau transition is likely to return to the same
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Algorithm 3. ExecuteMutations(Ltrials)
1: for all Si in the population do
2: if Mode[i] == DOWN then
3: if CalcFitness(Xi) < Energy[Si] then
4: Accept the transition to Xi and update Energy[Si] = CalcFitness(Xi).
5: Reset plateauTransitions[i] to zero.
6: else if CalcFitness(Xi) == Energy[Si] then
7: Accept the plateau transition to Xi.
8: plateauTransitions[i]++
9: else

10: Discard transition to Xi.
11: end if
12: end if
13: if Mode[i] == UP then
14: if CalcFitness(Xi) > Energy[Si] then
15: Accept the transition to Xi and update Energy[Si] = CalcFitness(Xi).
16: Reset plateauTransitions[i] to zero.
17: if localMinEnergy[i]+Gamma is reached then
18: Change mode to Downwards.
19: end if
20: else if CalcFitness(Xi) == Energy[Si] then
21: Accept the transition to Xi.
22: plateauTransitions[i]++
23: else
24: Discard transition to Xi.
25: end if
26: end if
27: end for

plateau; if it does not then the particular conformation was rather isolated from
the current plateau and thus we should not base our decision on current values
of plateau transitions but on the neighbourhood of this particular conformation.
The size of the plateau is unknown anyway, so when reaching a boundary of the
current plateau, we decide that this is an actual boundary if we go back to the
same plateau.

For the estimation of Γ we a employ the simulated annealing algorithm with
logarithmic cooling schedule, where the maximum increase of the objective func-
tion is monitored in-between two successive improvements of the best value ob-
tained so far. This approach usually overestimates Γ significantly. Therefore,
we are searching for a suitable constant c such that D = Gmonit/c comes close
to Γ , where Gmonit is the maximum of the monitored increases of the objective
function in-between two successive total improvements of the objective function.
Using the same procedure we have previously conjectured that Γ ≤ n1− 1

d /2 for
HP sequences of length n and dimensionality d = 2, 3 [14], and now we make a
suitable choice of D and c for the MJ sequences as well.
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5 Results on Benchmark Problems

By using the population-based guided random walk, we were able to obtain op-
timum conformations for the popular HP benchmarks in 2D and 3D [17,19,20],
improving on the runtime required by the simulated annealing (SA) algorithm
with logarithmic cooling schedule [14], especially in the 3D case. Interestingly,
we obtain a different picture for the five protein sequences provided in [21] with
the Miyazawa-Jernigan (MJ) energy function. Our SA algorithm with logarith-
mic cooling schedule introduced in [14] returned optimum solutions for all five
MJ sequences with significantly reduced transition numbers compared to [21].
However, for approximately the same time effort, the population-based local
search returned optimum solution only on two of the MJ sequences within five
trials, with an average of 13% above the optimum value on the remaining three
benchmarks.

5.1 The Benchmarks

The sequences used for the HP model are the 2D sequences S36−14, S48−23,
S60−36 and S64−42 taken from [20] and the S85−53 and S100−48 from [17].
In the 3D case, we test the 10 sequences of 48 amino acids from [19]. The MJ
sequences are taken from [21], where the authors used a well-known procedure
devised by Shankovich [39] for the design fast folding sequences with respect to
their landscape properties. The sequences were designed to adopt two distinct
topologies. For brevity, we provide a table for the MJ sequences only, since the
HP benchmarks are well established.

Table 1. MJ sequences

No. Sequence Enative

MJ1 FRTRPLNHDFYNYKIWEPFKPADFPKAWDRMLDHVWDSMASWGHQHCS -25.85
MJ2 CDLPPFTYRHHGNDFWKNYEMIKHWDLWRDMFRAFWSDPVKASPHQAS -25.92
MJ3 FRTPWVSHQFYAYKLMEHFKWGDFCRNMDKWIDSLPDRWNPAPHDHAS -26.09
MJ4 KDKIHFRMNYGYPAWDAQSVKDLTCPRDWHFPHMRDPSHNWELAFFWS -25.87
MJ5 ENDVTMDMDPSPCLFRIHNLPRAHSFDRFGWHQFDKYHYKWKWAWAPS -26.15

5.2 HP Model Simulations

The simulations were performed for the method described in Section 4 only, since
the results for our LSA algorithms are published already in [38] (2D case) and
[14] (3D case).

On all HP benchmark problems, the population-based local search from Sec-
tion 4 has been executed until a conformation with minimum energy was found.
The results are presented in terms of transitions between conformations, but the
actual number of function evaluations is the product of number of generations
(fourth column in Table 2) and population size, which is set to 20 for all 2D and



Two Local Search Methods for Protein Folding Simulation 175

3D benchmarks. The fifth column in Table 2 indicates the number of feasible
neighbourhood transitions.

Table 3 shows the results for the 3D case. All results are the average of 10
independent experiments per benchmark with the same parameters, while the
run-time is reported in minutes for a Dual-Core AMD OpteronTM Processor
2212 machine.

When compared to the results obtained for the LSA procedure as presented
in [14,38], one can see that the population-based local search converges faster to
optimum conformations on the sequences under consideration, with a particular
speed-up on 3D benchmarks.

Table 2. 2D HP results

Seq. KSteps Γ =
√

n/2 Generations Transitions Run-time Energy

S36 1000 3 4,996 28,018 0.41 -14
S48 1000 3 203,909 989,984 13.81 -23
S60 1000 4 13,753 45,328 0.81 -35
S64 2000 4 1,926,834 4,325,433 73.37 -42
S85 2000 5 902,778 5,193,968 51.97 -53
S100 2000 5 8,792,302 119,487,437 3,879.77 -48

Table 3. 3D HP results

Seq. KSteps Γ = n2/3/2 Generations Transitions Run-time Energy

S1 1000 7 371,404 1,564,737 75.71 -32
S2 1000 7 3,728,709 8,381,287 409.63 -34
S3 1000 7 959,939 2,062,400 107.86 -34
S4 1000 7 601,332 1,543,557 83.94 -33
S5 1000 7 639,200 2,450,313 126.61 -32
S6 1000 7 531,346 1,853,860 85.08 -32
S7 2000 7 45,868,511 139,606,926 7,198.13 -32
S8 1000 7 759,870 2,474,248 130.74 -31
S9 2000 7 1,197,295 7,336,260 389.92 -34
S10 1000 7 2,122,927 7,290,896 415.06 -33

5.3 MJ Model Simulations

We performed the landscape analysis devised in [11] and briefly described at the
end of Section 4 on the five MJ benchmark problems listed in Section 5.1. We
applied LSA for different estimations of the maximum value over all minimum
escape heights from local minima, where the number of transitions is set to
20,000. Then, we are looking for the point where the minimum values of the
objective function obtained for each estimation changes from better to worse.
The corresponding (closest) estimation is taken as the approximation of Γ , in
this case for the MJ objective function with the associated landscape. The results
are shown in Table 4.
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Table 4. Energy reached after 20, 000 steps

D 2 4 5 7

MJ1 -11.07 -13.34 -13.67 -10.80
MJ2 -8.84 -12.22 -11.27 -7.52
MJ3 -7.55 -10.86 -9.27 -7.33
MJ4 -5.53 -9.18 -7.21 -8.12
MJ5 -7.06 -12.81 -9.15 -6.06

As one can see from Table 4, the best results for the given number of transi-
tions were obtained for D = 4. Thus, an appropriate choice for an approximation
D of Γ seems to be a value from the interval [4, 5).

LSA for MJ benchmarks

We executed the LSA procedure devised in [14,38] for D = 4.5 and obtained
optimum conformations for all five benchmark problems presented in Table 1.

Table 5 shows a comparison of logarithmic simulated annealing (LSA) and
Monte Carlo simulations with respect to the number of successful transitions and
the actual number of enrgey function evaluations. For Monte Carlo simulations,
the neighbourhood relation is given by kink-jump moves as described in [40] and
utilised in [21].

Table 5. SA with pull-moves vs MC with kink-jump moves [40]

Seq. LSA-Transitions LSA-evaluations MC-Evaluations Enative

MJ1 730,380 3,738,152 8,128,305 -25.85
MJ2 777,727 2,923,552 2,630,268 -25.92
MJ3 639,943 2,030,358 1,513,561 -26.09
MJ4 1,352,904 6,191,319 29,512,092 -25.87
MJ5 548,991 2,042,505 19,952,623 -26.15

On MJ1, MJ4 and MJ5, the number of function evaluations executed by LSA
is significantly smaller than the corresponding number for MC simulations. On
MJ2 and MJ3, LSA needs more evaluations to reach optimum solutions, but the
difference is not as significant as for the other three benchmarks.

Population-based local search for MJ benchmarks

Finally, we report the outcome of the experiments with the population-based
local search. The parameter settings are Ltrials = 100, KSteps = 1, 500, D = 4.5
as for LSA, and 1.5× 106 for the number of generations.

Table 6 shows the results from five independent runs with a run-time compa-
rable to the LSA computations. Stable results equal to optimum conformations
were obtained only for MJ3. On MJ5, an optimum conformation was found in
one out of the five runs. For the remaining three cases, the average difference to
optimum values is about 13%.
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Table 6. The values in bold are the best obtained

MJ1 MJ2 MJ3 MJ4 MJ5

-20.98 -21.16 -22.56 -20.63 -19.08
-21.22 -22.62 -26.09 -20.07 -21.26
-21.90 -25.10 -26.09 -20.03 -22.32
-21.00 -25.09 -26.09 -20.84 -26.15
-21.23 -23.71 -26.09 -20.91 -19.99

6 Concluding Remarks

The population-based local search proposed in this paper has been compared to
our previous work where a simulated annealing algorithm with logarithmic cool-
ing schedule (LSA) was applied to protein folding simulation in the HP model
[14]. In our current computational experiments we observed that the population-
based local search with LSA pre-processing converges faster to optimum confor-
mations of HP benchmarks than our LSA procedure. On the other hand, it
performs worse on MJ benchmarks, where LSA finds optimum conformations on
all five benchmarks. Moreover, on three of the MJ benchmarks the LSA proce-
dure is much faster than MC simulations and has a comparable speed on the
remaining two benchmarks. Thus, future research will concentrate on fine-tuning
of population-based local search, in particular, with respect to the selection of
subsequent populations for the re-start of guided local search.
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Abstract. The inverse protein folding problem is that of designing an
amino acid sequence which has a prescribed native protein fold. This
problem arises in drug design where a particular structure is necessary
to ensure proper protein-protein interactions. The input to the inverse
protein folding problem is a shape and the goal is to design a protein
sequence with a unique native fold that closely approximates the input
shape. Gupta et al. [10] introduced a design in the 2D HP model of Dill
that can be used to approximate any given (2D) shape. They conjectured
that the protein sequences of their design are stable but only proved the
stability for an infinite class of very basic structures. In [11], we have
introduced a refinement of the HP model, in which the cysteine and non-
cysteine hydrophobic monomers are distinguished and SS-bridges which
two cysteines can form are taken into account in the energy function.
This model was called the 2D HPC model. In [11], the snake structures
in the HPC model were introduced and it was conjectured that they are
stable. In this paper, we show that this conjecture is true for a subclass
of snake structures. This subclass is robust enough to approximate any
given 2D shape, although more coarsely than the general constructible
structures proposed in [10]. In the proof we use a semi-automated tool
2DHPSolver developed in [11].

1 Introduction

It has long been known that protein interactions depend on their native three-
dimensional fold and understanding the processes and determining these folds is
a long standing problem in molecular biology. Naturally occurring proteins fold
so as to minimize total free energy. However, it is not known how a protein can
choose the minimum energy fold amongst all possible folds [9].

Many forces act on the protein which contribute to changes in free energy in-
cluding hydrogen bonding, van der Waals interactions, intrinsic propensities, ion
pairing, disulfide bridges and hydrophobic interactions. Of these, the most signif-
icant is hydrophobic interaction [8]. This led Dill to introduce the Hydrophobic-
Polar model [7]. Here the 20 amino acids from which proteins are formed are
replaced by two types of monomers: hydrophobic (H or ‘1’) or polar (P or ‘0’)
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depending on their affinity to water. To simplify the problem, the protein is laid
out on vertices of a lattice with each monomer occupying exactly one vertex
and neighboring monomers occupy neighboring vertices. The free energy is min-
imized when the maximum number of hydrophobic monomers are adjacent in
the lattice. Therefore, the “native” folds are those with the maximum number
of such HH contacts. Even though the HP model is the simplest model of the
protein folding process, computationally it is an NP-hard problem for both the
two-dimensional [5] and the three-dimensional [2] square lattices.

In many applications such as drug design, we are interested in the complement
problem to protein folding: inverse protein folding or protein design. The inverse
protein folding problem involves starting with a prescribed target fold or struc-
ture and designing an amino acid sequence whose native fold is the target. The
success of a protein design method is evaluated based on three criteria [6,22].
First the protein sequence should fold to the target conformation. This means
that the native fold of the sequence should be the target conformation. This
criteria is often called positive design. Second, the target conformation should
be the only native fold of the sequence. This criteria is referred to as negative
design. Third, there should be a large gap in the energy of the native (tar-
get) fold of the sequence and the energy of any other fold of the sequence. The
computational complexity of the inverse protein folding problem (IPF) is still
unknown but it has been conjectured that IPF is in fact intractable [12]. Sev-
eral heuristic based algorithms have been described that attempt to solve IPF
problem [15,16,20,22] but they do not guarantee that the designed sequences
satisfy the positive and negative design criteria. These heuristic methods can
be separated into two categories. The methods in the first category use obser-
vations about the properties of proteins to justify algorithms that design se-
quences [15,22]. The second category of heuristic methods are those in which an
alternative formulation of IPF is considered [6,16,20,21]. This alternative formu-
lation attempts to capture the positive and negative design issues by defining
a heuristic sequence design (HSD) problem. In [12] and [3] the computational
complexity of two HSD problems the canonical and the grand canonical models,
introduced in [20] and [21] respectively, were studied. In the canonical model
the number of hydrophobic monomers that can be used in a protein sequence
is limited by fixing the ratio between hydrophobic and hydrophilic amino acids.
The intuition behind this model is the fact that for any target conformation,
the conformational energy can be minimized simply by using the sequence of
all hydrophobic monomers, but this sequence is unlikely to achieve its lowest
energy with the given target conformation. In the grand canonical model, the
number of hydrophobic monomers is limited by adjusting the contact energy
(energy function) instead. More specifically, the contact energy gives an energy
of -2 to hydrophobic-hydrophobic contacts, an energy 1 for every solvent acces-
sible site on a hydrophobic amino acid, and 0 for all other interactions. Because
hydrophobic monomers are penalized for their exposure to solvent, this contact
potential implicitly limits the number of hydrophobics in the sequence.
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It has been shown that the protein sequence design problem can be solved
in polynomial time in the grand canonical model for both 2D and 3D square
lattices, cf. [12], and in polynomial time for 2D lattices while the problem is
NP-hard for 3D square lattice in the canonical model, cf. [3,4]. Note however
that the designed sequences under these two models do not guarantee that the
generated sequence satisfies the two criteria (positive and negative design) of the
inverse protein folding problem.

In Gupta et al. [10], the IPF problem was studied from a different perspec-
tive. Instead of designing a sequence directly for the target fold and relaxing
conditions the sequence has to satisfied, they introduced a design method in
2D square lattice under the HP model that can approximate any target confor-
mation and it was shown that approximated structures are native for designed
proteins (positive design). It was conjectured that the protein sequences of their
designed structures are also stable but only proved for an infinite class of very
basic structures (arbitrary long “I” and “L” shapes), as well as computationally
tested for over 48,000 structures (including all with up to 9 tiles). Design of sta-
ble proteins of arbitrary lengths in the HP model was also studied by Aichholzer
et al. [1] (for 2D square lattice) and by Li et al. [17] (for 2D triangular lattice),
motivated by a popular paper of Brian Hayes [13].

In natural proteins, sulfide bridges between two cysteine monomers play an
important role in improving stability of the protein structure [14]. In our previous
work [11] we extended the HP model by adding the third type of monomers,
cysteines, and incorporating sulfide bridges between two cysteines into energy
model. This model is called the HPC (hydrophobic-polar-cysteine) model. The
cysteine monomers in the HPC model act as hydrophobic, but in addition two
neighboring cysteines can form a sulfide-sulfide bridge to further reduce the
energy of the fold. Therefore, between many folds of the same protein with the
same number of hydrophobic bonds the one with the maximum number of sulfide
bridges is the most stable fold. This added level of stability can help in proving
formally that the designed proteins are indeed stable.

In [11] we introduced a class of structures called the snake structures. The
class of snake structures is a subset of the class linear structures introduced by
Gupta et al. [10]. The linear structures are formed by a sequence of “plus” shape
tiles, cf. Figure 1(a), connected by overlapping two pairs of polar monomers
(each coming from a different tile). The structures are linear which means that
every tile except the first and the last is attached to exactly two other tiles. In
the snake structures every second tile is a bending tile. The first, last and the
bending tiles in a snake structure contain cysteine monomers while the rest of
the tiles contain hydrophobic monomers. In [11] we conjectured that the protein
of snake structures are stable and we proved it under an additional assumption
that non-cysteine hydrophobic monomers act as cysteine ones, i.e., they tend to
form their own bridges to reduce the energy. This model was called the strong
HPC mode. Even though this model is artificial, we used it to demonstrate that
our techniques can be used to prove stability of snake structures in the “proper”
HPC model.
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(a) (b) (c)

Fig. 1. (a) The basic building tile for constructible structures: black squares represent
hydrophobic and white polar monomers. The lines between boxes represent the peptide
bonds between consecutive monomers in the protein string. (b) An example of snake
structure. The bending tiles use cysteines (black squares marked with C). (c) Example
of energy calculation of a fold in HPC model. There are 5 contacts between hydrophobic
monomers, thus the contact energy is -5. There are three potential sulfide bridges
sharing a common vertex, hence only one can be used in the maximum matching.
Thus the sulfide bridge energy is -2 and the total energy is -7.

In this paper we consider a subclass of snake structures which is robust enough
to approximate any given shape and the same time restricted enough to be
proved stable using our techniques. We call this subclass wave structures. The
wave structures are instances of the snake structures that do not contain any
occurrence of the four forbidden motifs in Figure 2. We believe this a first robust
design formally provable that it is stable.

This paper is organized as follows. We start by the definition of the HPC
model and introducing the wave structures in Section 2. In Section 3 we explain
our proof techniques and used them to prove the protein of any wave structure
is stable.

2 Definitions

In this section we define the HPC model introduced in [11] as extension of the
HP model of Dill [7] and introduce wave structures.

2.1 Hydrophobic-Polar-Cysteine (HPC) Model

Proteins are chains of 20 types of amino acids. In the HPC model, we consider
only 3 types of amino acids: polar, cysteine and non-cysteine hydrophobic. We
can represent a protein chain as a string p = p1p2 . . . p|p| in {0, 1, 2}∗, where “0”
represents a polar monomer, “1” a hydrophobic non-cysteine monomer and “2”
a cysteine monomer.

The proteins are folded onto the regular lattice. A fold of a protein p is
embedding of a path of length n into lattice, i.e., vertices of the path are mapped
into distinct lattice vertices and two consecutive vertices of the path are mapped
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terminal core

Fig. 2. Forbidden motifs in wave structures

to lattice vertices connected by an edge (a peptide bond). In this paper we use
the 2D square lattice.

A protein will fold into a fold with the minimum free energy, also called a
native fold. In the HP model only hydrophobic interactions between two adja-
cent hydrophobic monomers which are not consecutive in the protein sequence
(contacts) are considered in the energy model, with each contact contributing
with −1 to the total energy. In addition, in the HPC model, two adjacent non-
consecutive cysteines can form a sulfide bridge contributing with −2 to the total
energy. However, each cysteine can be involved in at most one sulfide bridge.
More formally, any two adjacent non-consecutive hydrophobic monomers (cys-
teine or non-cysteine) form a contact and the contact energy is equal to −1 times
the number of contacts; and any two adjacent non-consecutive cysteines form a
potential sulfide bridge and the sulfide-bridge energy is equal to −2 times the
number of matches in the maximum matching in the graph of potential sulfide
bridges. The total energy is equal to the sum of the contact and sulfide bridge
energies. For example, the energy of the fold in Figure 1(c) is (−5)+(−2) = −7.
(Note that the results in the paper are independent on the exact value of the en-
ergy of sulfide bridge, as long as it is negative, and therefore we did not research
on determination of the correct value for this energy.)
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There might be several native folds for a given protein. A protein with a
unique native fold is called stable protein.

2.2 Wave Structures

In Gupta et al. [10], a wide class of 2D structures, called constructible struc-
tures, was introduced. They are formed by a sequence of “plus” shape tiles, cf.
Figure 1(a), connected by overlapping two pairs of polar monomers (each com-
ing from different tile). It was conjectured that these structures are stable and
proved for two very simple subclasses of the linear structures, namely for L0

and L1 structures. The L0 and L1 structures consist of an arbitrary large se-
quence of tiles in the shape of a straight line and the letter L, respectively. Note
that although L1 structures are still quite simple, the proof of their stability
involves analysis of a large number of cases. In our previous work [11], we intro-
duced a subclass of constructible structures, snake structures, and refine it for
the HPC model with nice combinatorial properties, e.g., in the proteins of such
structures any two consecutive hydrophobic monomers are of the same type if
there two polar monomers between them and are of different type if there is one
polar monomer between them. This significantly reduces the case analysis and
we conjectured that the snake structures are stable.

The snake structures are linear structures which means that every tile ti
except the first t1 and the last tn is attached to exactly two other tiles ti−1

and ti+1 (and the first and the last ones are attached to only one tile, t2 and
tn−1, respectively). In addition, in a snake structure the sequence of tiles has to
change direction (“bend”) in every odd tile. The hydrophobic monomers of these
“bending” tiles are set to be cysteines, and all other hydrophobic monomers are
non-cysteines, cf. Figure 1(b). Although, the snake structures are more restricted,
the proof of their stability under the HPC model required the analysis of huge
number of cases. However, in [11] we were able to prove that they are stable
under the artificial strong HPC model. This model assumes that the non-cysteine
hydrophobic monomers form SS-bridges of their own to reduce the energy of the
conformation. Notice that cysteine and none-cysteine monomers cannot form
SS-bridges. Although, the strong HPC model is not a proper biological model,
the proof of the stability of the snake structures under the strong HPC model
raised the hope for finding the structures that can be proved to be stable under
the proper HPC model.

In this paper, we introduce a subclass of the snake structures called the wave
structures and formally prove that they are stable under the proper HPC model.
Although, the wave structures is only a subclass of the snake structures they can
still approximate any given shape in 2D square lattice. The wave structures are
instances of the snake structures that do not contain occurrence of the four
forbidden motifs in Figure 2. The wave structures can be constructed using a
set of four super-tiles and their flipped versions (cf. Figure 3).

The super-tiles are simple instances of the constructible structures. The start-
ing super-tile has one receptor and consists of two basic tiles (Figure 3(a)), the
terminating super-tile has one ligand and consists of 5 basic tiles (Figure 3(b)),
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(a) (b) (c)

U

D

U

D

(d)

Fig. 3. Super-tiles used to construct wave structures: (a) starting super-tile; (b) un-
flipped and flipped versions of terminating super-tile; (c) bending super-tile; and (d)
flipped and non-flipped versions of regular tile

the bending super-tile has one ligand and one receptor and consists of two tiles
(Figure 3(c)), and the regular super-tile has two ligands and one receptor and
consists of 16 basic tiles (Figure 3(d)). The receptor of one super-tile can con-
nect to the ligand of another one however, the regular super-tile must only
connect through one of its ligands. A wave structure is a partial tiling of the
two-dimensional grid obtained by the following procedure.

1. Place the starting super-tile into the grid and place a regular super-tile into
the grid so that its U ligand is attached to the receptor of the starting super-
tile.

2. Let the last placed super-tile be a (flipped) regular super-tile R; either place
a (flipped) regular super-tile so that its U ligand is attached to the receptor
of R and continue with step 4 or place a bending super-tile such that its
ligand is attached to receptor of R and continue with step 3.

3. Let the last placed super-tile be a bending super-tile B and let R be a regular
super-tile attached to B. If R is a flipped super-tile then attach a new non-
flipped regular super-tile to B otherwise, attach a new flipped super-tile to
B. The new super-tile can be attached either with U or D ligand depending
on intended direction of the bend.

4. Continue with step 2 or end the structure by attaching a (flipped) terminat-
ing super-tile to the last placed (flipped) regular super-tile.
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Fig. 4. An example of a wave structure. It consists of 8 super-tiles. The borders between
super-tiles are marked by the change of underlying color of the core tiles.

In the above procedure the super-tiles are placed into the grid such that they
do not overlap. An example of a wave structure is depicted in Figure 4.

As observed in [11] for snake structures, approximately 40% of all monomers
in wave structures are hydrophobic and half of those are cysteines. Thus ap-
proximately 20% of all monomers are cysteines. Although, the most of naturally
occurring proteins have much smaller frequency of cysteines, there are some with
the same or even higher ratios: 1EZG (antifreeze protein from the beetle [18])
with 19.5% ratio of cysteines and the protein isolated from the chorion of the
domesticated silkmoth [19] with 30% ratio.

Note that the wave structures can still approximate any given shape, although
more coarsely than the linear/snake structures. The idea of approximating a
given shape with a linear structure is to draw a non-intersecting curve consisting
of horizontal and vertical line segments. Each line segment is a linear chain of
basic tiles depicted in Figure 1(a). At first glance, the wave structures seem more
restricted than linear structures, as the line segments they use are very short and
have the same size (3 tiles long). However, one can simulate arbitrary long line
segments with wave structures forming a zig-zag pattern, cf. Figure 5.

We prove that the proteins for the wave structures are stable in the HPC
model. Our techniques to achieve this include (i) the case analysis (also used in
Gupta et al. [10]) and (ii) the induction on diagonals. Furthermore, to increase
the power of the case analysis technique, we used a program called “2DHP-
Solver” for semi-automatic proving of hypothesis about the folds of proteins
of the designed structures developed in [11]. Note that 2DHPSolver can be
used for all three models: HP, HPC and strong HPC by setting the appropriate
parameters.
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Fig. 5. Simulation of a straight line segment with a wave structure

3 Stability of the Wave Structures

In this section we prove that the protein of any wave structure is stable. In
the proof we will use a concept of saturated structures and 2DHPSolver tool
developed in [11]. Let us briefly introduce them.

3.1 Saturated Folds

The proteins used by Gupta et al. [10] in the HP model and the wave proteins
in HPC have a special property. The energy of their native folds is the smallest
possible with respect to the numbers of hydrophobic cysteine and non-cysteine
monomers contained in the proteins. We call such folds saturated. In saturated
folds all parts of energy function produce minimum possible values. This means:
(i) every hydrophobic monomer (cysteine or non-cysteine) has two contacts with
other monomers; (ii) there is a sulfide bridge matching containing all or all but
one cysteine monomers. Obviously, a saturated fold of a protein must be native,
and furthermore, if there is a saturated fold of a protein, then all native folds of
this protein must be saturated.

3.2 2DHPSolver: A Semi-automatic Prover

2DHPSolver is a tool for proving the uniqueness of a protein design in 2D square
lattice under the HP, HPC or strong HPC models developed in [11]. 2DHP-
Solver is not specifically designed to analyze the wave structures or even the
constructible structures. It can be used to prove the stability of any 2D HP
design based on the induction on the boundaries. It starts with an initial con-
figuration (initial field) which is given as the input to the program. In each
iteration, one of the fields is replaced by all possible extensions at one point
in the field specified by user. Note that in displayed fields red 1 represents a
cysteine monomer, blue 1 a non-cysteine monomer and finally, uncolored 1 is
hydrophobic monomer, but it is not known whether it is cysteine or not.

These extensions are one of the following type:

– extending a path (of consecutive monomers in the protein string);
– extending a 1-path (of a chain of hydrophobic monomers connected with

contacts);
– coloring an uncolored H monomer.
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Fig. 6. Configurations with correctly aligned cores

There are 6 ways to extend a path, 3 ways to extend a one-path and 2 ways
to color an uncolored H monomer. For each of these possibilities, 2DHPSolver
creates a new field which is then checked to see if it violates the rules of the
design. Those which do not violate the design rules will replace the original
field.

However, this approach will result in producing too many fields, which makes
it hard for the user to keep track of. Therefore, 2DHPSolver contains utilities to
assist in automatically finding an extending sequence for a field which leads to
either no valid configurations, in which case the field is automatically removed,
or to only one valid configuration, in which case the field is replaced by the new
more completed configuration. This process is referred to as a self-extension. The
time required for searching for such extending sequence depends on the depth of
the search, which can be specified by user through two parameters ”depth” and
”max-extensions”. Since the configurations space is infinite it is not possible to
perform an exhaustive search by setting these parameters to high values. Instead,
one should set parameters to moderate values and use intuition in choosing the
next extension point when 2DHPSolver is unable to automatically find self-
extending sequences. Note that these parameters can be changed at any time
during the use of the program by the user.

2DHPSolver is developed using C++ and its source code is freely avail-
able to all users under the GNU Public Licence (GLP). For more informa-
tion on 2DHPSolver and to obtain a copy of the source codes please visit
http://www.sfu.ca/∼ahadjkho/2dhpsolver/.

3.3 Proof

Let S be a wave structure, p its protein and let F be an arbitrary native (i.e.,
saturated) fold of p.

Define a path in F as a sequence of vertices such that no vertex appears twice
and any pair of consecutive vertices in the path are connected by peptide bonds.
A cycle is a path whose start and end vertices are connected by a peptide bond.
For i ∈ {0, 1, 2}, an i-vertex in the fold F is a lattice vertex (square) containing a
monomer i. For instance, a square containing a cysteine monomer in F is called
a 2-vertex. An H-vertex is a vertex which is either 1-vertex or 2-vertex. Define a
1-path in F to be a sequence of H-vertices such that each H-vertex appears once
and any pair of consecutive ones form an HH contact. A 1-cycle in F is a 1-path
whose first and last vertices form an HH contact. A 1-cycle of length 4 is called
a core in F .

http://www.sfu.ca/~ahadjkho/2dhpsolver/
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Fig. 7. Configuration with misaligned cores

A core c is called monochromatic if all its H-vertices are either cysteines or
non-cysteines. Let c1 and c2 be two cores in F . We say, c1 and c2 are adjacent if
there is a path of length 2 or 3 between an H-vertex of c1 and an H-vertex of c2.
We say c1 and c2 are correctly aligned if they are adjacent in one of the forms
in Figure 6.

In what follows we prove that every H-vertex in F belongs to a monochromatic
core and the cores are correctly aligned.

Lemma 1. Every H-vertex in F belongs to a monochromatic core and either all
the cores are correctly aligned or there are three cores in F that are not correctly
aligned while all other cores are correctly aligned and these three cores form the
configuration depicted in Figure 7.

Proof. For any integer i, let SWi be the set of lattice vertices {[x, y]; x + y = i}.
Let m be the maximum number such that SWi, i < m does not contain any
H-vertex, i.e., SWm is a boundary of diagonal rectangle enclosing all H-vertices.

We start by proving the following claim.

Claim. Every H-vertex in F belongs to a monochromatic core.

Proof. We prove the claim by induction on SWk, i.e., we prove that for every k
and every H-vertex v on SWk, v is in a monochromatic core. For the base case,
consider smallest k such that for i ≥ k, there is no H-vertex on SWi. Then the
claim is trivially true. For induction step, it is enough to show that for every k,
if for every H-vertex v on SWi, i > k, v is in a monochromatic core, then for
every H-vertex w on SWk, w is on a monochromatic core c.

Fix k and by induction hypothesis, assume that for every H-vertex v lying on
SWi, where i > k, v belongs to a monochromatic core. Consider an H-vertex
w on SWk. We show that if w is not on a monochromatic core then we see a
subsequence in F which is not in p or an unpaired cysteine monomer. This is
done by enumerative case analysis of all possible extensions of this configuration
and showing that each branch will end in a configuration that has a subsequence
not in p or has an unpaired cysteine monomer.

This process requires the analysis of many configurations which is very hard
and time consuming to do manually. Therefore, we used 2DHPSolver to assist
in analyzing the resulting configurations. The program generated proof of this
step of the induction can be found on our website at
http://www.sfu.ca/∼ahadjkho/2dhpsolver/core-monochromatic-proof.

http://www.sfu.ca/~ahadjkho/2dhpsolver/core-monochromatic-proof
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Finally we showed the following claim using the 2DHPsolver tool.

Claim. Let c1 and c2 be two adjacent monochromatic cores in F . Then either
c1 and c2 are aligned correctly or there is a third core c3 such that c1, c2 and c3

form the configuration in Figure 7.

The program generated proof of this claim can be found on our website at
http://www.sfu.ca/∼ahadjkho/2dhpsolver/core-alignment-proof.

The main result follows from the previous lemma and the proof of the main
result in [11].

Theorem 1. Every H-vertex in F belongs to a monochromatic core and all the
cores are correctly aligned. Hence, F = S, i.e., all wave structures are stable.

4 Conclusions

In this paper we introduce a robust subclass of constructible structures intro-
duced by Gupta et al. [10], refine these structures for the HPC model [11] and
prove that these structures are stable. Since this subclass is robust enough to
approximate any given shape, although more coarsely than the class of all con-
structible structures, the result in this paper partially verifies the conjecture
in [10].

Furthermore, our result shows that use of cysteines in the design of proteins
might help to improve their stability. To further verify this, in the future, we
would like to extend our results to 3D lattice models and test them using existing
protein folding software.
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Abstract. The accurate estimation of missing values is important for
efficient use of DNA microarray data since most of the analysis and
clustering algorithms require a complete data matrix. Several imputa-
tion algorithms have already been proposed in the biological literature.
Most of these approaches identify, in one or another way, a fixed num-
ber of neighbouring genes for the estimation of each missing value. This
increases the possibility of involving in the evaluation process gene ex-
pression profiles, which are rather distant from the profile of the target
gene. The latter may significantly affect the performance of the applied
imputation algorithm. We propose in this article a novel adaptive multi-
ple imputation algorithm, which uses a varying number of neighbouring
genes for the estimation of each missing value. The algorithm generates
for each missing value a list of multiple candidate estimation values and
then selects the most suitable one, according to some well-defined cri-
teria, in order to replace the missing entry. The similarity between the
expression profiles can be estimated either with the Euclidean metric or
with the Dynamic Time Warping (DTW) distance measure. In this way,
the proposed algorithm can be applied for the imputation of missing
values for both non-time series and time series data.

1 Introduction

DNA microarray is high-throughput technology, which is widely used nowadays
to study biological processes through measuring thousands of gene expression
levels simultaneously under different conditions. Unfortunately, microarray gene
expression datasets, like other experimental data, often contain multiple missing
values due to various reasons. However, most of gene expression data analysis
techniques and methods require complete expression data. Therefore the de-
velopment of robust imputation algorithms for accurate estimation of missing
values in gene expression data is of crucial importance for the optimal use of
such data.
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Recently, several methods for missing value imputation of microarray data
have been proposed in the biological literature, including row average [8], sin-
gular value decomposition (SVD) [5] and weighted K-Nearest Neighbours (KN-
Nimpute) [15] methods. The row average estimation of missing values ignores the
observed correlation structure of the genes and therefore it has limited accuracy.
In general, the KNN-based methods have been proven to be rather efficient.
The KNNimpute algorithm [15] uses Euclidean distance to measure the simi-
larity between two gene profiles and selects for each gene with missing value a
preliminary fixed number, the same for all missing values, of candidate genes
for estimation. Kim et al. [7] proposed a sequential variant of KNN imputation
(SKNN), which estimates the missing values sequentially from the gene having
the least number of missing values, and then uses the imputed values for further
imputation. Oba et al. [10] considered a missing value estimation method based
on Bayesian Principal Component Analysis. More recently, local least square
techniques were applied in [6] to estimate missing values.

All the above imputation methods are quite similar in always selecting a fixed
number of nearest neighbouring genes in order to estimate all the missing values
in a target gene. The latter fact may lead to a somewhat random choice of
candidate gene profiles for imputation. For instance, it may happen that the
expression profiles of some candidate genes are rather distant from the target
profile since these have only been included in the estimation list in order to
reach the required fixed number of genes. In [19], Zhipeng et al. proposed an
Iterated Local Least Squares imputation (ILLSimpute) method, which does not
fix the number of nearest neighbouring genes, but considers instead all genes
that are within a distance threshold to a target gene as coherent to it. The
distance threshold in the ILLSimpute is set as δ times the average distance to
the target gene and the ratio δ is learned using the dataset itself with pseudo
missing values. We presented in [16,17] an imputation method, called Dynamic
Time Warping imputation (DTWimpute), which also identifies for each gene
profile with missing values a varying number of candidate expression profiles
that exhibit at least minimum relative (preliminary defined) similarity in terms
of some distance measure to the gene profile that best matches the profile of the
target gene.

The usage of multiple imputation candidates, or so-called multiple imputa-
tion [8,11], is also known in the imputation literature. It has been applied for
a first time to microrray data to evaluate the efficiency of the developed in [7]
SKNN imputation algorithm. The implemented there imputation algorithm cre-
ates multiple plausible estimations for each missing observation. Subsequently,
the mean of these estimations is used to fill in the missing value. Further, Nguyen
et al. [9] proposed a multiple imputation method via ordinary least squares. Mul-
tiple estimation of each missing value is obtained by repeatedly regressing the
target gene on each of the selected candidate genes. The final estimate of the
missing value is again calculated as the mean (or weighted) average of the sep-
arate estimations.
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An adequate choice of a distance measure used to select the candidate estima-
tion profiles ensures good imputation accuracy and it is usually data dependent.
Thus the KNNimpute algorithm, based on the Euclidean distance, was found to
work well on non-time series data [15], while the added value of the Dynamic
Time Warping (DTW) based techniques for missing value estimation in time
series data has been demonstrated in [16,17].

We suggest in this work a novel Adaptive Multiple Imputation (AMimpute)
algorithm for missing value estimation of gene expression data, which provides
for a choice between two distance measures (Euclidean and DTW) to evaluate
the similarity between two expression profiles and in this way, it can be applied
to both non-time series and time series data. Additionally, the algorithm is adap-
tive since it uses a varying number of neighbouring genes for the estimation of
each missing value in a gene. This is implemented by generating for each miss-
ing value a list of multiple candidate estimation values and then selecting the
most suitable one according to some well-defined criteria, in order to replace the
missing entry. Each candidate value for a given missing entry is derived from
the set of nearest neighbouring gene profiles of the expression profile contain-
ing the missing value in question. These nearest neighbouring genes are selected
according to preliminary defined degree of similarity to the estimated profile.

All the procedures used in this paper are implemented in Perl and C++ and
the programs are available upon request.

2 Methods

2.1 Adaptive Multiple Imputation Algorithm

As already emphasized in the introduction, one of the important features of
the imputation method proposed herein is the ability to use in the estimation
process of each missing value a varying number of neighbouring gene profiles.
The latter is implemented by generating for each missing value a list of candi-
date imputation values and then selecting the most suitable one, according to
some well-defined criteria, in order to fill in the missing value. Each candidate
value for a given missing value is derived from the set of nearest neighbouring
gene profiles of the expression profile containing the missing value in question.
These nearest neighbouring genes are selected according to preliminary defined
degree of similarity to the estimated profile. This is realized by constructing an
estimation list for each gene profile with missing values, which consists of genes
with expression profiles all at a maximum R-relative (R is preliminary defined)
distance from the best matching expression profile to the target profile (the one
with missing values). These expression profiles are consequently used for missing
value estimation. The estimation list construction algorithm has already been
applied in [16,17].

The gene expression data generated from a set of microarray experiments
are usually presented as a large matrix, with expression levels of genes ordered
in rows and the experimental conditions in columns. Assume that a matrix G
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of m × n (m 	 n) contains the expression values of m genes measured in n
experiments:

G =

⎡
⎢⎣

g1

...
gm

⎤
⎥⎦ =

⎡
⎢⎣

g11 · · · g1n

...
...

gm1 · · · gmn

⎤
⎥⎦ ,

where the row gi = [gi1, . . . , gin] represents the expression profile of the i-th
gene.

Consider a set of M radiuses (relative degrees of similarity) {Rp | p =
1, . . . , M}, where Rp ∈ [1, 100], and an expression profile gi = [gi1, . . . , gin]
with some missing values. The proposed imputation algorithm uses this prelimi-
nary defined list of radiuses and generates a gene estimation list for each missing
value in gi and each radius Rp, consisting of genes with expression profiles at a
maximum Rp-relative radius distance from the gene profile gi. The obtained set
of M estimation lists are further used to derive a list of M candidate imputation
values, which on their turn are used to select the most suitable value to fill in the
missing value. In the implemented C++ version of our AMimpute algorithm this
most suitable value is the closest to the average of the two non-missing neigh-
bours of the missing value. Of course, other more elaborated selection criteria
may be applied.

Note also that two types of gene estimation lists are considered in the present
implementation: 1) containing only complete (no missing values) gene profiles 2)
complete and non-complete profiles, excluding only those gene profiles that have
missing value at the same position with the gene profile to be imputed. Thus
each missing value at position t in gi will be imputed according to the following
algorithm.

1. Construct an initial gene estimation list Eit either as:

Eit = {all genes} \ {genes with missing value in experiment t}

for expression matrices with high missing rate and large number of experi-
ments or as:

Eit = {all genes} \ {genes with missing values}

otherwise, i.e. for expression matrices with low missing rate or small number
of experiments.

2. Choose a distance measure to evaluate the similarity between the expression
profiles, the DTW distance1 for time series data or the Euclidean metric in
all other cases.

3. Build a set of M gene estimation lists {Eitp | p = 1, . . . , M}, one for each
radius Rp as follows:

– Let K = #Eit.
– For j = 1, . . . , K calculate the distance dikj (Euclidean or DTW dis-

tance) between gene i (the one with missing values) and gene kj ∈ Eit.
1 A more detailed description of the DTW algorithm can be found in the Appendix.
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– Reorder Eit in such way that the genes are sorted in increasing order of
their distances to gene i.

– Construct a new gene estimation list Eitp by removing from the gene
estimation list Eit all genes kj , for which:

dikj − dik1

dikj

100 ≥ Rp.

The final estimation list Eitp contains only genes at a maximum Rp-
relative distance (Euclidean or DTW) from gene k1, which is the best
matching gene to gene i with missing values.

4. Create a list of M candidate imputation values {gitp | p = 1, . . . , M}, one
for each estimation list Eitp , for the missing value in experiment t. Calculate
each imputation value as follows:

gitp =
Kp∑
j=1

wkj gkjt,

where wkj is the weight assigned to gene kj ∈ Eitp , expressing the degree of
similarity between the expression profile of this gene to the expression profile
of gene i, i.e. wkj is obtained by the formula:

wkj =

⎛
⎜⎜⎜⎝1−

dikj

Kp∑
j=1

dikj

⎞
⎟⎟⎟⎠ /(Kp − 1),

where Kp = #Eitp .
5. Select the value among {gitp | p = 1, . . . , M}, which is the closest to the

average of the two non-missing neighbours of the missing value (git−k +
git+l)/2. That value will be used to impute the missing entry at position t
in gi.

3 Results and Discussion

We have compared the efficiency of our AMimpute method with two other im-
putation methods: KNNimpute and DTWimpute. The latter have been specially
selected for their various features (e.g. fixed versus varying number of gene pro-
files used for imputation; complete versus all profiles, except for the ones with
missing value at the missing entry position, considered in the imputation pro-
cess), which make them very suitable as benchmarking baseline for AMimpute.

The KNNimpute method, developed by Troyanskaya et al. [15], is widely used
in microarray data analysis. It selects a preliminary fixed number (K-nearest)
of neighbouring genes from the microarray matrix excluding any gene profiles
that have missing value at the same position with the gene to be imputed. The
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Euclidean distance is used to estimate the similarity of neighbouring genes. The
missing value is finally imputed with the weighted average of the corresponding
column of the K-nearest genes. Note that the Euclidean distance is known to
be sensitive to outliers, which can often be present in microarray data. There-
fore, Troyanskaya et al. [15] proposed to partially overcome this shortcoming by
always applying a log-transformation on the microarray data.

Most of the existing missing value imputation approaches are not particu-
larly suitable for time series expression profiles. The DTWimpute algorithm has
specially been designed for estimation of missing values in gene expression time
series data [16,17]. The algorithm utilizes the DTW (Dynamic Time Warping)
distance in order to measure the similarity between time expression profiles and
subsequently, for each gene profile with missing values a varying number (based
on the degree of similarity) of complete expression profiles (no missing values)
is identified for imputation. The DTW distance is known to produce a more
intuitive similarity measure for time series data since it allows for similar shapes
to match even if they are out of phase in the time axis.

Four microarray datasets with different missing rates have been used in the
evaluation process. The first three datasets are from Rustici et al. [12], used
for examining the global cell-cycle control of gene expression in fission yeast
Schizosaccharomyces pombe and are time series data. The whole study includes
8 independent time-course experiments synchronized respectively by elutriation,
cdc25 block-release and a combination of both methods. We have included in
our test corpus the elutriation datasets, i.e. the following 3 different time series
data sets have been used: elutriation1, elutriation2 and elutriation3. These data
sets contain expression levels of 5038 to 5120 genes measured in 20 time points.
The fourth dataset is non-time series and is a study of response to environmental
changes in yeast [3]. It contains 6152 genes monitored in 173 experiments. Note
that the above datasets have been used in some previous studies, e.g., the time
series datasets have been included in the test corpus of DTWimpute [16,17],
while the non-time series set has been used in the studies of KNNimpute [15]
and SKNNimpute methods [7].

A special test data corpus has been created as follows. Initially, all rows con-
taining missing values have been removed from each of the four original gene
expression datasets. These transformed original datasets are further referred to
as the complete (no missing values) data matrices. Consequently, five new test
sets have been derived from each complete data matrix by deleting randomly
1%, 5%, 10%, 15% and 20% respectively of the original data.

The accuracy of estimation has been calculated as the Root Mean Squared
(RMS) difference between the imputed matrix and the original matrix, divided
by the average data value in the complete dataset:

RMS =

√∑
ij

(Rij − Iij)2 /nm

∑
ij

|Rij | /nm
,
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(a) (b)

Fig. 1. (a) Comparison of the AMimpute and KNNimpute imputation performance on
non-time series data; (b) Comparison of the AMimpute and DTWimpute imputation
performance on time series data

where Rij is the value in the complete matrix, Iij is the value in the imputed
matrix, m is the number of genes and n is the number of experiments.

The RMS error rate of the AMimpute algorithm has been benchmarked
against the KNNimpute algorithm on the non-time series data and against the
DTWimpute on the time series datasets. Fig. 1a depicts the AMimpute and
KNNimpute RMS curves for the non-time series test data using the Euclidean
distance to measure the similarity between the expression profiles. Clearly, the
AM imputation method attains lower RMS figures for the whole range of miss-
ing rates. The RMS values of the AMimpute have been obtained for a list of 25
radiuses R (all integer values from 1 to 25). The gene estimation lists have been
composed of gene profiles that have a value at the missing value position and
are at a maximum R-relative radius Euclidean distance from the target profile.
The RMS values of the KNNimpute have been generated for K = 10, which
produced the lowest RMS error in almost every dataset tested in [15].

Fig. 1b compares the imputation performance of the AMimpute and DTWim-
pute algorithms on the time series data using DTW distance to measure the
similarity between the expression profiles. Analogously to Fig. 1a, the AMim-
pute RMS curves have been generated using 25 candidate imputation values
(for integer radius R from 1 to 25) for the estimation of each missing value. The
estimation lists have been constructed of gene profiles that have a value at the
missing value position and are at a maximum R-relative radius DTW distance
from the target profile. The RMS values of the DTWimpute have been obtained
for radius 1, which guarantees, as demonstrated in [17], overall low RMS error
rates. AMimpute is clearly superior over the whole range of tested missing rates.

Recall that the DTWimpute algorithm selects neighbours for the imputation
of a missing value only among genes with complete expression profiles. However,
the pool of complete expression profiles may be drastically reduced as a result of
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Table 1. The RMS error rate of AMimpute algorithm using two different initial esti-
mation lists. The DTW distance was used for the time series data and the Euclidean
distance for the non-time series.

RMS time series non-time series
mis. complete complete & complete complete &
rate profiles non-complete profiles non-complete

profiles profiles

1% 0.0106 0.0102 0.083 0.076
5% 0.0249 0.0236 0.493 0.169
10% 0.0334 0.0311 0.675 0.235
15% 0.0408 0.0378 0.816 0.284
20% 0.0495 0.0448 0.947 0.332

(a) AMimpute, DTWimpute and KN-
Nimpute RMS curves.

(b) AMimpute RMS figures for three
different final imputation values.

Fig. 2. The different imputation performances are evaluated on the elutriation1 time
series dataset employing the DTW distance

increased missing rate. In this situation, the imputation method will evidently
select less similar neihghbours for imputation. The AMimpute allows in the
gene estimation list any gene profiles that have a value at the missing value
position. Thus the imputation accuracy for data with high level of non-complete
gene profiles and large number of experiments, which is the case for our non-
time series test data (over 80% of rows have at least one missing value), can
considerably be improved. Table 1 illustrates the impact on the RMS error rate
of the choice of a particular pool (complete/non-complete) of expression profiles
for estimation.

As already mentioned in the introduction, the choice of a distance measure
to be used in the selection process of the candidate estimation genes is of a
crucial importance for the estimation performance of the applied imputation
algorithm. For instance, we have generated the RMS curves of the three tested
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(a) (b)

Fig. 3. AMimpute imputation performance on non-time series data applying two differ-
ent distances (Euclidean versus DTW distance): (a) Complete & non-complete profiles;
(b) Only complete profiles

algorithms, AMimpute, DTWimpute and KNNimpute, for the elutriation1 time
series datasets. These are depicted in Fig. 2a. Recall that KNNimpute uses the
Euclidean distance to measure the similarity between the expression profiles,
whereas the DTW distance is implemented in the DTWimpute and AMimpute
algorithms. Consequently, as it can be seen in Fig. 2a, the difference in RMS
performance between KNNimpute and DTWimpute is significantly higher than
the one between DTWimpute and AMimpute, respectively.

The imputation performance of AMimpute has further been tested on the non-
time series test set using two different distance measures, Euclidean versus DTW,
(see Fig. 3). The RMS values reported in Fig. 3a have been obtained for gene es-
timation lists composed of gene profiles that have a value at the missing value
position, while only complete expression profiles have been used for the RMS re-
sults shown in Fig. 3b. In the first case (Fig. 3a), the AM imputation method using
the Euclidean distance as a measure of similarity attains, as expected, lower RMS
figures for the whole range of missing rates. However, in the case of complete ex-
pression profiles (Fig. 3b), the RMS results obtained for the DTW distance are
strangely superior over the whole range of tested missing rates. One possible ex-
planation of this phenomenon may be the better alignment, which the DTW al-
gorithm usually produces when the complete expression profiles are involved.

The KNNimpute uses a fixed number of neighbouring genes for the estimation
of each missing observation in the whole microarray matrix, while DTWimpute
uses in general a varying number of profiles for the estimation of the different
missing values, except for the ones belonging to the same expression profile. In
the latter case, i.e. for missing values situated in the same expression profile, the
DTWimpute algorithm identifies a common set of expression profiles to be used
in the imputation process of each of these missing entries. The AM imputation
method goes further than that by using a varying number of neighbouring gene
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(a) KNNimpute versus DTWimpute. (b) DTWimpute versus AMimpute.

Fig. 4. Comparison of the number of estimation genes used in the imputation process

profiles in the estimation process of each missing value in the target gene. These
essential differences between the three tested algorithms are illustrated in Fig. 4.
A random set of expression profiles with missing values have been considered and
the number of genes used for the estimation of each missing value in this set has
been recorded for KNNimpute and DTWimpute as shown in Fig. 4a. The same
procedure has been performed for the number of profiles used by the DTWim-
pute and AMimpute algorithms to estimate the missing values belonging to a se-
lected single profile. Fig. 4b compares the number of estimation genes used by the
DTWimpute and AMimpute for each missing value in the profile. For instance,
the DTWimpute uses an estimation list of 7 neighbouring genes for the imputa-
tion of each missing observation in the studied profile, while the number of genes
in the estimation lists of AMimpute vary from 1 to 10 (see Fig. 4b).

Nguyen et al. [9] proposed an imputation method, which generates multiple
estimates for each missing observation via ordinary least squares regression. The
final imputation value is obtained as the weighted average (or mean) of these
multiple estimations. The latter prompts us to study how the estimation perfor-
mance of our AM imputation algorithm depends on the way the final imputation
value is derived. The AMimpute imputation performance has been evaluated on
the elutriation1 time series dataset comparing three different possible calcula-
tions for the final imputation value: 1) the closest to the average of the two
non-missing neighbours of the missing value, 2) the weighted mean of the mul-
tiple candidate imputation values, and 3) the mean of the multiple candidate
imputation values (see Fig. 2b). In the case of weighted mean, the weights are
based on the radiuses (relative degrees of similarity) used to select the nearest
neighbouring genes, i.e.

wp =
RM −Rp + 1

M∑
j=1

Rj

,
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where wp (p = 1, . . . , M) is the weight assigned to the estimate obtained for
radius Rp and RM is the highest radius used in the concrete estimation process.
As it can be seen in Fig 2b, the RMS values obtained for the first two approaches
are very comparable over the whole range of the tested missing rates. However,
the RMS results are significantly worse when the final estimate is calculated as
the mean of the single estimates.

As was shown in Table 1, involving non-complete profiles in the estimation
process significantly improves the imputation accuracy of the AM imputation al-
gorithm on data with high level of non-complete gene profiles and large number
of experiments. This improvement however, increases the computational com-
plexity of the algorithm since an initial gene estimation list is constructed in-
dividually for each missing value, while in case of complete expression profiles
such a list is common for all estimations. For instance, the C++ implementa-
tion of AMimpute employing the Euclidean distance takes on average 4.5 min
for performing missing data estimation on a matrix of a size 755×173 with 20%
missing entities on a standard PC (with Pentium 4 processor) in the former case
(non-complete profiles) and about 1 sec in the latter one (complete profiles).
The computational complexity of AMimpute when Euclidean distance is used
is comparable with this of the KNNimpute and it is approximately O(m2n) for
a matrix with m genes and n experiments. It is to expect that KNNimpute is
slightly faster than AMimpute since it uses a fixed number of neighbours for
the imputation of each missing value. Thus in case of 20% missing values, the
KNN execution time is about 3 min for the above matrix and K = 10. However,
the computational performance of the KNNimpute is affected by the number
of neighbouring genes used and it may increase a few times for a higher values
of K. In case the DTW distance is used to measure the similarity between the
expression profiles, the complexity of AMimpute is in the range of O(m2n2). In
fact, when complete expression profiles are involved in the estimation process
its execution time will be comparable with this of the DTWimpute. AMimpute
takes on average 9 sec for performing a missing data estimation using only com-
plete expression profiles on a time series data matrix of a size 3500×20 with 20%
missing entries, which is almost equal to the DTWimpute execution time of 8
sec for the same matrix.

In our opinion, the AMimpute performance is very satisfactory, considering
that in most cases the missing value imputation needs to be performed once, usu-
ally off-line, and then the complete data matrix is available for further processing
and analysis.

4 Conclusion

We have developed a novel imputation algorithm (AMimpute) for estimation
of missing values in gene expression data, which offers more robust and more
accurate missing value estimation by using a varying number of neighbouring
genes in the estimation process of each missing value. The proposed algorithm
has been tested and evaluated on both non-time series and time series data.
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The efficiency of the developed adaptive multiple imputation method has been
compared with two other imputation methods: KNNimpute and DTWimpute by
applying them to microarray datasets with different missing rates. It has been
demonstrated that the performance of the AMimpute method is better than the
conventional KNN imputation approach for non-time series data and than the
DTWimpute algorithm designed specially for time series data.
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5 Appendix

5.1 Dynamic Time Warping Algorithm

The Dynamic Time Warping (DTW) alignment algorithm was developed origi-
nally for speech recognition [13] and it aims at aligning two sequences of feature
vectors by warping the time axis iteratively until an optimal match (according
to a suitable metrics) between the two sequences is found.

Fig. 5. The DTW grid with the optimal warping path through it

Let us consider two sequences of feature vectors:

A = [a1, a2, . . . , an]
B = [b1, b2, . . . , bm].

The two sequences can be arranged on the sides of a grid, with one on the top and
the other on the left hand side, see Fig. 5. Both sequences start on the bottom
left of the grid. Inside each cell a distance measure can be placed, comparing
the corresponding elements of the two sequences. To find the best match or
alignment between these two sequences one needs to find a path through the
grid

P = p1, . . . , ps, . . . , pk,

http://www.tu-plovdiv.bg/Container/bi/DTWimpute
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where ps = (is, js) and P , referred to as the warping function, minimizes the
total distance between A and B (Fig. 5). Thus the procedure for finding the best
alignment between A and B involves finding all possible routes through the grid
and for each one compute the overall distance, which is defined as the sum of the
distances between the individual elements on the warping path. Consequently,
the final DTW distance between A and B is the minimum overall distance over
all possible warping paths:

dtw(A, B) =
1

n + m
min

P

(
k∑

s=1

d(is, js)

)
.

It is apparent that for any pair of considerably long sequences the number of
possible paths through the grid will be very large. However, the power of the
DTW algorithm resides in the fact that instead of finding all possible routes
through the grid, the DTW algorithm makes use of dynamic programming and
works by keeping track of the cost of the best path at each point in the grid.
Due to its flexibility, DTW has been widely used in many scientific disciplines
including several computational biology studies [1,2,4]. A detail explanation of
DTW algorithm can be found in [4,13,14].
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Abstract. Over the past years, a number of metrics have been intro-
duced to characterize the topology of complex networks. We use these
methodologies to analyze networks obtained through Blast data mining.
The algorithm we present consists of the following steps: 1- encode results
of Blast searches as a distance matrix of e-values; 2- perform entropy-
controlled clustering analysis to identify the communities; 3- statistical
analysis of the resulting network, 4- gene ontology and data mining in
sequence databases to infer the function of the identified clusters. We
report on the analysis of two data sets; the first is formed by over 3300
plasmid encoded proteins and the second comprises over 4200 sequences
related to nitrogen fixation proteins. In the first case we observed strong
selective pressures for horizontal transfer and maintenance of genes en-
coding proteins for resistance to antibiotics, plasmid stability and con-
jugal transfer. Nitrogen fixation proteins can be divided on the basis of
our results into three different groups: proteins with no paralogs in any
of the genomes considered, proteins with paralogs belonging to different
metabolic processes (O–paralogs) and proteins with paralogs in other
and the same metabolic processes (I/O–paralogs).

1 Introduction

The determination of the statistical relationships among biological sequences
is one of the most important tasks in bioinformatics. Most of the work in the
past has focused on phylogenetic methods that describe the non independence
of the sequences because of the common ancestors (the nodes of the phyloge-
netic tree). An alternative meaningful approach is to consider the networks of
relationships found in a data mining approach performed using Blast-family [1]
or PatternHunter algorithms [2]. This approach is justified by the lateral gene
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transfer events in prokaryotes, between nuclear and mitochondrial genomes, and
between host and parasites or symbionts. Models of the relationships between
sequences are defined on a connectivity network, where nodes are proteins and
edges represent evolutionary connections. Current research in complex network
analysis generally have four different focuses: (i) Characterization of the ge-
ometry/structural properties of large networks from the real world [3, 4]; (ii)
developing of new models (growing graphs) [4]; (iii) dynamical processes on net-
works, such as epidemics [5]; (iv) adaptive networks, i.e. changes in topologies
due to node activity [6]. Here we will focus on the first point. When analyz-
ing complex networks, the class of topology needs to be compared with regular
lattices, small worlds or random networks by making use of several measures
that describe the network’s topology. One such quantity is the connectivity. In
order to visualize the influence of connectivity on network topology, let us in-
troduce the connectivity distribution P (k), which is proportional to the number
of sites with connectivity k. The probability distribution of a regular lattice is
extremely peaked around the lattice’s coordination number (the number of ver-
tices directly connected in the lattice), being a δ-function; in a random graph it
follows a Poisson distribution, centered around the mean connectivity 〈k〉. Both
of those choices are characterized by a well defined value of the mean connectiv-
ity 〈k〉, and small variance 〈k2〉− 〈k〉2. As shown by Watts and Strogatz [7], the
simple rewiring of a small fraction of links in an otherwise regular lattice results
in a sudden lowering of the diameter of the graph, without affecting the average
connectivity or the degree of clustering. This small world effect manifests itself
in a dramatic shortage of the distance between any two nodes, almost without
affecting the local perception of the network of contacts. A meaningful measure
is the degree of clustering of the network, which can be defined as the number of
neighbors of a given node which share an edge. In a regular lattice the clustering
coefficient is high, while in a random graph it is vanishingly low. Finally, one
is interested in the average length of the minimum path that connects any two
vertices, called the diameter of the graph. This is large in a regular lattice, and
low in a random graph. The study of biological networks has shown major dif-
ferences from regular and random graphs because the degree distribution often
follows a power-law (i.e. P (k) � k−γ , with γ � 2). This distribution is char-
acterized by a relatively large number of highly connected nodes (called hubs).
Moreover, such distributions have a diverging second moment 〈k2〉 for γ ≤ 3 and
a diverging average connectivity 〈k〉 for γ ≤ 2. An important class of biological
networks show scale-free connectivity properties [8]. A simple model to generate
networks with this property is based on the preferential attachment and can
be exemplified in the following way. We start with a ring of K nodes, and we
add the other N −K nodes by choosing, for each of them, K connected nodes
jn, n = 1, 2, . . . , K, with probability k(jn)/

∑N
l=1 k(l) (preferential attachment).

The new node is added to the inputs of the chosen nodes. We also choose an-
other node at random and add it to the list of input nodes of the new node. This
process simulates the growing of a sequence network in which a new node (a par-
alogous gene) is duplicated from another one. Networks have been used to study
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metabolic pathways [9], signal transduction [10], transcriptional regulation [11]
and other cellular processes; all of them showed scale-free properties [8].

Inference on gene functions in the analysis of novel genomes generally re-
lies on local alignment tools, such as Blast [1]. These programs allow searching
for homologs in sequence databases and assigning functions on the basis of se-
quence similarity to known proteins (functional transfer). Local alignment tools
have been implemented in several automated strategies for the necessary post–
processing of the outputs [12]. The output of a similarity search may be encoded
as an adjacency matrix where each element sij is a measure of the similarity
shared by proteins i and j and can be used as input for a clustering algorithm to
infer communities of related sequences. This strategy has been used to construct
the Clusters of Orthologous Groups (COG, [13]) and OrthoMCL databases [14].
Advanced clustering techniques have been implemented to better identify clus-
ters of related proteins in large scale similarity searches; tribeMCL [15] and
orthoMCL [14] both implement a relatively recent procedure, the Markov Clus-
tering algorithm (MCL, [16]) to partition proteins into families. The main ad-
vantage of the MCL over other clustering methods is that there is no need to
specify the number of clusters.

We describe a framework combining complex network theory, MCL clustering
and standard genomics tools to make inferences on protein function and gene
family classification; we tested it on two case studies. The first one comprises over
3300 plasmid encoded proteins from three enterobacterial genera. Plasmids are
shared resources of a large community of bacteria; from this viewpoint, bacteria
are part of a super-organism and studying the ”omics” of plasmids corresponds
to investigating the system biology of this super-organism. Despite the huge
amount of plasmid sequences in databases there are few papers reported results
from large scale comparative analysis e.g. [17] and none of them considered
all sequences coming from entire taxonomic groups. The network approach is
particularly suited in this case because plasmids are easily transferred between
different bacteria [18] and the process is evolutionarily important.

Our second case study comprises over 4300 proteins related to enzymes of
nitrogen fixation. This process is the biological reduction of atmospheric dini-
trogen to ammonium and it is performed by some prokaryotes. Nitrogen is a
fundamental constituent of many biological molecules, first of all proteins and
nucleic acids, thus the survival of organisms unable to fix dinitrogen (i.e. eukary-
otes, most prokaryotes) depends on the environmental availability of reduced
nitrogenous compounds. Several nitrogen fixation proteins are part of paralo-
gous families [19] and are related to enzymes involved in the biosynthesis of
photosynthetic pigments (i.e. Bch proteins).

2 Methods

We devise an effective way to (i) establish the relationships between sequences
by means of a similarity matrix recording local alignment scores, (ii) reduce its
dimension by a clustering algorithm and (iii) perform statistical analysis on the
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network centrality measures such as shortest path length, diameter, between-
ness, and assortativeness. In particular the dimensionality reduction is obtained
through the use of an entropy controlled clustering method. Our approach con-
sists of four basic steps (Figure 1):

Sequence database

Entropy controlled clustering

Topological metrics

-Functional genomics
-Evolutionary analysis

Sequence similarity matrix based on Blast e-values

Fig. 1. Summary of the strategy adopted in this work

1. We build a similarity matrix based on alignment scores from Blast. The sij

element of the matrix is the normalized score for the local alignment between
sequence i and j. Raw blast scores are not suitable because they are the sum
of substitution and gap scores taken from a given substitution matrix (e.g.
Blosum, Dayhoff) and they are consequently dependent on the alignment
length; this causes the risk of over-scoring long alignments; we normalize the
matrix row by row on the basis of the diagonal element smax (the score of a
self aligned protein); in this way each element becomes s′ = sij

smax
.

After this transformation, the matrix encodes a network of normalized
global sequence relationships: nodes are proteins with edges between homol-
ogous proteins. Edge values can also be weighted with distance matrices
obtained by comparing housekeeping proteins, allowing to take into account
the evolutionary relationships between organisms; this might help the identi-
fication of groups of proteins with a degree of homology not expected by the
phylogenetic distance of the source organisms i.e. horizontally transferred
proteins.

2. The following step is the clustering of the network: we use a clustering al-
gorithm that does not need specifying the number of clusters in advance.
Although there is now a wide range of clustering algorithms, only some of
them are able to handle a network with the complete and weighted graph
properties. One of these is the MCL [16] that we describe more in detail.
The input is a stochastic matrix where each element is the probability of a
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transition between adjacent nodes. The matrix is processed by iterative
rounds of expansion (raising matrix M to the kth power) and inflation (it
takes the rth power mr

ij of every element using Hadamard exponentiation,
where r is the granularity parameter of the clustering). Expansions cor-
respond to computing the probabilities of random walks of higher lengths
through the graph, while inflation promotes and demotes the probabilities of
paths in the graph. We incorporated the strategy of Gfeller et al., [23] which
allows detecting unstable nodes and comparing results obtained with differ-
ent granularity (inflation) parameters. In this algorithm, the original matrix
is modified by adding a user-defined amount of noise to its values. The noise
is homogeneously distributed between −σwij and σwij where wij is the edge
weight and σ the user-defined noise parameter in the range [0, 1]. The noise
is added randomly to edges and the MCL clustering is performed on many
noisy realizations of the matrix. Finally the program outputs a matrix stor-
ing Pij values, corresponding to the fraction of times nodes i and j have been
grouped together. Unstable nodes are identified as those having edges with
less than a threshold value that can be specified by the user (i.e. the θ). All
edges with a value below θ are then pruned and cluster structure is recorded.
This matrix is used to calculate the clustering entropy measure developed
by [23]: S = −1/L

∑
ij [Pij log2Pij + (1 − Pij)log2(1 − Pij)], where the sum

is over all edges, normalized by the total number of edges, L. The clustering
entropy allows identifying the best clustering after several repetitions with
different parameters.

3. The program computes several topological metrics on the clusters, such as
node degree distribution, assortativity, shortest path lengths (ASPL), diam-
eter, betweenness and centrality. Definitions of these estimators can be found
in [3,8] and references therein.

4. The final step is a data mining procedure in functional databases to charac-
terize the function(s) of the proteins of each cluster.

3 Results and Discussion

3.1 Plasmids Network

The choice of the plasmid dataset relies on two main reasons: they represent
good study models for network analysis because they can be transferred between
different microrganisms and they often have biomedical importance since they
harbor resistance genes and virulence associated factors. The plasmid dataset
is composed by 3393 proteins coded for by 39 plasmids from the enterobacteria
Escherichia, Shigella and Salmonella. The graph resulting from an all-against-all
comparison was clustered with the MCL (r = 2.2). The original network showed
a power-law distribution of the degree γ = 1.32 (see Table 1 for comparison
with coefficients for other biological networks). We focused our attention to the
functions of the proteins belonging to highly populated clusters because they
might reflect the selective pressures acting in the environment. Clusters with
the highest average degree mainly consist of transposases, IS-related sequences
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Table 1. The γ parameter inferred for several types of networks. PI: Protein Interac-
tion.

Network Type Estimated γ Reference
Yeast paralogs PI divergence (n=274) 1.38 [25]

Yeast PI (data from [26]) 2.80 [27]
Yeast PI (core data from [28]) 2.2 [29]
C. elegans PI (data from [30]) 1.8 [31]
Metabolic network E. nidulans 2.2 [29]

Protein domains family size (T. maritima) 3 [32]
Protein domains family size (C. elegans) 1.9 [32]

Plasmid (γ–proteobacteria; n=3393) 1.32 This work
Nitrogen fixation proteins (n=4299) 2.3 This work

and transposons; they are more than 1400 proteins and represent the hubs of the
network, being widely distributed and are often present in several copies for each
plasmid.The biological significance of this finding is still unclear, if we consider
that plasmids coming from other species generally encode few transposases (data
not shown).

The analysis of the other clusters (showing a lower average degree) revealed
that Escherichia, Salmonella and Shigella share genes coding for (i) the anti–
restriction protein KlcA, involved in the broad-host range of IncP plasmids [33];
(ii) the RNA chaperone FinO, related to repression of sex pilus formation; and
(iii) the CcdB protein, involved in plasmid stability by killing bacteria that have
lost the plasmid [35].

It is worth noticing that recent works suggest that Shigella spp. are Es-
cherichia coli strains [36]. However, our data are in disagreement with this
finding because they revealed a higher affinity between E. coli and Salmonella.
Indeed, several proteins are shared by only E. coli and Salmonella, such as the al-
ready known determinants for antibiotic resistance (TetA and TetR), involved in
tetracycline resistance [37], beta-lactamases [38], proteins conferring resistance
to amino glycosides (e.g.: AadA) and sulphonamides (e.g.: DHPT synthase); this
defence repertoire is almost entirely missing in Shigella plasmids. Moreover, sex
pilus–related proteins (i.e. Tra and Trb) revealed the same intriguing occurrence
pattern: 21 out of 22 different clusters of Tra proteins included those coming
from E. coli and Salmonella spp. Only the TraDI (DNA transport) and TraX
(pilin acetylation) clusters include the three genera. The proteins TraP, TrbA
and TrbJ are harbored only by E. coli plasmids. Similarly, there are 5 different
Trb clusters, but Shigella has only a TrbH homologous. These data fully agree
with recent horizontal transfers of plasmid genes between enteroinvasive E. coli
and Salmonella. On the other side, Shigella spp. have a specific set of patho-
genesis associated genes, including some of the proteins of the type III secretion
system (TTS), which is formed by (i) a TTS apparatus spanning the bacterial
envelope, (ii) translocator proteins forming a pore in the host cell membrane (the
translocon) and (iii) specific transcription factors (among the three categories:
Mxi, Spa, Ipa, Ipg and Osp proteins).
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3.2 Nitrogen Fixation Network

The ability to fix nitrogen relies on the activity of a set of nitrogen fixation
(Nif) proteins, which have been particularly studied in the γ–proteobacterium
Klebsiella pneumoniae. In this organism 21 nif genes have been identified; we
used their aminoacid sequence to retrieve homologous proteins related to those of
nitrogen fixation using the Blastp program on 55 completely sequenced genomes
comprising all diazotrophs species and a representative number of organisms
from the other available taxonomic groups. All hits with a Blast e-value below
0.0001 were retrieved and a non-redundant dataset of over 4200 proteins was
then constructed and used as input for our algorithm. Data obtained are shown
in Figure 2 and can be summarized as follows:

Fig. 2. Network of Nif proteins

1. Four Nif proteins, NifW (NifO) (present in 12 genomes), NifT (FixU) (in
13 genomes), NifQ (in 11 genomes) do not have any paralog. Interestingly,
these sequences are also missing from about half the diazotroph genomes we
have analyzed (30).

2. Eight Nif proteins (NifA, F, H, J, L, M, S, U) are related to proteins in-
volved in other metabolic pathways (Out– or O–paralogs). NifS is related
to a number of proteins for amino acid and carbon metabolisms. NifJ, a
multidomain Pyruvate:ferredoxin (flavodoxin) oxidoreductase, is part of a
large multigene family whose representatives belong to distinct metabolic
processes. However it is possible that NifJ is required for nitrogen fixation
only in some diazotrophs (e.g. in Erwinia carotovora), because orthologs are
not easily identifiable in several species (data not shown and [39]). Several
proteins involved in Fe–Mo nitrogenase’s cofactor biosynthesis have paralogs
in other similar processes, suggesting an ancestral interconnection between
them.

3. Eight Nif proteins share a significant degree of sequence similarity with
other proteins involved in nitrogen fixation and other metabolic routes (I/O–
paralogs). This group can be further split into two different clusters, the first
one including NifD, K, E, N, and the second NifB, X, Y, V. As expected
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NifE Wolinella

Archaeal NifD

NifD/NifE NifN/NifK

BchY
BchB

BchZ

NifN Anabaena
& Methanosarcina

BchN

Fig. 3. Clusters of NifD,K,E,N showing the evolutionary connection among nitrogen
fixation and photosynthesis

NifD, K, E, N showed sequence similarity with Bch proteins (Figure 3) that
are involved in the biosynthesis of bacteriochlorophyll, supporting the idea
of a common origin for these processes [41]. Similarly, NifV proteins clus-
ter with metabolic proteins (Figure 4). NifB, X, Y are related through a
common domain of about 90 amino acid; moreover, NifB has an additional
SAM domain, found in proteins that catalyze diverse reactions, including
methylation, isomerization, sulphur insertion, ring formation, anaerobic oxi-
dation and protein radical formation. This is confirmed by a bibliographical
data mining: SAM domains are among the most abundant protein-protein
interaction motifs because they are remarkably versatile in their binding
properties. Some identical SAM domains can interact with each other to
form homodimers or polymers. In other cases, SAM domains can bind to
other related SAM domains, to non-SAM domains, and even to RNA. Such
versatility earns them functional roles in myriad biological processes, from
signal transduction to transcriptional and translational regulation [40]. NifV
is related to several widespread proteins: in Table 2 we list the functions
associated to the 9 largest clusters, taken from Figure 4. Table 3 shows some
of the statistics for the original and a clustered network. Particularly in-
formative are the third (skewness) and fourth (kurtosis) moments. Skewness
quantifies the degree of asymmetry of a distribution: when positive the distri-
bution has an elongated tail on the right of the mean. Kurtosis indicates how
much peaked is the distribution; the higher the kurtosis, the more peaked
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IPM-S & (R)-citramalate synthase

IPM-S & HC-S

IPM-S

IPM-S

HMG-CoA lyase

Ketovalerate adolase

IPM-S

Oxalacetate decarboxylase Pyruvate carboxylase

(a) Clustered network of NifV related proteins.
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(b) Entropy and number of clusters in function of the granularity
parameter.

Fig. 4. a) Clustered network of NifV related proteins. Clusters obtained with r=3.6
and, inbox r=6.4. NifV enzymes are Homocitrate synthases (HC-S); they are evolution-
arily related to Isopropylmalate synthases (IPM-S), (R)-citramalate synthases (CimA
in Table 2), HMG-CoA lyases, Ketovalerate aldolases, Oxalacetate and Pyruvate car-
boxylases. The IPM-Synthases moreover belong to different groups; b) Clustering en-
tropy (squares, S) and number of clusters in function of the granularity parameter
(diamonds, N).
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Table 2. Summary of the clustering procedure on NifV-related sequences. Granularity
parameter (r) was 6.4, total number of clusters was 20. Cluster identifiers refer to the
5 clusters obtained at r=3.6, corresponding to the entropy minimum in the chart of
Figure 4b. The procedure started from a full connected graph of 180 proteins coming
from 55 different organisms comprising all diazotrophs. Abbreviations used: Id. is the
cluster name; Nr Org. is the number of different organisms present in a given cluster;
Nr Nodes is the total number of proteins in a given cluster; Avg. Nr nodes and Var
are the average number of proteins of a given cluster coming from the same organism
and the corresponding variance, respectively; Functions indicates the main function
assigned to the proteins of a given cluster; we also report the percentage of proteins
with that assignment.

Id. Nr Org. Nr Nodes Avg. Nr nodes Var Functions
A 15 15 1.00 0.00 100% IPMS
B1 25 25 1.00 0.00 100% IPMS
B2 8 15 1.87 0.69 87% IPMS + 13% CimA
B3 17 20 1.18 0.28 55% HCS + 35% IPMS
B4 22 22 1.00 0.00 100% IPMS
C 14 16 1.14 0.29 75% HMG CoA lyase
D 4 8 2.00 4.00 100% 4-H-2-K aldolase
E1 16 17 1.06 0.06 100% Oxalacetate decarboxylase
E2 11 11 1.00 0.00 100% Pyruvate carboxylase

Table 3. Summary statistics calculated for NifV sub-network before and after cluster-
ing. Var. (corr.) indicates the Bessel correction of the variance. Skew. and Kurt. are
the skewness and kurtosis of the distribution. See text for details.

Original (diameter=3)
Mean Var

(corr.)
Var. Skew. Kurt.

Average Distances: 1.302 0.033 5.672 1.259 4.068
Betweenness Centrality: 25.977 344.529 59258.96 0.749 0.0885
Clustering Coefficients: 0.830 0.005 0.897 0.978 0.011

After MCL clustering with σ=0.15; r=2.0 (diameter=2)
Average Distances: 1.276 0.044 7.645 0.985 -0.181
Betweenness Centrality: 23.722 3691.506 634939 2.181 2.790
Clustering Coefficients: 0.963 0.009 1.517 -2.181 2.790

the distribution. The table shows that the ”average distance” distribution
of the original network is concentrated around the mean (high kurtosis) and
has a long right tail (positive skewness). The clustered network has similar
average distances but the distribution is less asymmetric and less peaked
around the mean. Betweenness is quite normal in the original network, while
it is highly peaked around the mean with a long right tail in the clustered
example. Clustering coefficients of the original network are close to a nor-
mal distribution of identical mean and variance while the distribution of the
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clustered network is highly peaked around the mean but with a long left tail
(negative skewness).

4 Conclusions

In this work we described a procedure that uses Blast e-values or scores to
build a similarity matrix. Then a clustering algorithm and statistical analysis on
networks extract the relevant information. We showed two case studies: plasmid-
encoded genes and Nif proteins. Considering the rapid spreading of plasmids in
bacterial populations and their dispensability, the analysis of plasmids suggests
that the most represented functions might be considered a sort of fingerprint
of the selective pressures acting in a given environment. The hubs were trans-
posases; the other functions of the hub proteins are indeed indicative of the
selective forces acting on these three pathogens. The presence of proteins in-
volved in antibiotic resistance, virulence / pathogenesis or plasmid replication,
partition, stabilization and transfer, suggests strong selective pressures acting
on these microorganisms for a content devoted to host’s protection, plasmid
maintenance and spreading, in agreement with their life–style (most of them
are continuously attacked by a set of different drugs because they are agents of
several diseases). The network obtained have power-law distribution of degree of
connectivity (Table 1), suggesting that plasmids might evolve through a prefer-
ential attachment, i.e. a greater probability of horizontal transfer or duplication
rate of the most represented genes in the network.

In the second case study, Nif proteins, we found large clusters to be partitioned
into several sub-clusters by progressively increasing the granularity parameter
of the MCL. The sub-clusters at the minimum entropy (Figure 4b) are quite
homogeneous with respect to the assigned biological function of nodes (Table 2).

In conclusion, our strategy aims at a deep characterization of sequence simi-
larity networks through the calculation of several quantities related to network
topology. These characterizations might also be used for comparisons between
different datasets or organisms.

Finally we want to comment on the work in progress. Note that the clustering
may show that some graphs are occurring more often than others and that
there might be correlations between the presence of different clusters. These
subgraphs, which are building blocks of a network, may be defined network
motifs in analogy with sequence motifs, which are sequences occurring more
often than random sequences. Network motifs may be identified by computing
the statistical significance for each subgraph, i.e. the p-value.
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Abstract. Identification of genes that share common biological functions is 
one of the main objectives in molecular biology. The present work focuses on 
developing an appropriate mechanism for discovery of such genesets from mi-
croarray data. We introduce a conceptual property ‘cohesion’ among genes as 
representative of common biological function, under influence of which a 
geneset behave coherently. Such genesets are marked as ‘cohesive’. Depend-
ing on “100% cohesion” equivalence relation, the entire set of associated 
genes is decomposed into a number of disjoint equivalence classes, each with 
unique behavior. The equivalence classes form several disjoint affinity groups, 
members within a group having pair-wise direct interaction. Each group may 
be called a cohesive gene cluster. A data mining technique for cohesive gene-
set discovery is developed and applied on expression data to discover intra-
cluster gene relationships for extracting natural coherent genesets. Experi-
ments with some cancer datasets discover thousands of long confident patterns 
within reasonable time, showing its superiority over classical association dis-
covery techniques. Results can provide important insight into molecular biol-
ogy and biomedical research. 

Keywords: Association rule, cohesion, direct interaction, gene cluster, microar-
ray mining. 

1   Introduction 

DNA microarray technology opens up the scope of studying genes’ collective behavior 
and analyzing different groups of genes to have insight into common biological proper-
ties that bind them together. Scopes are further improved in providing series of ex-
perimental results on samples under different cellular and physical conditions. It pro-
duces expression profiles of thousands of genes in a single experiment, widely known 
as gene expression data. Similar experiments on hundreds of samples of identical spe-
cies under the same physical and biological conditions are usually conducted to capture 
possible variations in expression levels of genes under unchanged environments. Such 
datasets are particularly important in studying gene regulatory pathways. 

Series of similar experiments yield a dataset comprising of thousands of columns 
and hundreds of rows. While a row represents expression levels of large number of 
genes of the cell under study, a column represents expression pattern of a particular 
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gene distributed over hundreds of the same cellular samples under identical condi-
tions. Apart from experimental errors, large variation in expression levels of particular 
genes over the experimental samples is an indication of change in regulatory function 
while external physical condition remained unchanged. Expression data on the same 
cell type but under different physical or biological conditions like heat treatment or in 
diseased state are valuable to study their effect on genes’ function. Analysis on such 
dataset can yield an insight into temporal behavior of genes’ activity, individual or 
collectively.  

Thus, gene expression profiles become an enormous source for extracting knowl-
edge on gene function, their inter-dependence and co-occurring. Exploring the data-
sets is important for finding an insight into gene regulation mechanism, metabolic 
pathways and detecting deviations in gene expression patterns or gene network under 
diseased conditions. Findings of such analyses can provide insights into molecular 
biology and biomedical researches. While such datasets are valuable source for 
knowledge extraction on gene functions, high level of experimental errors generates a 
motivation on utilizing the datasets for studying genes’ collective behavior, rather 
than individual. Hence, extracting sets of genes that have high confidence in co-
existence is a logical step for discovery of knowledge on gene’s function from such 
datasets.  

Association Rule Discovery (ARD) [1] can be a foundational technique in predict-
ing cellular control on expression of their genes and intra-cellular activity by deci-
phering functional relationships among genes [7]. An association rule is an expression 

A ⎯⎯→⎯ μσ , C, where A, C are itemsets and A∩C=∅, A and C are called antecedent 
and consequent respectively. Support σ of the rule is given by the percentage of re-
cords containing the itemset A∪C. Confidence μ of the rule is the conditional prob-
ability that a record, containing A, also contains C and is given as μ=σ(A∪C)/ σ(A). 

A rule with genes g1, g2, and g3 may be of the form: g1 [+] ⎯⎯→⎯ μσ , g2 [+] and g3 [-]. 
This means when gene g1 is expressed, gene g2 is expressed and gene g3 is repressed 
with a certainty factor of μ% and they appear together in σ% of total sample experi-
ments. 

ARD is an unsupervised data mining technique that provides means to explore in-
teresting associations constrained by a minimal frequency of occurrence. While this 
might be an effective idea from efficiency perspective of algorithms, two important 
drawbacks are prominent. First, satisfying minimal frequency constraint is not an 
essential criterion for a rule to be interesting. The rule {Down’s syndrome} → 
{trisomy 21} (chromosomal defect) is almost 100% confident but with only around 
0.1% frequency and hence may not meet the criteria. A lower choice for minimal 
frequency would entrap an algorithm into combinatorial explosion of patterns. Fur-
thermore, in a set of millions of rules, finding the really interesting ones poses another 
challenge. Second, every application domain has its own natural properties that bind 
the associated items into several affinity groups. An algorithm must regard those 
properties in order to discover natural and reliable associations. Unfortunately, classi-
cal support-based techniques do not. Items in such a group tend to appear mostly 
united rather being scattered. So, it does not matter how many times they appear to-
gether. What really matters is how confidently they appear together. We introduce a 
new concept cohesion of itemsets that keeps track of this information. It is defined as 
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the ratio of number of records containing the itemset to the number of records con-
taining any non-empty subset of that itemset.  

Cohesive patterns are much more efficient in predicting any consequence. Con-
sider the rule {malaria}→{weakness, fever}. As fever and weakness are one of the 
most prevalent symptoms, the consequent itemset is not at all cohesive. And indeed, 
weakness and fever cannot diagnose to malaria. Consider another rule {hepati-
tis}→{anorexia, jaundice, hepatomegaly}. To some extent, the symptoms at the 
consequent are cohesive and together they can confidently diagnose to hepatitis. 
Thus, cohesive patterns produce more informative and acceptable rules. We argue 
that only such rules are worthy to be considered in any important decision making 
system. Thus, cohesion will be instrumental in discovery of natural binding proper-
ties prevailing in the application domain for which data is collected. Further, it 
solves the problem of exploring confident associations that are not constrained by 
minimal frequency.  

Classical ARD concentrates only on high-support and high-confidence rules for 
sake of its scalability. Thus, highly confident rules remain unearthed for their low 
support [9]. Count of such rules in a microarray dataset might be enormous, carrying 
valuable insight about genetic interaction. Setting extremely low values of support, 
e.g., 0.1% to 12% to catch such rules is not the solution. It causes gene pattern and 
rule explosions as their cardinalities are bounded by 2n and 3n, n being the number of 
frequent genes. Choosing the right set of rules from such the huge for biological in-
terpretation creates a problem. Above all, as the process is knowledge discovery, 
setting parameters for unknown target seems futile. Thus, cohesive itemset mining 
will be more suitable for high confidence geneset discovery from microarray data. 

Microarray datasets typically contain a handful few experiments (rows), each de-
scribed by the activity levels of thousands of genes (columns). Dimensionality of such 
datasets poses great challenge to the existing family of frequent itemset mining algo-
rithms [2][8][11][12]. These support-based techniques restrict their search space by 
taking as few as 5% of the entire set of genes into account. As a result, most of the 
potential interesting gene relationships get slipped away. A new family of support-
based row-enumeration and closed pattern mining algorithms [10][4][6][5], designed 
specially for gene expression analysis, perform significantly better than the previous 
ones. However, support-dependency of such algorithms still creates a problem in 
discovery of numerous low-support high-confidence associations which may not have 
been hypothesized yet. 

Differently put, high confidence of a rule indicates a high value for the joint prob-
ability that a record contains the consequent, given that it contains the antecedent; no 
matter how many times both antecedent and consequent appear together. That is, we 
have to look for a new property that can reveal information on tendency of coexis-
tence of items within a set. We term this property as cohesion of an itemset. 

Gene expression data usually produces a number of sets that exhibit 100% cohe-
sion. This indicates that all genes within a set appear as a group with their respective 
expression levels. None of them appear in any experiment without being into its 
group. Such a set behaves as a single entity producing several 100% confident rules. 
We prove that “100% cohesion” is an equivalence relation that decomposes the entire 
gene set into a number of disjoint equivalence classes. Thus effectively, number of 
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genes that are to be involved in the mining process reduces to the number of different 
equivalence classes. 

We propose a notion of direct interaction between a pair of genes. Based on the 
idea, genes are classified into several affinity groups, gene clusters. All possible pairs 
within such a cluster have direct interactions, ensuring that a cluster contains mostly 
inter-dependent genes. 

Finally, we develop a new cohesion-based association mining algorithm dCAR-
DIAC1 and apply it within each cluster for generating cohesive patterns which are the 
gateway in discovery of confident gene associations. 

2   Cohesion: A Concept 

Let I = {1, 2,…, m} be a set of items and T = {1, 2,…,n} be a set of transaction iden-
tifiers or tids. For an itemset X, t(X) is the set of all tids containing X as a subset. 

Definition 1. (Cohesion) Cohesion of an itemset X is a property prevailing among its 
items that can  mathematically be defined as the ratio of cardinalities of two sets viz. 
the set of all tids containing X as a subset and the set of all tids containing at least one 
item x of X as a subset and is given by, 

ξ ( ) =X ( ) ( )xtxt XxXx ∈∈ ∪∩  . (1) 

Definition 2. (Cohesive itemset) An itemset X is called cohesive, if ξ(X) is no less 
than pre-specified threshold. 

So, cohesion of an itemset X needs both Xx∈∩ t(x) and Xx∈∪ t(x) to be computed. 

For the sake of conciseness, we choose λ(X) = Xx∈∩ t(x) and ρ(X) = Xx∈∪ t(x). 

Lemma 1. Cohesive itemsets retain downward closure property [2]. 

Proof.  For all itemsets X and Y such that X ⊆Y, |λ(X)| ≥ |λ(Y)| and |ρ(X)| ≤ |ρ(Y)|. 
So, ξ(X) = |λ(X)| / |ρ(X)| ≥ |λ(Y)| / |ρ(X)| ≥ |λ(Y)| / |ρ(Y)| = ξ(Y). So, given a threshold 
for cohesion, if an itemset Y is cohesive, then so are all its subsets. Hence, all subsets 
of a cohesive itemset must also be cohesive and downward closure property follows. 

3   Association Discovery Using Cohesion 

Mining cohesive genesets in microarray data is carried out in three sub-steps. 

3.1   Identifying “100% Cohesive” Genesets 

It has been noticed that microarray datasets generate several patterns that are quite 
infrequent but their cohesion is 1 (100%). Interestingly, some of the patterns contain 
30 or 40 or even more genes. Due to downward closure property of cohesive item-

                                                           
1 dCARDIAC stands for diffset-based Confident Association Rule Discovery using Itemset 

Cohesion; the second ‘A’ is gratuitous. 
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sets, all non-empty subsets of such a pattern must also have cohesion equals to 1. So 
any cohesive itemset mining algorithm, that attempts to mine such patterns, must 
explore their power set which involves mining as many as 230 or 240 patterns. The 
question naturally arises how to explore such important associations without generat-
ing power sets. 

We define a relation R as follows: two elements gi and gj are R-related if t(gi) = 
t(gj). This implies {t(gi) ∩ t(gj)} = {t(gi) ∪ t(gj)} and ξ(gigj) = ⎜t(gi) ∩ t(gj)⎥ / ⎜t(gi) 
∪ t(gj)⎥ = 1 . Hence, giR gj implies cohesion of (gigj) is 1. 

It can easily be proved that ‘=’ relation between two sets is reflexive, symmetric, 
transitive and hence equivalence. The relation R therefore decomposes the entire 
geneset into several disjoint equivalence classes. Due to downward closure property, 
all itemsets within such a class have cohesion equals 1. Such classes produce several 
essential gene associations with 100% confidence. As mining proceeds, each of these 
classes is treated as a single entity with an identifier and a tidset. Genes within a class 
appear to be bound by some common biological property. 

3.2   Cluster Formation 

As stated earlier, there possibly exist some common biological properties that bind a 
set of genes together. Under different cellular conditions, expression levels of these 
genes are much inter-related compared to other genes that are not within that group. 
From this point of view, we partition the entire set of equivalence classes into several 
clusters, each containing a number of genes having pair-wise direct interaction. Im-
portant intra-cluster associations are mined using cohesive itemset discovery algo-
rithm. Clustering entire geneset has some advantages. Let ξ1, ξ2,…, ξn be threshold 
cohesions for different clusters for mining intra-cluster cohesive patterns. These 
thresholds are largely dependent on whether a cluster is tightly bound or loosely 
bound. For a tightly bound cluster, a lower choice for threshold cohesion involves 
innumerable patterns, resulting in storage scarcity. For a loosely bound, a higher 
choice does not explore significant associations. Had it been a single cluster contain-
ing all genes, threshold for cohesion must be set to max (ξ1, ξ2,…, ξn) to avoid storage 
scarcity. As a result, several gene relations at moderate cohesion would remain in 
dark. We exploit the concept of clustering to keep this possibility alive by choosing 
different thresholds for different clusters. Inasmuch, it may be noted that some rela-
tions between genes that belong to different clusters may be skipped, but that is very 
nominal as most of the prominently expressed genes are captured into clusters. In fact, 
ideal situation would be keeping all genes/proteins of a dataset in same cluster and 
start mining. But this is just infeasible due to huge memory requirement. We must 
dissociate the dataset in several clusters to unearth information. Success lies in how 
intelligent the clustering technique is. 

Definition 3. (Direct interaction) Two genes gi and gj have direct interaction  

between them if gi

1μ
→ gj and gj

2μ
→ gi, together written as gi

1

2

μ

μ
↔ gj, μ1 and μ2, being 
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confidences of the two associations, are no less than pre-specified threshold μ. Also 
the product of μ1 and μ2 is no less than another pre-specified threshold τ. 

Associations, with confidence below 50%, have more counter examples than ex-
amples. Therefore choice of μ should not be below 50%. A suitable choice for τ dis-
regards those associations for which both μ1 and μ2 are smaller, close to μ. A gene is 
allowed to enter a cluster if it has direct interaction with all cluster members. Using 
direct interaction in gene clustering ensures several confident associations. The fol-
lowing lemma justifies our claim. 

Lemma 2. Let their exists two direct interactions gi

1

2

μ

μ
↔ gj and gi

3

4

μ

μ
↔ gk. Then, there 

must exist an association gi ⎯⎯⎯ →⎯ −+ 131 μμ gjgk. 
 
Proof. Consider only the forward associations. 

gi

1μ
→ gj ⇒ gi

11 μ−

→ gj′ ⇒ |t(gigj′)| / |t(gi)| = (1-μ1) ⇒ |t(gigj′)| = (1-μ1) |t(gi)|. Similarly, 

gi

3μ
→ gk ⇒ gi

31 μ−

→ gk′ ⇒ |t(gigk′)| / |t(gi)| = (1-μ3) ⇒ |t(gigk′)| = (1-μ3) |t(gi)|. So, 
|t(gigj′) ∪ t(gigk′) | ≤ |t(gigj′)| + |t(gigk′)| = (1-μ1+1-μ3) |t(gi)|. So, |t(gigj′) ∪ t(gigk′)| / 
|t(gi)| ≤ (2-μ1-μ3). So, 1-(|t(gigj′) ∪ t(gigk′)| / |t(gi)|) ≥ (μ1+μ3-1). Therefore, |t(gigjgk)| 
/ |t(gi)| ≥ (μ1+μ3-1). Hence there must exist an association gi →gjgk with confidence 
lower bound by (μ1+μ3-1). 

For a choice μ1=0.9 and μ2=0.8, confidence of the rule gi →gjgk is greater or 
equal to (0.9+0.8-1) = 0.7. Therefore, a gene which has direct interactions with all 
cluster members, gives a number of important associations involving them. 
Choosing the concept of reversible association in defining direct interaction ensures 
another important aspect: cohesion of the geneset {gigjgk} has also a lower bound 
(this is a theoretically proven result).  High cohesion ensures that the associated items 
are mostly united rather being scattered. Hence, the associations they produce have 
high acceptability. 

3.3   Intra-cluster Association Mining 

We now introduce a new vertical mining algorithm dCARDIAC for cohesive itemset 
mining. Let X ={x1, x2,…, xn} be an itemset. We follow the notation X′ for {x1′, 
x2′,…, xn′}. If t(X) is the set of tids containing X as a subset, t(X′) is the set of tids 
containing X′ as a subset i.e. the set of tids containing none of x∈X as a subset. For an 
itemset X, 

ρ(X) = T \ λ(X′) . (2) 

⎥ ρ(X)⎜= n − ⎥λ(X′)⏐ . (3) 

Proof. The two sets ρ(X) and λ(X′) are mutually disjoint while their union is the en-
tire dataset T. Therefore equation (2) follows directly. 
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As λ(X′) ⊆ T, ⎥T \ λ(X′)⎟ =⎥T ⎜ − ⎥λ(X′)⎟ = n − ⎥λ(X′)⎟. Hence equation (3) fol-
lows. 

Lemma 3. For all itemsets X, Y such that Y ⊇X, λ(Y′) ⊆ λ(X′). 

Proof. Since, Y ⊇X, ρ(Y) ⊇ ρ(X). So, T \ ρ(Y) ⊆ T \ ρ(X). Hence, λ(Y′) ⊆ λ(X′). 
So, instead of maintaining the set ρ(X) of monotonic increasing cardinality, it is wise 
to maintain λ(X′) which is of monotonic decreasing cardinality. This equally serves 
the purpose. 

We now turn our attention to the diffset-based algorithm dCARDIAC for cohesive 
itemset mining. Diffset of a k-itemset is the set of tids, obtained by difference of its 
tidset from the tidset of its (k-1)-length prefix. So if P be a prefix and x be an item, 
with t(P) and t(x) being the tidsets respectively, diffset of the itemset Px, d(Px) = 
t(P) \ t(x). If P is null set, t(∅) is simply T. So, diffset of an item X, d(x) = T \ t(x) 
which is simply the set of tids not containing x as a subset.  

In a diffset-based algorithm, all that are maintained are only the diffsets of cohe-
sive itemsets instead of tidsets. So how is to compute diffset of an itemset from the 
diffsets of the two generating itemsets? 

d(Pxy) = d(Py) \ d(Px) . (4) 

⎟λ(Pxy) ⎢ = ⎟λ(Px) ⎢ - ⎟d(Pxy) ⎢. (5) 

d(P′x′y′) = d(P′y′) \ d(P′x′) . (6) 

⎟ρ(Pxy) ⎢ = ⎟ρ(Px) ⎢ + ⎟d(P′x′y′) ⎢. (7) 

Proof. Let tid be a transaction identifier. By definition, 
  d(Pxy) = {tid: Px∈tid and Py∉tid} 

 = {tid: Px∈tid} \ {tid: Py∈tid} 
         = t(Px) \ t(Py) 
           = {tid: P∈tid and Py∉tid} \ {tid: P∈tid and Px∉tid} 
           = {t(P) \ t(Py)} \ {t(P) \ t(Px)} 
           = d(Py) \ d(Px)                    [Eq. (4) follows]. 

⎟λ(Pxy) ⎢ = ⎟{tid: Pxy∈tid}⎢ 
             = ⎟{tid: Px∈tid}⎢− ⎟{tid: Px∈tid and Py∉tid}⎢ 

           = ⎟λ(Px) ⎢ − ⎟d(Pxy) ⎢                  [Eq. (5) follows]. 
 

Eq. (6) can be proved in the same way as that of Eq. (4) only by replacing the prefix 
and items by their complements. 

         ⎟ρ(Pxy) ⎢= n − ⎟λ(P′x′y′) ⎢              [from eq. (3)] 
             = n − {⎟λ(P′x′) ⎢ − ⎟d(P′x′y′) ⎢}   [from eq. (5)] 
             = n − ⎟λ(P′x′) ⎢ + ⎟d(P′x′y′) ⎢ 
             = ⎟ρ(Px) ⎢ +⎟d(P′x′y′) ⎢              [Eq. (7) follows] 
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Below in Fig. 1, we present dCARDIAC algorithm for cohesive itemset mining. 

dCARDIAC([P],mincohesion) 
for all Xi ∈[P]do 
  for all Xj ∈[P]⎪ j > i do 
    X = Xi ∪ Xj; 
    d(X)= d(Xj)\d(Xi);⎟λ(X)⎜ =⎟λ(Xi)⎜−⎟d(X)⎜; 
    d(X ′)=d(Xj′)\t(Xi′);⎟ρ(X)|=⎟ρ(Xi)⎜+⎟d(X ′)⎢; 
    ξ(X)=⎟λ(X)⎜/⎟ρ(X)⎜; 
    if ξ(X) ≥ mincohesion 
      S = S ∪ X; 
  if S ≠ ∅ then call dCARDIAC(S,mincohesion) 

Fig. 1. The dCARDIAC algorithm 

Cohesion aims at discovering the vital associations by generating as few genesets 
as possible. But that does not necessarily mean it is incapable of exploring as much 
associations as support measure does. The following lemma justifies it. 

Lemma 4. Under same threshold for cohesion and support, the set of all cohesive 
itemsets is a superset of the set of all frequent itemsets. 

Proof For an itemset X, ξ(X) =⎥λ(X)⎜/⎥ρ(X)⎜ ≥⎥λ(X)⎜/ |T| = σ(X) as ⎥ρ(X)⎜is upper 
bounded by |T|. So, with same threshold for cohesion and support, all frequent item-
sets are cohesive. But there possibly exists cohesive itemsets that are not frequent. For 
a dataset count of such itemsets can be large enough as will be shown in the experi-
mental section. The additional itemsets that come to the picture actually contribute to 
the low support high-confidence rules.  

3.4 Data Preparation and Illustration of dCARDIAC Algorithm 

Fig. 2a presents a sample matrix for gene expression data in its traditional format. 
The rows denote different cellular conditions while the columns denote different 
genes. M[t,g] contains a real number which is the quantitative expression for gene g 
under treatment t. Here, the example contains only positive integers but it may  
 

 

 
       Fig. 2a. Sample matrix for gene expression data             Fig. 2b. Processed boolean matrix 

Tid a    b    c    d     e    f    g  
1 1    0    1    0    1    0    0 
2 1    1    1    1    0    0    0 
3 0    1    1    0    0    1    1 
4 0    0    0    0    1    1    1 
5 1    1    1    1    0    0    0 
6 0    0    0    0    1    0    1 

Tid  a        b        c        d        e         f        g 
1 65      32      72      30     54       19     35 
2 70      48      85      44     33       15     28 
3 46      56      78      27     39       27     41 
4 38      29      53      22     59       32     47 
5 57      45      92      37     26       12     21 
6 35      25      41      19     64       19     52 
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                          Tidset Database    Diffset Database 

a1     b1     c1     d2     e1     f2    g1     a1     b1     c1     d2     e1     f 2    g1 

       1       2      1       2      1     3     3           3      1       4      1      2      1      1 
       2       3      2       5      4     4     4           4      4       6      3      3      2      2 
       5       5      3               6            6           6      6               4      5      5      5 
                        5                                                                   6              6 

 
 
 

 
 
 
 
 

ab2 ac1 ad2 ae4 af4 ag4 bc1 bd2 be4 bf4 bg4 cd2 ce4 cf4 cg4 de4 df4 dg4 ef4 eg1 fg2 
        1          1    2    1   1          3    2    2    2    1    2    1    1    2    2    2    1   1     
                          5    2   2                3    5    5    3    3    2    2    5    5    5    6 
                                5   5                5                      5    5    5 

 
        3                4    1    1    1         1    2    4          4    4    4    1    3    3    3    3    6 
                          6    2    2               4    5    6          6          6    4    4    4 
                                5    5               6                                        6          6 

 
 
 
 
 
 
 

abc2       abd2       acd2       bcd2       efg4 
1 3 

                                  
                                 

 
                                                                abcd2          1 − cohesive and frequent 
                                                                                   2 − cohesive but not frequent 
                                                                                   3 − frequent but not cohesive 
                                                                                   4 − neither cohesive nor frequent 

Fig. 3. Illustration of dCARDIAC algorithm with vertical format of processed dataset 

contain negative values as well indicating under activity of a gene. Activity levels of 
the genes are converted to two categorical values, either expressed or repressed. So 
after preprocessing, number of items in a dataset can be at most double the number 
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of genes involved in the experiment. This is an essential preprocessing step for an 
ARD algorithm to take over. 

We adopt “max minus x%” technique, presented in literature [3], to convert each 
quantitative expression into boolean value. For a particular gene gi with maximum 
expression level max, an expression level greater or equal to (1-x/100)∗max is as-
signed ‘1’ indicating presence of gene gi. Otherwise, it is assigned ‘0’ indicating ab-
sence of gene gi. Choosing x=25%, the dataset in Fig. 2a is converted into the boolean 
matrix in Fig. 2b. 

Fig. 3 illustrates the dCARDIAC algorithm, threshold for cohesion being set to 
50%. It starts with the vertical format of the processed boolean datasets in Fig. 2b, 
either with tidset or with diffset format. The superfix for each itemset indicates its 
status which is defined below. We see that itemset abcd is present in 2 out of 6 re-
cords. So, it is not frequent. But its cohesion is 2/4 i.e. 0.5. Therefore abcd is cohe-
sive and so are all its subsets owing to downward closure property. Notice that the 
set of cohesive itemsets is a proper superset of the set of frequent itemsets. The addi-
tional itemsets actually contribute to the high confidence associations which have 
below 50% support. In experimental section, we will see that count of such low sup-
port and high confidence rules might be greatly which are mined out efficiently us-
ing cohesion. 

4   Experiment and Analysis 

Experiments have been conducted on a 2GHz AMD Athlon PC with 1GB primary 
memory. Algorithms are implemented in C++ and run on Debian Linux platform. For 
performance evaluation purpose, we have chosen two cancer datasets. The Ovarian 
Cancer (OC) dataset is for identifying proteomic patterns in serum that distinguish 
ovarian cancer from non-cancer cases. It contains 253 samples, each described by 
activity level of 15,154 proteins. In two normalization techniques “max – 30%” and 
“max – 50%”, average record lengths are 1360.16 and 4472.01 respectively. The OC 
dataset has no negative activity level. Therefore number of different items after proc-
essing is same as that of number of associated proteins. The Prostate Cancer (PC) 
dataset contains 157 samples, each described by activity level of 12600 proteins. 
Average record lengths are 614.185 and 1398.56 in two normalization techniques 
“max – 30%” and “max – 50%” respectively. With two category levels for each pro-
tein (one for +ve, another for –ve activity level), number of different items in PC 
dataset becomes 22,989. 

Result of the step for identifying equivalence classes is tabulated in Fig. 4. Dimen-
sion of a dataset after processing has been indicated within bracket. For OC, number 
of different items is 15,154 which incidentally same as that of number of different 
proteins associated to the dataset, reason being discussed above. In contrast to the OC 
dataset, PC contains both +ve and –ve activity levels. Hence in PC dataset, the figure 
is 22,989 which is almost double as that of number of proteins associated to the data-
set. The figure may not be exactly double since every gene may not have both +ve 
and -ve activity levels. In OC dataset, number of different classes reduces to 9810 and 
12955 in two respective normalization techniques. In PC dataset, number of different  
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Ovarian Cancer (253×15,154) Prostate Cancer (157×22,989) Normalization 
technique # equiv. 

class 
class size 
(1st three) 

time 
(sec) 

# equiv. 
class 

class size 
(1st three) 

time  
(sec) 

“max – 30%” 9810 130, 82, 58 7.08 11358 1454, 987, 242 16.62 
“max – 50%” 12955 81, 45, 18 8.01 16434 873, 204, 8 21.13 

Fig. 4. Performance of 100% cohesive class identification technique 

equivalence classes is 11358 and 16434 respectively. For both datasets, cardinalities 
of the first three equivalence classes have been shown, both for the two techniques. 
Effect of the technique can easily be understood just by seeing high cardinality of a 
class. 

Fig. 5a and Fig. 5b show performance and number of different clusters, threshold 
confidence (i.e. μ in definition of direct interaction) has been decremented step-wise. 
The value of τ has been chosen to the average of μ and μ2. A higher choice for μ 
generates several clusters with less number of genes within each. A lower choice will 
tend the genes to belong to same cluster, cluster number becomes extremely less. 
Appropriate choice for μ is largely dependent on the application dataset. In subse-
quent experiments, we choose μ as 0.7 and 0.5 for OC and PC datasets respectively. 
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                  Fig. 5a. Performance study                                 Fig. 5b. Number of clusters 

For each of the two datasets, we choose two clusters. One is tightly bound produc-
ing numerous long patterns at higher cohesion. Another is loosely bound that does not 
produce so many patterns at higher cohesion. Performance of dCARDIAC algorithm 
for geneset mining in the four clusters has been tested in Fig. 6. In the tightly bound 
clusters of the OC and PC datasets, threshold cohesion cannot be decremented below 
84% and 86% respectively. On the other hand, for the two loosely bound clusters, 
threshold can go down to 65%. Memory runs dry below those thresholds. Had we not 
decomposed the genes into clusters, we could not decrease thresholds cohesion below 
84% and 86% for OC and PC. All patterns, mined below that cut-off cohesion, would 
remain in dark. Results show dCARDIAC is very much scalable. Obviously higher 
memory is required for mining at even lower threshold. 
 



232 R. Bhattacharyya and B. Bhattacharyya 

Tightly bound cluster

0.01

0.1

1

10

96 94 92 90 88 86 84

Threshold Cohesion (%)

R
un

 T
im

e 
(s

ec
)

Ovarian Cancer
Prostate Cancer

       

Loosely bound cluster

0.01

0.1

1

10

95 90 85 80 75 70 65

Threshold Cohesion (%)

R
un

 T
im

e 
(s

ec
)

Ovarian Cancer
Prostate Cancer

 

Fig. 6. Performance of dCARDIAC for two different clusters of each dataset 

Fig. 7 and Fig. 8 show count of genesets and single-antecedent rules respectively 
for those four clusters. Threshold confidence of the rules is set to 80%. Observe count 
of genesets and rules for the tightly bound and loosely bound clusters generated at 
90% thresholds. A tightly bound cluster generates many more patterns and rules than 
a loosely bound cluster at same threshold cohesion. Therefore we cannot decrease 
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Fig. 7. Count of genesets under varying threshold cohesion 

threshold cohesion much for a tightly bound cluster as we can for a loosely bound 
one. The most interesting part is that if we replace cohesion by support measure, not a 
single pattern or rule is generated at corresponding threshold support. Thus, at p% 
threshold cohesion, all patterns and rules that are generated have support below p%. 
To capture those patterns using support-based techniques, threshold support has to be 
set to such a low value that algorithms will take unaffordable space-time. If at all they 
are successful, the rule miner process will be burdened with millions of patterns. Fur-
ther, there will be a big question on acceptability of a discovered rule. So, efficient 
post-processing strategies will be indispensable. As cohesion has a correspondence 
with coexistence of genes, the rules it produces, have high acceptability. 
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Fig. 8. Count of rules under varying threshold cohesion 
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Fig. 9. Count of rules under varying threshold confidence 

Finally, Fig. 9 depicts count of rules under varying threshold confidence, cohesion 
value is indicated within bracket. Again we see that a tightly bound cluster generates 
much more rules than a loosely bound cluster at particular threshold confidence. Still, 
a loosely bound cluster gives many associations at 85% to 90% threshold. The idea of 
cohesive clustering allows them to be discovered. 

5   Conclusion and Future Plan 

The present work addresses the problem of discovering important gene relationships 
in high-dimensional microarray data. Traditional support-based algorithms suffer 
from two foremost drawbacks. First, they overlook confident but infrequent associa-
tions. Second, in order to explore them, mining at very low threshold support either 
fails or generates too many associations that finding the right set becomes another 
difficulty. We propose a new clustering concept and a cohesion-based association 
mining technique. Our method creates scope for plentiful confident associations, both 
frequent and infrequent under classical measure, to be surfaced. Furthermore, high 
cohesion ensures that most of the associations are formed among genes that appear 
collectively rather being individual. This extends the scope of studying collective 
behavior of genes which is helpful in studies on gene function, metabolism and net-
work. Deviations marked in collective properties in cases of diseased samples can 
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play important role in biomedical research. Therefore cohesion-based associations 
have high acceptability in analyzing gene expression data. 

In a subsequent work, we wish to employ the cohesion concept in developing an 
efficient closed pattern mining algorithm. This can be a novel idea in mining confi-
dent and reliable associations without being stuck into non-closed pattern explosion 
problem at early stage. 
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Abstract. Our group has previously used machine learning techniques
to develop computational systems to automatically analyse fluorescence
microscope images and classify the location of the depicted protein.
Based on this work, we developed a system, the Subcellular Location
Image Finder (slif), which mines images from scientific journals for
analysis.

For some of the images in journals, the system is able to automat-
ically compute the pixel resolution (the physical space represented by
each pixel), by identifying a scale bar and processing the caption text.
However, scale bars are not always included. For those images, the pixel
resolution is unknown. Blindly feeding these images into the classification
pipeline results in unacceptably low accuracy.

We first describe methods that minimise the impact of this problem by
training resolution-insensitive classifiers. We show that these techniques
are of limited use as classifiers can only be made insensitive to resolutions
which are similar to each other. We then approach the problem in a differ-
ent way by trying to estimate the resolution automatically and processing
the image based on this prediction. Testing on digitally down-sampled
images shows that the combination of these two approaches gives clas-
sification results which are essentially as good as if the resolution had
been known.

1 Introduction

Fluorescent microscopy is one of the methods of choice for determining the sub-
cellular location of proteins. Methods for automatically analysing subcellular
patterns in fluorescence microscope images have been extensively developed,
allowing such determinations to be performed in a high-throughput, compre-
hensive manner (for reviews see [1,2]).

A very important property of a cell image is its pixel resolution (i.e., how
big the space represented by a pixel is). This depends on the imaging approach
used to collect the image (e.g., for widefield fluorescence microscopy using a
digital camera, it depends on the magnification of the lens(es) used and the
pixel spacing of the camera). Higher resolution images carry more information

M. Elloumi et al. (Eds.): BIRD 2008, CCIS 13, pp. 235–242, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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and detail. However, many considerations may lead to acquisition of images with
lower resolution.

As an outgrowth of our location proteomics work, we have developed a sys-
tem, the Subcellular Location Image Finder (slif), that analyses images (and
their associated captions) from scientific publications [3,4]. This system identifies
figure panels likely to contain fluorescence microscope images and then attempts
to analyse the subcellular patterns within. Of course, these images vary widely
in magnification, and are often annotated with a scale bar from which the pixel
resolution can be inferred. This approach has two problems. First, it relies on
successful identification of both the scale bar in the image and the caption text
that describes its size. We have obtained acceptable, but far from perfect, re-
sults for this task [3]. A more fundamental problem is that not all images are so
annotated, in which case the pixel resolution is unknown.

This work is focused on classifying images whose resolution is unknown. We
start by simply ignoring the problem and feeding images of unknown resolu-
tion into the classification pipeline. We next consider approaches to estimating
resolution from the images.

2 Methods

For the work described here, we used a publicly-available collection of two-
dimensional images of HeLa cells previously obtained by our group using wide-
field fluorescence microscopy [5]. It consists of immunofluorescence images of
9 proteins often used as markers for particular organelles or structures (one each
for the endoplasmic reticulum, lysosomes, endosomes, mitochondria, the actin
cytoskeleton, the tubulin cytoskeleton, and nucleoli, and two for the Golgi com-
plex) as well as parallel images of a dna-binding fluorescent probe to mark the
nucleus. The pixel resolution of the images is 0.23μm/pixel, and out-of-focus
fluorescence in each image was estimated and removed using nearest neighbor
deconvolution.

In order to investigate the effects of lowering the resolution, the images were
digitally down-sampled. All data and software used in this paper are available
from http://murphylab.web.cmu.edu/software.

2.1 Processing Images of Unknown Resolution

The first approach we used was to make the system insensitive to resolution,
either by using features that are insensitive to image resolution or by training
classifiers on examples from different resolutions so that they are able to classify
any incoming image. Our group has previously pursued this line of reasoning
with some success [6].

Some features can be designed in such a way as to make them roughly in-
dependent of resolution (e.g., slf7.5, the ratio of the largest to smallest object
in an image, which, discounting quantization effects, has the same value after
image resampling). However, some informative features cannot be transformed
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so that they become resolution independent. Haralick texture features [7], for
example, are both very informative and resolution dependent.

Whether a classifier can be trained to handle multiple resolutions is an em-
pirical question. We measured how gracefully a classifier degrades when tested
outside its training resolution and found that its performance drops very fast
as the difference between the training and the testing resolutions increases. For
example, a classifier trained on images with a high resolution of 0.23μm/pixel
achieves only 45% accuracy when classifying images at resolution 1.15μm/pixel.
Comparatively, a classifier trained at that resolution can achieve 83%. Thus,
ignoring the issue is not a viable procedure.

An alternative to building a resolution-independent classifier is to train it
on multiple resolutions by including, for each image in the training set, several
down-sampled copies of it. This approach showed better results (data not shown).
For classifiers trained in a small set of nearby resolutions, no accuracy is lost
when classifying images in any of those resolutions. In fact, there seems to be a
small boost from training with multiple copies of the same image, as previously
reported [3].

This approach, however, scales badly to a large set of resolutions. When train-
ing on resolutions which are very different, there is a performance cost. For ex-
ample, a classifier trained on images at both 0.23 and 3.68μm/pixel has only
71% accuracy on the low resolution images, while a classifier trained only on
those images obtains 79%. The classifiers thus obtained also degrade poorly to
resolutions which were not part of their training sets. Furthermore, the increase
in size of the problem has huge computational costs (training a classifier goes
from minutes to several hours).

2.2 Inferring Resolution

We propose a different approach for handling images of an unknown resolution:
infer the resolution, based only on the image. We shall see that this complements
the approach above.

If one was approaching this problem manually, without fast computers, one
could start by counting how many pixels wide the nucleus of the cell appears to
be. Given the knowledge that a real cell has a nucleus of around 20 μm, one can
obtain an estimate of how large a pixel is. This idea underlies the approach we
outline below.

For predicting resolution, we therefore define numerical features which at-
tempt to capture the size of the nucleus. We start by thresholding the image
by retaining only the pixels that are above average. To remove small objects,
which are likely to be noise, we smooth the binarized image with a majority filter
(implemented in Matlab by the bwmorph function). Finally, using the Matlab
function convhull, we compute the convex hull of the resulting binary image. On
the basis of this, we compute:

1. The number of pixels in the hull (the area).
2. The square root of the hull area.
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3. Its perimeter (measured as the number of pixels on the edge).
4. Number of pixels across its semi-major and semi-minor axes. This was cal-

culated as illustrated by Prokop and Reeves [8].

We also include the inverse of all of these features as the resolution scales
linearly with the inverse of the size. These features can be calculated on either
the protein channel or on the dna channel, if available. We refer to this feature set
as slf28 if calculated on the protein image and slf29 if calculated (separately)
on the protein and dna channels.

Algorithms. Starting with the description of the image given by the features,
we attempt to predict the resolution. There are two possible ways to handle this
as a machine learning problem: classification (by deciding on a few representative
classes, for example) or regression. Our initial trials in using classification showed
that, for a large number of classes, the learning algorithms took too long to
converge. Thus, we focus on regression, namely linear regression. Regression
parameters were learned by minimizing the squared error.

Initial tests revealed two properties:

– The range of of the training set is important. A set of parameters learned on
the downsampling values (1, 2, 3, 4, 5, 6) will do very well on test images of
those values, but performance downgrades extremely fast outside of it (e.g.,
an image down-sampled by a factor of 10 will often be predicted to have been
down-sampled by 15). On the other hand, inclusion of intermediate values
is not as important as the range (i.e., training on (1, 2, 3, 4, 5, 6) will do as
well at handling images down-sampled by 3, a class in the training set, as
training on (1, 2, 4, 6) which does not include it).

– Breadth of training data (i.e., the difference between the largest and smallest
resolution in the set) has a negative effect on accuracy.

This suggested a iterated regression scheme. We call Estimate(i; r) the predic-
tion for the resolution of image i given by the estimator trained on the set of
resolutions r. To process an incoming image, we first predict its accuracy on
the whole range of values (p1 = Estimate(i; 1, 2, . . . , N)). A second prediction is
defined by p2 = Estimate(i; p1− 2, p1− 1, p1, p1 + 1, p1 + 2)), where the first pre-
diction is used to lookup the correct parameters for a refined prediction. Finally,
we output the value p̂ = Estimate(i; p2 − 1, p2, p2 + 1).

2.3 Evaluation of Resolution Prediction Schemes

Figure 1(a) shows the results for predictions made using both the DNA and
protein channels for each image. As we can see, the error is very small for high
resolution images, but increases for low resolution ones. This is explained by
quantization effects. Even if the nucleus always measured a perfect 20μm, this
translates to 87 pixels at 0.23μm/pixel resolution, which can clearly be told
apart from the 43 pixels it takes when the images are down-sampled by 2 to
0.46μm/pixel resolution. However, at resolutions lower than 4μm/pixel, a 20μm
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(b) Without dna channel

Fig. 1. Resolution Inference Results. Each dot is the result obtained for one test image,
on the x-axis the original resolution is shown, on the y-axis, we show the output of the
system. The results have not been rounded. A perfect result would be on the diagonal.

object takes only 4 pixels. If we consider that the nucleus size has some varia-
tion itself, it becomes clear that low resolutions cannot be told apart, even in
principle.

When no dna channel is available, one expects the variation in the size of the
hull to be much larger (e.g., in the case of f-actin, the hull will probably contain
the whole cell, while a dna tag will only show the nucleus). To test this, we
measured the coefficient of variation (the observed standard deviation divided
by the standard mean, expressed as a percentage) of our measured features.

Table 1. Coefficient of Variation. The coefficient of variation of the features introduced
in this work, when calculated on the dna and protein channels.

σ
μ

dna
σ
μ

protein

Area 27% 126%
sqrt(Area) 13% 62%
Perimeter 14% 63%
Semi-Major Axis 16% 64%
Semi-Minor Axis 17% 66%

As Table 1 makes clear, the variation in features calculated on the protein
channel is much greater than that calculated on the dna channel. This explains
why the results of inferring resolution based on the protein channel, presented
on Figure 1(b), are not as good as those obtained using the dna channel. We
tested introducing slf7dna features into the regression model, followed by fea-
ture selection with stepwise discriminant analysis and regression on this set of
variables. This brought about a small improvement in the results, but not enough
to match the results with dna features.
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Looking at whether the iterated linear regression scheme makes a difference,
one finds that the errors at the second level are lower than those at the first
level, while the third level brings only a very minor improvement.

We tested the effects of removing half the resolutions used for training, while
still testing on every resolution. This procedure simulates a situation where the
image resolution was not in the training set. Results show that there is no accu-
racy penalty for this (data not shown).

2.4 Classification Pipeline

In the context of our work, the final goal of image processing is the classification
output and the system must be evaluated on its accuracy there. First, we bring
together the elements described above into an integrated classification pipeline.

For each image in our training set, we generated copies of it at lowered reso-
lutions. We trained a classifier for each downsampling level, but included images
from the level above and below it (to make it partially insensitive to resolution
changes). To process an image, we estimate its resolution, and classify it using
the classifier that was trained centred on the estimated resolution.

In order to evaluate our results, given that we expect classification accuracy to
decrease with resolution due to lowered image quality, we compared our system
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Fig. 2. Final Accuracy Results. The solid line shows the accuracy obtained in the
case where the images were processed with resolution known. The dashed line shows
the accuracy obtained when the resolution is inferred from the image, using only the
protein channel, and this estimate is used for further processing. The dotted line shows
the accuracy obtained when the resolution estimate is based on the dna channel.
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against a baseline where the image resolution is known. Figure 2 shows this
comparison. We conclude that our system is capable of overcoming the unknown
resolution problem.

3 Discussion

The slif system (which analyses images from published scientific journals) de-
veloped by our group needs to process images of differing and often unknown
resolutions. Thus, we needed to adapt the image processing pipeline to handle
such images.

We tackled the problem of handling images of unknown resolution by pre-
dicting it. Our solution was based on the calculation of simple features, which
tried to capture the size of the nucleus, when a dna channel was present, or
the size of the cell, when it was not. These features were used for iterated linear
regression. The resulting estimate predicted the resolution very well, if the dna

channel was available as the nucleus provides a known reference point in each
cell. On the basis of only the protein channel, the prediction error increases by
around two-fold.

For integration into the slif system, where images often contain multiple
cells, the images will have to be segmented as a preprocessing step. In the case
where a dna channel is available (usually represented by one of the image’s
color channels), segmentation is easier as nuclei tend to be separable. Since the
whole image is at the same resolution, results from different cells can be averaged
together to obtain the final prediction.
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Abstract. We introduce a new type of workflow design system called
e-BioFlow and illustrate it by means of a simple sequence alignment
workflow. E-BioFlow, intended to model advanced scientific workflows,
enables the user to model a workflow from three different but strongly
coupled perspectives: the control flow perspective, the data flow perspec-
tive, and the resource perspective. All three perspectives are of equal
importance, but workflow designers from different domains prefer differ-
ent perspectives as entry points for their design, and a single workflow
designer may prefer different perspectives in different stages of workflow
design. Each perspective provides its own type of information, visualisa-
tion and support for validation. Combining these three perspectives in
a single application provides a new and flexible way of modelling work-
flows.

1 Introduction

Workflow systems have proven to be successful for modelling both business pro-
cesses [1,2] and life science experiments [3,4,5,6,7,8,9]. The way workflow models
are used in these two areas differs tremendously. Business workflow models are
control flow-oriented (defining the order in which work has to be done), whereas
life science workflow models are data flow-oriented (describing the information
flow between tasks) [10]. However, there is growing demand for a more controlled
approach to workflows in the life science domain [11]. Workflow systems in this
domain lack the facilities to model advanced control structures such as condi-
tional branches and iteration, and miss the functionality to easily switch between
resources (also known as agents) for executing the tasks of workflow models. For
example, we have developed the RShell plugin 1 for Taverna, which is now part
of the standard Taverna distribution [6,12,13]. This plugin provides the RShell
processor for executing R-scripts in a Taverna workflow. Our plugin requires a
local or remote installation of R [14] in combination with RServe [15], which
turns R into an R server. However, such a local installation of R in combination

1 http://www.ewi.utwente.nl/ biorange/rshell

M. Elloumi et al. (Eds.): BIRD 2008, CCIS 13, pp. 243–257, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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with the required R packages are not always available. Therefore, the specifica-
tion of the location of the R server should be postponed until the workflow is
actually executed.

Workflow systems support two tasks: workflow design and workflow enactment
(as workflow execution is often called in the literature). The result of workflow
design is a workflow model or workflow for short. The result of workflow enact-
ment is actual execution of the model in the correct way. Design and enactment
can in principle be performed by different systems as long as there is a com-
mon language to transfer the workflow model from the design system to the
enactment system. In practice, most systems support both tasks.

Scientists have to show that their experiment conforms to quality standards in
their field [16] whereas business modelers have to create consistent, optimized,
and possibly automated business processes [1,17,18]. When workflows become
complex, we need tools to manage this complexity, for example, to perform au-
tomatic validation of workflows. Workflow models enable formal checking from
a control flow perspective (soundness [19]) as well as from a data flow perspec-
tive [20] and resource perspective [17,18]. From a control flow-perspective, a
suitable tool can also simulate the workflow to give the designer an idea of the
course of events and the flow of data through the system. Workflow models,
and diagrams in general, are very suitable as visualisation and communication
means [21,17,22]. However, most workflow design systems mainly focus on struc-
turing and connecting tasks; the visualisation aspect often gets little attention.
Workflow visualisation is not limited to showing dependency relations between
tasks, but can also show the types of data that flow between the tasks and what
types of resources are able to perform the tasks. In existing systems, these dif-
ferent aspects (if supported at all) are often combined in a single diagram which
results in cluttering of information [23]. This is counterproductive; if anything,
visualisation should advance rather than hinder understanding.

We introduce e-BioFlow, a workflow design system that relies on an exist-
ing system to have the workflow enacted. It is available under the GNU General
Public Licence through sourceforge 2. E-BioFlow enables the user to model work-
flows from the three mentioned perspectives previously. E-BioFlow is inspired by
the context of scientific collaborative environments, such as the e-BioLab [24].
The workflow system enables scientists to describe tasks in multidisciplinary life
science experiments [25]. Workflow models for these types of experiments need
to be flexible with respect to resources, which can be web services, scientists or
machines in the laboratory. The models made by means of E-BioFlow can be en-
acted by the open-source workflow system Yawl [26]. In the next section, we will
discuss the requirements of a workflow design system for modelling processes.
After that, we will introduce our approach, e-BioFlow, the three perspectives it
provides, and how these perspectives are related. The benefit of these perspec-
tives will be illustrated using an example of a workflow that performs a simple
sequence alignment. Our approach will be compared to related work and we will
end with a discussion.

2 http://sf.net/projects/e-bio-flow



E-BioFlow: Different Perspectives on Scientific Workflows 245

2 Perspectives of a Workflow Model

Workflow models are often not designed for a single case but describe types of
cases [18]. Each case is unique; cases can differ in the way tasks are executed,
the data that flows between these tasks, but also the resources that execute the
tasks. Therefore, a workflow model should provide a perfect balance between
generalisation over the case type and adaptation to the specific cases.

Van der Aalst [26] and Jablonski and Bussler [17] distinguish three perspec-
tives on workflows:

Control flow perspective: Tasks can seldom if ever be performed in an ar-
bitrary order. The control flow perspective defines dependencies between
tasks and the way tasks will be executed (sequential, parallel, conditional or
iterative).

Data flow perspective: Tasks can consume and produce information. The
data flow perspective defines these producer/consumer relations between
tasks.

Resource perspective: Tasks can often be executed by a class of resources
rather than by a single resource. The resource perspective defines the relation
between tasks and the classes of resources that can execute them.

As we will explain later, these three perspectives are not orthogonal but in-
teract and therefore deserve equal attention in a workflow design tool. Most
workflow design systems, however, are either control flow-oriented or data flow-
oriented [27]. Control flow-oriented workflows neglect the data flowing between
tasks or only support them indirectly using task and net variables. Data flow-
oriented workflows lack the presence of advanced control flow structures, such as
conditional branching and loops. Workflow design systems that focus on both the
control flow and data flow perspective are called hybrid workflow systems [27].

Ideally, a workflow can be reused for every instantiation of a certain case type.
Therefore, it is important to abstract from resources and to delay resource-task
binding until the workflow is enacted. E-BioFlow supports this and thus adds
an important feature to the designer’s toolkit.

3 E-BioFlow: A New Type of Workflow Design System

E-BioFlow is a visual workflow design system that provides all three perspec-
tives to users for designing their workflows. The three perspectives are explicitly
present in e-BioFlow by means of different tabs in the user interface. The work-
flow designer is able to work in a single perspective at a time without being
restricted to the functionality of a single perspective. Changes in one perspec-
tive are propagated to the two other perspectives wherever appropriate.

Every workflow has at least two tasks, namely the start and the end task.
These two tasks are used respectively to provide the workflow’s input data and
to collect the workflow’s output data. Hierarchy is a very important property
of workflow models, because it helps to structure large diagrams and provides
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a means for abstraction [19]. E-BioFlow supports hierarchical workflows; a task
can be composite. We can choose to decompose a composite task into a sub-
workflow, in which case the composite task is white boxed, but we can alter-
natively choose to ignore the way the composite task is structured, leaving it
black boxed. The workflow specification is a container for workflows. However,
in every container only one workflow is marked as the root workflow; the other
workflows are decompositions of composite tasks. Two or more composite tasks
can be white boxed to the same sub-workflow.

The concepts used in e-BioFlow to represent workflows are:

Task: A task is an abstraction of work to be done. This is also known as an
activity [28].

Atomic task: An elementary representation of work [29].
Composite task: A task that can be black boxed or white boxed; in the latter

case, we can also call it a sub-workflow.
Workflow: A workflow defines a set of tasks, the dependencies between the

tasks, the data that flows among the tasks and the required capabilities to
execute the tasks.

Specification: A specification is a container for workflow models. One of the
workflows is the root model, the others are sub-workflows.

Dependency (Control Flow perspective): A relation between two tasks
that defines enactment order: a certain task cannot start until another task
has finished [27].

Dependency condition (Control Flow perspective): Every task has a
start condition and an end condition describing, respectively, the way the
task depends on prior tasks and the way it should activate next tasks [26].

Port (Data Flow perspective): A task can have multiple input and output
ports for consuming and producing data, respectively. Ports are also known
as parameters [23].

Object type (Data Flow perspective): The object type describes the type
of information an input port accepts and an output port delivers.

Pipe (Data Flow perspective): A pipe defines a data dependency between
two tasks, where data produced by the prior task is consumed by the next
task [27].

Role (Resource perspective): A role describes the required capabilities to
execute a task [28].

Actor (Resource perspective): An actor is a resource capable to fulfil a par-
ticular role and therefore to perform a certain class of tasks [28].

3.1 Three Perspectives to Design a Workflow

The e-BioFlow language extends the Yawl workflow language [26]. Yawl is a
formal workflow language based on the Petri net formalism. This formalism,
originally introduced for representing concurrent processes, provides powerful
analysis techniques to validate workflow [19]. Yawl enables one to model almost
all workflow patterns described by Van der Aalst and others [30]. Workflows
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designed in e-BioFlow can be enacted by the Yawl system [29]. The Yawl system
itself also comes with a design tool that, however, only enables one to design
control flow structures and does not explicitly consider the data flow and resource
perspectives. E-BioFlow complements Yawl by adding these two perspectives.
Next we will describe the three perspectives as they are offered to the designer
by e-BioFlow. The use of these perspective will be illustrated using a simple life
science case in section 3.2.

Control flow perspective. Due to dependencies between tasks, there is often
a specific order in which tasks can be executed. The control flow perspective
describes these dependencies. Tasks can be executed in sequential, parallel, con-
ditional and iterative order [18]. The way tasks depend on each other is described
using conditions. The control flow perspective visualises both the dependencies
between the tasks and the conditions on these dependencies.

A task is visualised as a box. A dependency between two tasks is visualised
as an arrow from one task to the next. Like in Yawl, the way a task depends on
others is controlled by join and split types. The split type defines the way a task
should activate next tasks. The join type defines the way in which a task has to
wait for prior tasks. The join and split types are attached to, respectively, the
left side and right side of the task’s box. Van der Aalst et al. [26] distinguish four
different types of splits: SINGLE (a task has only one next task to be activated),
AND (a task should activate all next tasks), OR (a task should activate one
or more of the next tasks), and XOR (only one of the next tasks should be
activated).

Similar types of join exist: SINGLE (a task depends on just one prior task),
AND (a task has to wait for all prior tasks to finish), OR (a task has to wait for
one or more of the prior tasks to finish), and XOR (a task has to wait for one
of the prior tasks to finish).

The symbols used in the Yawl language are confusing and not easy to remem-
ber. Therefore, we have defined our own symbols, which are presented in figure 1.
The visualisation of the “Single” type contains a single line, which shows that
only one connection is allowed. The “And”, “Or” and the “Xor” splits and joins
are represented by the first letters of their meanings: ’A’, ’O’ and ’X’ respectively.

Data flow perspective. The data flow perspective is often seen in scientific
workflow systems, where most tasks are executed by web services or computer
applications. In a pure data flow representation, constructs such as loops are not
included [27].

Single And Or Xor
Fig. 1. Symbols representing the four different join and split types
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As in the control flow perspective, tasks are visualised as boxes. The input
and output ports are represented as small horizontal lines, distributed over re-
spectively the left and the right borders of the task box. If the number of input
ports or output ports becomes large, it can be difficult to distinguish the ports.
Therefore, the size of a task box grows proportionally to the number of ports.
The names of the ports become visible when the user moves the mouse cur-
sor over the port. Both input and output ports are tagged with the attributes
object type and cardinality. The object type describes the type of data a port
can consume or produce. To support a wide range of object types, e-BioFlow
provides an abstract Java interface for object types which can be adapted to
object types for a specific domain. By defining a repository, these object types
can be fed to e-BioFlow. For example, we are currently implementing support
for the BioMOBY [31] data types. The cardinality defines the amount of items
that can be produced or consumed. Two types of cardinality are supported:
UNIT and COLLECTION. The first means that one item at a time is pro-
duced or consumed; the latter that a set of items can be produced or consumed.
Pipes are visualised as arrows between the corresponding output port and in-
put port. Using the object types and the cardinality, e-BioFlow prepares for full
data compatibility checking. If a pipe is valid, it is coloured black and labelled
corresponding to its object types, otherwise it is coloured red.

Resource perspective. E-BioFlow abstracts from resources by means of a
ternary relationship between tasks, actors and roles. Actors are the real re-
sources, such as web services. The role describes the abilities a resource is re-
quired to have to be able to perform the task [18]. Put simply, the role defines the
type of service required. Roles can be played by different resources and resources
can be able to play different roles, possibly at the same time [32,18]. If a resource
plays a certain role, it acts as a contractor and it is responsible for the work it
accepts. The loose coupling between task and actor makes a workflow model
reusable, even if some actors are not available [8]. However, a role description
should contain enough information to choose a suitable actor for playing the
role and executing the task [33]. An actor is able to execute a task if and only if
it is able to fill the role assigned to that task [18]. In this view, the enactment
engine is responsible to perform the actor-role binding while the designer only
specifies constraints on the binding by means of roles. To do this, the engine
needs a mapping function fRA : (Role → Actor) to select a suitable actor for a
given role. The implementation of this function is domain-dependent. It can be
based on, for example, a repository of the available actors, sorted by the type of
service they can deliver.

The workflow is visualised as a graph in the resource perspective, too. The
visualisation of the resource perspective is closely related to the control flow
perspective, in order to keep the dependency relations in sight. However, the
join and split condition information is left out. Each role is painted as a box
around the task it is assigned to and contains the name of the role. Users can
assign roles to tasks by dragging roles from a repository and dropping them on
tasks.
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In the current implementation, the resource perspective limits the user to
only assign roles to atomic tasks on the ground that composite tasks will be
expanded by the workflow enactment engine. An alternative would be to link
every composite task to a role called “enactment engine” with the intended
meaning that at execution the composite task is executed by the particular
workflow enactment engine that happens to be running the parent workflow.
The result would be a framework that encompasses both atomic and composite
tasks. But it would also introduce a potential source of confusion, because for
most atomic tasks a role entails a choice that will be made when the workflow
is enacted. For composite tasks there is never such a choice: a composite task is
always enacted in the framework of its parent task.

3.2 A Simple Life Science Case: Sequence Alignment

The three different perspectives will help the scientist to deal with the complexity
of scientific workflows. Figure 2 shows the three different perspectives of a simple
workflow for doing a sequence alignment. The workflow consists of a start and
an end task, two tasks to collect the sequences and finally a task to actually
perform the alignment. The control flow (Figure 2(a)) shows the order of the
task execution. First, two sequences are collected and after that, an alignment
is performed. When the alignment is performed, a next iteration of the sequence
alignment is started or the end task is activated. The data flow (Figure 2(b))
shows only the data transfer between the tasks. The alignment task gets input
sequences from both prior tasks; the end task gets the results of the alignment.

The roles of the tasks are shown in figure 2(c). The start and end task do not
need roles, since these are used by the enactment engine to provide input data
and collect output data. Both “Get Sequence” tasks require a sequence retrieval
actor, such as an EBI retrieval service, so a sequence retrieval role is attached
to each of the two tasks. An alignment role is attached to the “Align Sequence”
task, for example by in-house software or again over a web service. The binding
of the tasks to the actors will be done by the enactment engine.

Each perspective complements the other perspectives and shows only limited
information about the workflow in order to keep the workflow diagram usable
and comprehensible.

3.3 Dependencies among the Perspectives

In all perspectives, the tasks of a workflow are represented as vertices of the
graph. To simplify switching between the perspectives, tasks positions and task
sizes remain the same in all perspectives.

To illustrate the tight coupling between the perspectives, we will briefly discuss
two scenarios. In one scenario, Figure 3(a), the designer has drawn two data
pipes in the data flow perspective. E-BioFlow detects a dependency between
the tasks involved, because in this example Align Sequences cannot start before
the two “Get Sequence” tasks have delivered their data. Such a dependency
is called an inferred dependency and it is inserted automatically in the control
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Get
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(c) Resource perspective

Fig. 2. An example of different perspectives for the workflow of a sequence alignment

flow perspective as a dashed line. If the designer would later remove the data
pipes, e-BioFlow automatically removes the dependencies in the control flow
perspective.

In the other scenario, Figure 3(b), the designer has first inserted dependencies
between the tasks in the control flow perspective. These are shown as solid lines.
Later, the designer inserts data pipes in the data flow perspective. The solid lines
in the control flow perspective are not affected because they are not inferred but
inserted explicitly by the designer. For the same reason, if the designer later
removes the data pipes, the dependencies in the control flow perspective are not
removed by e-BioFlow.

Additionally, a relation exists between the resource perspective and the data
flow perspective. The role definition depends more or less on the input and
output types of a task, because not every actor can deal with all types of data.
This means that the role description describes the ability to consume and to
produce respectively the input and output data. Therefore, if an actor plays a
role, it should be able to work with the input and output data [17]. The ability to
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(a) The alignment task requires two inputs (left) and therefore it has
to wait till both prior tasks have finished (right)
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(b) The task that searches for similar sequences requires either a se-
quence id or a sequence as input (left) and therefore has to wait till
one of the prior task has finished (right)

Fig. 3. Two examples showing the relationship between the data flow and the control
flow perspective

check roles based on input and output types in BioMOBY fashion [31] is further
work and requires more detailed descriptions of roles.

3.4 An Architectural View and Some Implementation Details

All three perspectives use, visualise and modify the same underlying workflow
model. If this model is modified in a certain perspective, the other perspectives
have to be notified to update their visualisations to reflect the change. Therefore,
each perspective is registered to a software component called the specification
controller (see figure 4). The specification controller works on top of the workflow
specification. It has two main purposes.

First, it notifies all perspectives when the specification model is modified.
These changes concern structural changes (i.e., a new task is inserted, a depen-
dency is removed) as well as graphical changes (i.e., a task is repositioned, the
zooming level is changed or the graph is repositioned using scrollbars).

Second, the specification controller is the only component that is allowed to
modify the specification. If an action is performed in a certain perspective, then
this perspective sends a request to the specification controller to execute this
action. Normally, the specification controller executes the action and sends a
notification event to all perspectives. The specification controller also takes care
of the undo/redo history.

Using a central specification controller for all perspectives, it is easier to in-
troduce new components working on top of the workflow model, such as checkers
for each perspective. It is possible to integrate a workflow enactment engine in
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Fig. 4. The specification controller links the different perspectives to the specification

e-BioFlow. This will result in a workflow environment that can help scientists to
design, execute, (partially) redesign and re-start the workflow, which is ongoing
work.

E-BioFlow is implemented in Java3 and uses the JGraph4 graph package.
The default implementation of e-BioFlow is supplied with a limited set of ob-
ject types and roles. However, it is not restricted to this limited set, because
both object types and roles are accessed from repositories, which can easily
be extended or replaced. New (local and remote) repositories can be created
by extending existing repositories or adapting the provided abstract Java in-
terfaces for these repositories. E-BioFlow has its own file format for storing
workflow specifications. The control flow and the data flow perspectives of the
specifications can be exported to the Yawl enactment engine format to exe-
cute workflow. The data flow perspective can be mapped to Yawl by trans-
lating the data flows to task variables, net variables and XPath expressions.
The Yawl enactment engine does not support late binding, which hnders the
implementation of our ideas on the resource perspective. We are working on
this to remove this obstacle. Furthermore, e-BioFlow is able to export the
control flow perspective in XPDL format [34], which is maintained by the
Workflow Management Coalition (WfMC). E-BioFlow can import Yawl and
Scufl, the language of Taverna [6,35]. Due to the use of these central work-
flow formats, the workflow design system can be separated from the execution
system [36].

3 http://www.java.sun.com (last visited: 31-01-2008)
4 http://www.jgraph.com (last visited: 31-01-2008)
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4 Related Work

The focus in life science is on data. The traditional design interfaces of business
workflow systems do not fulfil the requirements of this domain. Therefore, most
scientific workflow systems use a data flow oriented language for representing
workflows. However, the problem with most of these systems is that they have
difficulties to support advanced control structures. For example in Discovery
Net [3] , SCIRun [7], Taverna [6,12] and Knime [9] it is difficult if not impossible
to construct advanced control structures, such as conditional branching and
iterations. Triana [5] supports these control structures, however, like the other
two tools, it has no ability to abstract from resources. From our point of view, this
is cumbersome as resources, in particular web services, may be unavailable due
to network errors, server overload, and similar problems. In Kepler [37,8], Bowers
and Ludäscher [38] have tried to tackle this problem by defining primitives for
actor replacements. However, the replacement is still done at design time instead
of instantiation time.

E-BioFlow is a hybrid workflow system. Another hybrid workflow system is
JOpera [23]. Its designers do not speak of a workflow system but rather of a web
services composition engine. For modern workflows, the distinction no longer
matters because many resources are remote anyway. The convergence of the fields
of workflow studies, web services composition, and scientific data processing is
one of the more exciting developments in the field today. Like e-BioFlow, JOpera
emphasises the visualisation aspects of workflow design. It enables the user to
design workflows in two interacting perspectives, namely control flow and data
flow, and also supports automatic detection of inferred dependencies. One key
difference between e-BioFlow and JOpera is the fact that JOpera is not based
on a formal model. Another key difference is the way resources are treated.
JOpera only supports late binding using special constructions whereas e-BioFlow
supports late binding by default. Of course, this results in special needs of the
workflow enactment system, but we believe it is better to use late binding in
order to keep a workflow reusable for different but similar experiments.

5 Discussion and Future Work

In life science during the past decade, the importance of computer-supported or
dry-lab experimentation has sharply increased. Workflow models support dry-lab
experiments because controlling and managing huge volumes of data is cumber-
some if not impossible without them. Workflow models are used to automate
these experiments and to manage the huge amount of data collected and gener-
ated during these experiments [39].

In most scientific workflow systems, it is neither possible to model human tasks
nor to model machine tasks; only web service tasks can be modelled. Modelling
human tasks and machine tasks would make it possible to model both the wet-
lab and the dry-lab parts of a scientific experiment. LIMSs, traditionally used
for the wet-lab part of an experiment, are very often based on built-in (and
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thus inflexible) workflows [40]. Modelling the wet-lab and dry-lab parts of an
experiment in a single framework carries several advantages, among which the
presence of a unified model of the entire experiment that is of help in designing
the experiment and is a tool for automating the lab journal when the experiment
runs. E-BioFlow is prepared for the task of modelling entire experiments. The
control flow and data flow perspective each provides its own type of validation,
which makes it easier to find inconsistencies in the model. Validation in the
resource perspective is currently not available. Such a validation could be based
on the types of inputs and outputs of a task and the specification of the role,
containing the types of data it can respectively consume and produce. However,
more investigation is required to support a formal validation in the resource
perspective.

We suggest a redesign of the way workflow engines currently operate. The
enactment engine is not only responsible for triggering tasks to start execution,
but also for task assignments to actors, based on role descriptions. Currently,
we are integrating the Yawl workflow engine into e-BioFlow, to be able to enact
workflows designed by e-BioFlow within the e-BioFlow application. Some mod-
ifications of the Yawl workflow engine are needed to support the late binding of
actors to tasks. As a proof of concept, we will use BioMOBY [31] to create a
life science problem solving environment. The data types defined in BioMOBY’s
data ontology can easily be translated to the object types used in e-BioFlow.
The service types of BioMOBY will be translated to roles in e-BioFlow. The
hierarchy of service types in BioMOBY is not fully mature. Therefore, further
investigation is required to support automated role-base selection of BioMOBY
services. Instead of being only applicable to a specific problem, workflow models
designed using e-BioFlow become a general solution for a group of problems,
independent of specific resources. A workflow model may thus become an ideal
scaffold for a problem-solving environment [41].
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Abstract. We diagnose the need for collaborative ontology engineering
approaches exemplified by the life sciences. With BIO2Me we present
our case study, a structured knowledge base in the field of bioinformatics
tools and methods. We point out the difficulties in knowledge elicitation
and concerning the cooperation of domain experts and ontology designers
we experienced during the engineering process of our ontology. Finally,
we demonstrate our solutions for an ontology developing environment by
discussing some aspects such as publication relevant tagging and seman-
tically binding wiki pages with ontologies to integrate domain experts
into the ontology development process.

1 Introduction

Among the different scientific disciplines, the life sciences have proved themselves
as particularly interested in the use of ontologies as a means for formal knowl-
edge representation and effective information integration. This is due to the vast
amount of data produced in this field, as well as to inconsistent terminologies
and definitions within this large research area, which make scientific exchange
eminently difficult.

Ontologies are knowledge representation systems which are defined as for-
mal conceptualizations of a knowledge domain [1]. They are used to represent
domain knowledge in a machine-readable and unambiguous way. Ontologies as
considered in this article are written in specialized languages. The currently
most prominent and widely supported ontology language is OWL [2]. Ontolo-
gies in OWL consist of three basic types of different constructs: classes or con-
cepts, properties or relations and individuals. Classes define a set of individuals
that share relevant types of properties. Individuals asserted to a class are called
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instances of this class. For example, a concept within an ontology on bioinfor-
matics tools could be ‘Alignment Program’, instances could be an alignment
program such as ‘ClustalW2’ [3], or even more precisely, a certain program ver-
sion. For each instance we may add datatype properties that relate them with
exact datatype values (for the ClustalW2 example that could be ‘has publication’
value ‘doi:10.1093/bioinformatics/btm404’) and object properties which relate
them to other instances within the ontology (e. g. ‘reads data’). Figure 1 displays
the corresponding detail from a domain ontology for bioinformatics.

Ontologies are a key component for an increasingly diverse set of knowledge
based applications in areas like bioinformatics. They provide global information
infrastructures in terms of e-Science [4,5], the Semantic Web [6] and the Semantic
Grid [7]. In these contexts ontologies are used to annotate content in digital
libraries and archives, act as a composition layer for the integration of multiple
digital resources and as knowledge base for information systems. They are also
often intended to be a shared conceptualization of a domain of interest in terms
of a consensual knowledge base for a community [1,8].

This article was inspired by ongoing work in the Ontoverse research project.
The Ontoverse project develops a Web-based platform for collaborative ontol-
ogy engineering and management in life sciences [9]. Here, we will concentrate on
explaining the importance of collaboration between domain experts and ontol-
ogy designers for ontology engineering in general and exemplified for the design
and implementation of an application domain ontology for bioinformatics called
BIO2Me (BioInformatics Ontology for Tools and Methods). We discuss con-
ceptual and technical problems in providing experts’ knowledge and present our
ideas and current solutions. We have not developed an entirely new methodology
for ontology engineering but have incorporated new and existing approaches into
a system environment.

1.1 Bio-ontologies

In bioinformatics and life sciences in general ontologies are becoming increas-
ingly important (e. g. [10,11,12]). Some of the currently most highly regarded
ontologies are the Gene Ontology [13], the TAMBIS Ontology [14], the RiboWeb
Ontology [15,16], The Ontology for Molecular Biology and EcoCyc [17]. To re-
duce redundancy and foster interoperability between the constantly accumulat-
ing amount of ontologies the OBO collection [18], an umbrella community for a
range of ontologies designed for biomedical domains, has been established. The
Gene Ontology (GO) is part of the OBO collection and was founded as a col-
laborative effort to address the need for consistent descriptions of gene products
in different databases. With currently approximately 100 applications that use
the GO, it is one of the most prominent indications of the growing importance
of ontologies for the further development of bioinformatics.

The particular and still growing interest in ontologies within the life sciences
can be ascribed to different reasons. Due to the exponential growth of data
and publications researchers more and more face the challenge of data survey,
aggregation and integration. This coerces the scientific community into finding
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Fig. 1. Depiction of a detail of the BIO2Me ontology, with a basic hierarchical structure

and additional interrelations. Instances (I) can be added to the concepts.

sophisticated structuring, accessibility, context information and information in-
tegration solutions. More than that, domains in the life sciences themselves are
very complex. Concepts and classifications are subject to constant evolution [19]
because new findings possibly entail new classifications. For example, the dogma
of molecular biology (DNA → RNA → protein) was challenged by the discovery
of the manifold functions (e. g. regulatory functions as transcription factors) of
RNA. RNA does not only serve as messenger between DNA and protein any-
more, but assumes specific functions in regulatory networks. Ontologies provide
a potentiality for flexible knowledge modeling and are therefore well suited to
overcome these challenges. Another big problem in the life sciences is the use of
historical founded different vocabularies. This complicates collaboration between
sub-disciplines, but also intra-disciplinary cooperations suffer from it. Term defi-
nitions may vary even for key concepts. A prominent example is the inconsistent
definition of ‘gene’ used in different scientific databases [20]. On the other side,
there exist e. g. several names for one species arosen from different scientific
communities [21]. Both, the distinguishing of different views on the same con-
cept and the unification of synonyms, have to be captured and formalized to
enable more efficient collaboration. In addition, some domains seem to form on-
tological structures naturally: Biological objects are often linked to each other
in various ways, “forming a highly interconnected graph of relationships” [19].
Furthermore, fields such as zoology uphold traditions in establishing taxonomies
for a long time [11]. Ontologies can now be viewed as a new dimension in these
ordering approaches.

BIO2Me – An Ontology for Bioinformatics. We have built an ontology in
the domain of bioinformatics tools and methods, the BioInformatics Ontology
for Tools and Methods (BIO2Me) which currently contains about 400 classes
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Fig. 2. Schematic depiction of a program’s modeling in the BIO2Me ontology

and individuals. During this design process we determined deficiencies of avail-
able ontology editors in the support of collaborative ontology engineering and
experienced (collaborative) ontology design problems in general (see section Col-
laborative Ontology Engineering).

The ontology was motivated by some earlier work from members of our cur-
rent research team, where the performance of several alignment tools was com-
pared with respect to selected input data [22]. This study showed that the most
popular and mostly employed program in this field, ClustalW, provided not nec-
essarily the best results for each data set. This pointed out a big challenge in
bioinformatics: There is a variety of programs, packages, databases etc. dealing
with various problems like the efficient processing of experimental data, sequence
analysis and structure prediction and visualization. But these can currently not
be surveyed with reasonable effort. Even for experts in a specific domain of bioin-
formatics it is sometimes hard to decide which tool fits the given requirements
best. More than that, there is a plethora of programs which incorporate miscel-
laneous computational, mathematical, and biological approaches to solve even
the same problems.

With BIO2Me we aim at collecting detailed information of bioinformatics
tools in a structured way. The practical aim to make these tools easily acces-
sible highly influences the actual structure of the ontology, the whole ontology
conceptualization was focused on this practical applicability (sometimes domi-
nating over strictly logical representations). Tools are categorized according to
their application ranges (with bioinformatics perspective). Supported biologi-
cal tasks, utilized computational methods, processed data formats and support
information of tools are captured, too. With the help of a tool’s users it is
also possible to gather usage reports from their experiences. Figure 2 shows a



262 D. Mainz et al.

1

2

Fig. 3. Schematic illustration of a search result basing on BIO2Me. The results in the

bottom of the depiction (1) can be narrowed by further specification of the search terms

in the specification interface (2). The user can constitute features of ‘Program’ which

are modeled relations in the ontology.

schematic illustration of the characterization of the program StrAl (Structure
Alignment) [23]. One can see various features of the program which are modeled
in the ontology.

The ontology will provide a basis to search for tools that meet the users needs.
Moreover it will be able to offer additional information about certain tools and
computational methods. It will answer questions like: “Which tools and methods
exist, that deal with given problems?”, “Which data output do they provide?”
etc. Figure 3 depicts a possible search procedure: a user is looking for a program
which utilizes the computational method ‘Neighbor Joining’. In the bottom box
current search results will be illustrated. To narrow down these results, the user
can specify his search terms. Therefore a list of all existing relations (features)
of the concept to specify is dynamically created from the ontology to let the user
choose additional information about it.

A scientist’s motivation to use the BIO2Me ontology is very diverse. A
BIO2Me search can be helpful for a fast familiarization with a new research
task in the field of bioinformatics and will help newcomers in the field to find
relevant references quickly. They can get information about tools and how other
scientists addressed a certain problem. On the other hand, a lot of tools de-
veloped in diplom or bachelor/master theses are not published although they
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provide good approaches which are worthwhile to pursue. Hence it will be useful
to have easy tools that allow an implementation of such unpublished work in the
ontology and therefore make also unpublished methods accessible to the scien-
tific community. Furthermore, experimental biologists can use BIO2Me to find
an adequate tool for their data analyses or for the planning phase of experiments.
Even for bioinformaticians it is useful to get a review of available tools and to
have a quick reference to differences between versions and tools, to publications
and additional features. The information about input and output formats of a
tool facilitates the pipeline of tools.

The search can only yield auxiliary results if the underlying ontology is sub-
stantial and is constantly enlarged and updated. This leads to a very important
point: We are by far not able to provide the information of each bioinformatics
tool on our own, but we are reliant on the cooperation of the tools’ develop-
ers and users, the domain experts. We had to find a way to better support the
involvement of domain experts because the currently available ontology engineer-
ing tools are insufficient for these purposes (see section Collaborative Ontology
Engineering). Furthermore, there have to be experts who check the ontology
periodically for its consistency, accuracy and correctness. One problem we faced
during the building of BIO2Me was the acquisition of domain experts. Particu-
larly in the beginning of an ontology project it could be hard to find participants
which help to provide their knowledge. That is why we additionally developed
a semi-automated methodology of ontology extension (see section Knowledge
Acquisition Focused Ontology Editing – A Case Study with BIO2Me). This ap-
proach utilizes the tagging of publications basing on the concepts of the ontology.
The user gets hints of text passages which could be relevant for the ontology.

Lessons learned from the construction of BIO2Me:

– The domain of BIO2Me eminently points out the need for collaborative
ontology engineering. To represent bioinformatics tools with their applica-
tions, the whole bioinformatics research field and biology itself have to be
displayed adequately in a structured way. Different fields of expert knowl-
edge are needed to characterize different functions and application areas of
bioinformatics tools. Furthermore, a vital community is needed to add in-
formation on the different tools which should be represented.

– In long term, the major challenge with BIO2Me will be to keep it up-to-date.
It will be necessary to keep track of new developments in bioinformatics, e. g.
as new tools or new versions of existing tools may be published.

– We realized the problem with recruiting domain experts who are willing
to share their knowledge, so we have also developed an alternative way of
collecting relevant background knowledge (in form of publications) for ex-
tending the ontology. Though this approach will never be able to replace the
intervention and mental power of a domain expert.

– The basic challenge of this particular ontology was to define its basic struc-
ture. This is where the highest quality control is needed, because it is most
difficult to change fundamental structures at a later point in time. It is also
the part of the work which requires the most discussion and planning. Less
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fundamental aspects, like adding new instances to existing concepts, can
however easily and freely be handled by a large community.

2 Collaborative Ontology Engineering

Several approaches have been made to support collaborative ontology engineer-
ing e. g. in [24,25]. Our work combines the practical work of developing an on-
tology with the development of a supportive tool and working environment for
this task. We started our ontology BIO2Me in a very clear team, wherein in gen-
eral one member edited the formal ontology and the other members contributed
their knowledge and discussed occurring problems in frequent meetings. This
procedure was suitable because we were in close contact, but after inviting other
domain experts, not members of the team, we faced the problem how to integrate
them into the knowledge capturing process. We also had an issue of visualizing
and preparing the information within the ontology so that even people not famil-
iar with ontologies can take part in evaluation (i. e. its coverage of a particular
domain and the richness, complexity and granularity of that coverage). Current
ontology editors do not sufficiently handle these problems. In the next sections
we explain our collaborative approach and the prototype system deriving from
the mentioned problems.

We also communicated with the GO Consortium to learn from their experi-
ences as during the last ten years a community has formed up to use and discuss
GO [11]. Nearly 25,000 terms of GO are maintained by a core team of about
ten GO experts. Only these few ontology designers are in charge of deciding
which concepts are integrated in the ontology and in which way they are in-
terlinked to others. Additionally, anyone may post requests for new terms and
suggest changes via the GO Website (helpdesk, mailing lists). The community
has very limited influence on the actual structure of the ontology. This example
also shows a division of two levels of ontology collaborators that we will describe
in the next section.

2.1 Cooperation between Domain Experts and Ontology Designers

Our focus in collaborative ontology engineering is, basing on our experiences,
placed on the support of a heterogeneous community integrated in a social net-
work closely combined with a Web-based ontology editor. Potential users differ
in their fields of interest and skills: On the one hand knowledge and expertise is
needed from domain experts (DEs). On the other hand ontology languages can
only be fully exploited by ontology designers (ODs).

DEs, which are typically potential users of the ontology, are mainly responsible
for evaluating an ontology from a domain perspective, but also regarding its
understandability and actual advantage of use. They are involved in ontology
development through their requests and by evaluation processes. ODs are mainly
entrusted with the translation of domain knowledge into a formal ontological
representation (or transforming proto-ontological into ontological data). This
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stage is established by a dialog with human experts in order to elicit knowledge.
In the following stage the OD codes the knowledge explicitly in the ontology.
This process iterates until the ontological coding is judged to be satisfactory by
the DEs.

Aspects of cooperation in the context of ontology development can be divided
into two different categories of collaboration:

1. Collaboration of ODs during knowledge formalization.
2. Cooperation between DEs and ODs for knowledge acquisition and ontology

evaluation and quality control, respectively.

The presented BIO2Me case study focuses on the cooperation between DEs
and ODs regarding workflow integrated tools for support. This paper presents
our first preliminary results, further tests on usability and applicability are pro-
cessed.

2.2 Knowledge Acquisition Focused Ontology Editing – A Case
Study with BIO2Me

From Expert Knowledge to Ontologies. A principal challenge for ontology
projects is the acquisition of the knowledge that has to be modeled. Besides tex-
tual information the most important knowledge resource are DEs. DEs combine
explicit knowledge, which can be or has already been articulated in written form,
with tacit knowledge. Even though tacit knowledge (aspects of knowledge that
cannot be codified, but gained by personal experience and passed on through
training) by definition is not directly formalizable it is in fact the foundation for
the identification of ontology relevant concepts, instances and their relations. To
harness DEs’ knowledge more efficiently we adapted the common principals of
wiki engines and tagging for collaborative knowledge acquisition.

Tagging with keywords [26] has become popular for social Web applications
and is a very useful way of categorizing items that makes it easy for users to
search and browse objects. Tag clouds display the most common tags as the
largest, which makes a great starting point to allow people to discover objects
on a website. Another usage for tags is to find related objects that share most
of the same tags.

Figure 4 shows the publications’ selecting and tagging process by DEs (in
the case of BIO2Me bioinformaticians). The imported abstracts of the selected
publications are mapped with constructs’ labels of BIO2Me to identify candi-
dates for ontology concept extension. Alternatively ontology extension can be
achieved via expert knowledge on wiki pages, in which proposals are commented
by DEs. Ontology population with new entities is also possible with experts’
recommendation in wiki entries or directly by manually tagged publications.

In the following subsections we describe our experiences with tagging, context
related abstract identification and an adapted wiki engine during the population
of BIO2Me.
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Fig. 4. From Expert Knowledge to Ontology Extension

A Wiki for the Knowledge Elicitation from Domain Experts. The build-
ing part and the connection to the other architectural parts of our system is an
ontology project. Thus, BIO2Me would be maintained and developed within one
project, but it is possible to plan and build other ontologies with the system,
each within a specific ontology project. A project is characterized by a name and
description, information about its members, the creation data together with the
name of the founder, and of course the ontology itself. Every ontology project
has its own collection of wiki pages, which allows all project members to create,
edit, and display relevant articles through a Web inferface.

For new ontology projects the wiki provides predefined pages for the Ontology
Requirements Specification Document (ORSD modified from [27]) and the in-
formal collection of concepts and their relations [9]. ORSD captures information
about the modeled domain (that is the field of knowledge, which is formalized in
the ontology), the development goal, design criteria (like naming conventions),
available knowledge sources and a competency questionnaire (a collection of
questions, which should be answered by the ontology).

During the evolutionary development of an ontology our system automati-
cally generates wiki pages for the different elements of the ontology which can
be modified by the users of the system. The benefit of such an approach is
twofold: 1) wiki pages are used to capture additional annotations about the on-
tology’s constructs that would be hard to integrate in a user-friendly way into
the graphical user interface of an ontology editor, 2) wiki pages can be used by
the domain experts to add their knowledge to the development process. In this
way we can ensure the separation of concern between the ontology designers who
have to be able to edit the formal model of the ontology and the domain experts
who can provide crucial information about the domain. Predefined sections help
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Fig. 5. The wiki page for the concept ‘Program’. In this example two proposals for

additional subclasses have been entered by DEs: ‘Phylogenetic Tree Reconstruction

Program’ and ‘Protein structure prediction program’.

DEs to get information about the modeled term and to enter additional expert
knowledge. ODs can pose questions related to constructs in the corresponding
wiki pages which can then be answered by DEs. In this way crucial modeling
decisions can be discussed between DEs and ODs without the need to give DEs
a deep insight into the schema of the ontology.

During BIO2Me extension it turned out that ontology versioning and main-
tenance, respectively, is a challenge that affects the knowledge capturing as the
wiki contents have to be kept synchronized. If a new concept, instance or prop-
erty appears, or an existing construct is refined, these changes must be reflected
in the wiki. During the case study we encountered additional problems that
could not be supported by the implemented wiki module. We added for example
the entity ‘NatureAnalogMethod’ as an instance of ‘ComputationalMethod’. The
system generated a wiki page for this instance that was modified by DEs. After
some time ODs decided to remove the instance from the ontology and to add a
new concept ‘NatureAnalogMethod’ which is intended to act as a superclass for
all computational methods and algorithms, that are copied from nature. This in
turn triggered the system to flag the corresponding wiki page for the instance
‘NatureAnalogMethod’ as being related to a deleted instance of the ontology
and created a new wiki page for the class ‘NatureAnalogMethod’. This again led
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to the undesired effect that the historical relation between the wiki pages for the
instance and the class got lost.

Using Tagging of Papers for Ontology Extension. Vast amounts of
biomedical and life science journal literature are available in digital archives like
PubMed1. In order to exploit the information contained in these archives for
ontology extension purposes, relevant publications have to be initially retrieved.
For our case study we implemented an application module to support users (ODs
and DEs likewise) to add project specific publications to a BIO2Me document
collection. The users can search for publications in PubMed using search terms
and then decide which of them should be added to the collection. For the selected
publications the basic bibliographic data is fetched from PubMed including the
abstract, the authors names, used citations and existing keywords. In addition
to potentially existing PubMed keywords the users are able to annotate the
retrieved abstracts with unrestricted self-defined tags.

Within the case study we were able to use these tags primarily for the exten-
sion of BIO2Me’s class hierarchy and for ontology population. Using the tags
added by our domain experts we extended e. g. the sub-classes for the concept
‘Program’ with class ‘StructureAlignmentProgram’ which itself was modeled to
directly contain corresponding structure alignment programs as subclasses and
the program versions of these as instances.

Tags that have been used for ontology modification and were added to a new
construct as labels are automatically removed from the tag list (see Fig. 6). In
case the tag is not used as a label but has already been incorporated indirectly
(e. g. misspellings) an OD can label this tag as processed. In a similar way the
OD can remove it from the list. In this case the tag is saved as being not relevant
for the extension of the ontology and will not be displayed in the editor again.

Exploitation of Term-related Abstracts for Ontology Sophistication.
Finding entities, e. g. by capturing new tags associated to domain relevant pub-
lications as described above, alone is not sufficient; most of the important infor-
mation is contained within the relations between entities [28,29]. To improve the
extraction of new entities as well as their attributes and relations we developed a
straightforward extension for our ontology development environment. Scientific
publications related to the bioinformatics domain get automatically annotated
using the RDFS labels of BIO2Me’s constructs together with the search library
Ferret2. Abstracts of these publications that a) belong to the BIO2Me paper col-
lection and b) contain at least one term from the ontology can then be accessed
via the ontology editor user interface (see Fig. 7).

In first tests we dicovered that applying this relatively simple approach could
support our DEs by identifying new entities and extending given concepts. In-
stead of manually identifying domain related publications, which is particu-
larly crucial for small DE groups (as in case of BIO2Me), the system offers

1 PubMed Central (PMC) http://www.pubmedcentral.nih.gov
2 http://ferret.davebalmain.com
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Fig. 6. Using tagged papers for ontology population and extension

Fig. 7. Use of term related abstracts in the ontology editor

pre-processed textual context for ontology sophistication. Within the BIO2Me
project e. g. the identification of the biological questions for which a bioinformat-
ics tool can be applied turned out to be difficult for those areas where none of
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our ODs had expertise. With our new tool however we were able to retrieve those
abstracts containing relevant information by looking at abstracts that contained
both the RDFS label of a bioinformatics tool and at least one label of a modeled
bioscience task (e. g. nucleic acid electrophoresis) from the ontology.

3 Conclusion and Future Works

With the growing importance of bio-ontologies the necessity of tools for sus-
tainable ontology maintenance becomes relevant. We suggest that this can be
achieved best, if a community of experts with different abilities jointly develops
and maintains an ontology. Some straightforward aspects for a collaborative ap-
proach to create, modify and extend ontologies through a deeper integration of
DEs into the knowledge capturing process were proposed.

We adapted a wiki engine in consideration of knowledge acquisition aspects
together with the exploitation of publication tagging for ontology extension. A
first prototype of this adaption was implemented to support a sustainable and
knowledge acquisition focused cooperative development of bio-ontologies.

Our positive experiences with these new tools encourages further develop-
ments on the way to a common platform for scientific domain driven bio-
ontology development. For future extensions communication between DEs and
ODs should not only be transformed to technical systems but also further ex-
tended by making use of sophisticated tagging mechanisms (like extreme tag-
ging – tagging of tags combined with text mining tools [30], ontology coupled
wiki systems, and recommendation systems to extend and populate ontologies.
In particular text mining tools could broaden the approach we presented for
the exploitation of term related abstracts through supporting iterative improve-
ments to ontologies by determining and highlighting new concepts. These tools
may find relations between terms similar as in latent semantic analysis, where
relationships between document corpora are analyzed.

Additional possibilities to support the tagging process within publications
come from the feature extraction research field. An implementation of this tech-
nique could be used to detect recurring word-usage patterns in publication ab-
stracts, which can help to identify tags as candidates for ontology enrichment.
However, difficulties in accessing full text articles remain a drawback for indexing
and tagging publications as we experienced during this case-study. As a conse-
quence, searching and document processing are often limited to abstracts. While
this has started to improve, it still inhibits large-scale activities to extend and
populate ontologies.
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Abstract. Gaussian graphical models are widely used to tackle the im-
portant and challenging problem of inferring genetic regulatory networks
from expression data. These models have gained much attention as they
encode full conditional relationships between variables, i.e. genes. Unfor-
tunately, microarray data are characterized by a low number of samples
compared to the number of genes. Hence, classical approaches to estimate
the full joint distribution cannot be applied. Recently, limited-order par-
tial correlation approaches have been proposed to circumvent this prob-
lem. It has been shown both theoretically and experimentally that such
graphs provide accurate approximations of the full conditional indepen-
dence structure between the variables thanks to the sparsity of genetic net-
works. Alas, computing limited-order partial correlation coefficients for
large networks, even for small order values, is computationally expensive,
and often even intractable. Moreover, problems deriving from multiple
statistical testing arise, and one should expect that most of the edges are
removed. We propose a procedure to tackle both problems by reducing
the dimensionality of the inference tasks. By adopting a screening pro-
cedure, we iteratively build nested graphs by discarding the less relevant
edges. Moreover, by conditioning only on relevant variables, we diminish
the problems related to multiple testing. This procedure allows us to faster
infer limited-order partial correlation graphs and to consider higher order
values, increasing the accuracy of the inferred graph. The effectiveness of
the proposed procedure is demonstrated on simulated data.

1 Introduction

Reverse engineering of genetic regulatory networks (GRNs) from expression data
is an essential step toward the modeling of genetic networks. The inference of these
networks from expression data alone is far from trivial because of the combinato-
rial nature of the problem and the poor information content of the data [1].

Graphical models [2,3,4] have been widely used to address this important
and challenging problem. Among these, Gaussian graphical models have become
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increasingly popular. These models encode full conditional relationships between
genes. Hence, they enable to distinguish direct from indirect interactions. Stan-
dard multivariate methods for structure learning of Gaussian graphical models
require the estimation of the full joint probability distribution. Unfortunately,
typical microarray data sets describe a large number of variables (on the order
of hundreds or thousands) but only contain comparatively few samples (on the
order of tens or hundreds), which renders this estimation an ill-posed problem.
Hence, standard multivariate methods cannot be applied directly.

Recently, limited-order partial correlation graphs have been proposed as an
alternative to Gaussian graphical models [5,6,7,8,9]. Because genetic networks
are sparse, the former provide accurate approximations of the latter. However, for
these approximations to be as accurate as possible, the order values should not be
taken too small. Unfortunately, for large networks, inferring limited-order partial
correlation graphs even for small order values is computationally expensive, and
often even intractable, unless very small order values are considered. Moreover,
problems deriving from multiple statistical testing arise, and one should expect
that most of the edges are removed [5].

We propose a procedure to tackle both problems by reducing the dimen-
sionality of the inference tasks. First, we adopt a screening procedure, recently
introduced in the context of feature selection [10]. Under the assumption of faith-
fulness, we exploit an inclusion relation of high-order partial correlation graphs
in lower order ones: we iteratively build nested graphs by discarding the less rel-
evant edges. Moreover, by conditioning only on relevant variables, we diminish
the problems related to multiple testing.

The advantage of this procedure is that it considerably speeds up the infer-
ence of limited-order partial correlation graphs. As a consequence, this approach
enables us to consider higher order values, increasing the accuracy of the inferred
graph. We demonstrate the effectiveness of the proposed procedure on simulated
data.

The paper is cast in the framework of the recently proposed q-partial graph
theory [5]. q-Partial graphs are a generalization of limited-order and full-order
partial correlation graphs. They clarify the connection between the sparseness of
the concentration graph and the usefulness of limited-order partial correlation
graphs.

The outline of the paper is as follows. Section 2 reviews the state-of-the-
art graphical models used to infer regulatory networks. The theory of q-partial
graphs is given in Sect. 3. The q-nested procedure for inferring q-partial graphs
is presented in Sect. 4. Instances of its application to simulated data are given
in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Graphical Models for Genetic Regulatory Network
Inference

This section reviews the most important graphical models used to infer genetic
regulatory networks (GRNs) from high-dimensional microarray data.
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2.1 Independence Graphs

The first and simplest model to infer GRNs from ”small n, large p” microarray
data is that of independence graph, also known as covariance graph and gene
relevance network. It was proposed by [11] and is built as follows. First, the cor-
relation matrix is inferred from data. Next, pairs of genes are connected if their
respective correlation exceeds a given threshold. Independence graphs therefore
represent the marginal independence structure of the genes. Despite their rel-
ative ease of construction, these networks suffer a major drawback: marginal
independence is a strong indicator for independence, but a weak criterion for
measuring dependence, since more or less all genes will be marginally (i.e., di-
rectly or indirectly) correlated [12] (see Fig. 1 for an example).

X1

X2 X3

X1

X2 X3

Fig. 1. A simple network consisting of 3 genes (left). Genes X2 and X3 are highly
correlated with each other because both are regulated by gene X1. The spurious relation
between genes X2 and X3 will therefore most probably be inferred in the independence
graph (right). Note that the directions of the identified connections are not inferred in
the independence graph.

2.2 Concentration Graphs: Full-Order Partial Correlation Graphs

In order to overcome this shortcoming, concentration graphs, also known
as Gaussian graphical models1 (GGMs), have become popular to infer
GRNs [13,14]. In these models, missing edges denote zero full-order partial cor-
relations, and therefore, correspond to conditional independence relationships.

Full-order partial correlation measures the association between two genes
while taking into account all the remaining observed genes. Therefore, GGMs
have an important advantage compared to independence graphs: they enable to
distinguish direct from indirect interactions between genes due to intermediate
genes (sequential pathways) or directly due to other genes (common causes).

However, computing full-order partial correlations requires the full joint dis-
tribution of genes. This is problematic in the ”small n, large p” data setting: the
maximum likelihood estimate of the population concentration matrix needed to
infer GGMs requires that the sample covariance matrix has full rank and this
holds, with probability one, if and only if n > p [15].

To circumvent this problem, the first approach proposed in the literature
restricts the analysis to very small numbers of genes or gene clusters (as to
satisfy n > p) [16,17,18,19,20], which is unsuited for inferring GRNs. Two

1 These two names are hereafter used interchangeably.
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alternative approaches have thus been introduced: one uses regularization tech-
niques [21,13,14,22,23,24], while the other uses limited-order partial correla-
tions [5,6,7,8,9]. This latter approach is discussed in this paper.

3 q-Partial Graphs: From Independence Graphs to
Gaussian Graphical Models

A q-partial graph is inferred from q-order partial correlation coefficients which
measure the correlation between pair of variables when conditioning on q other
variables, with q ∈ {0, . . . , p− 2}. The recently introduced theory of q-partial
graphs ”clarifies the connection between the sparseness of the concentration
graph and the usefulness of marginal distributions in structure learning, under
the assumption of faithfulness” [5]. Hence, q-partial graphs provide a common
framework for graphs inferred from limited-order partial correlations and GGMs.

Let XV be a random vector indexed by V = {1, . . . , p} with probability dis-
tribution PV and let G = (V , E) be an undirected graph. For a subset U ⊆ V ,
we denote by XU the subvector of X indexed by U , and by PU the associated
marginal distribution.

We now give the definition of q-partial graphs [5].

Definition 1 (q-partial graph). For a random vector XV and an integer 0 ≤
q ≤ (p − 2), the q-partial graph of XV , denoted by G(q) =

(
V , E(q)

)
, is the

undirected graph where the edge (i, j) /∈ E(q) if and only if there exists a set
U ⊂ V with |U| ≤ q and i, j /∈ U such that Xi ⊥⊥ Xj | XU holds in PV .

In this definition, ⊥⊥ is the usual notation for independence [25]. Note that we
consider undirected graphs and do not distinguish between (i, j) and (j, i).

The random vector XV is assumed to have a multivariate normal distribution
with mean vector μ and positive definite covariance matrix Σ. Furthermore, we
assume that PV is both Markov and faithful with respect to G = {V , E}. We say
that PV is (undirected) Markov with respect to G if it holds that XI ⊥⊥ XJ | XU
whenever U separates I and J in G [26]. We say that PV is faithful to G if all
the conditional independence relationships in PV can be read off the graph G
through the Markov property [26].

Thus, for a subset U ⊂ V with i, j /∈ U it holds that Xi ⊥⊥ Xj | XU if and only
if the partial correlation coefficient

ρ(i,j|U) =
−k

(W)
ij√

k
(W)
ii k

(W)
jj

, (1)

is equal to zero, where W = U ∪ {i, j}, K(W) =
{

k
(W)
ij

}
= (ΣWW)−1 is the

concentration matrix of XW (provided that ΣWW is invertible) [2].
Note that the cases q = 0 (conditioning on the empty set) and q = p − 2

(conditioning on all remaining variables) correspond to the independence graph
(see Sect. 2.1) and to the GGM (see Sect. 2.2), respectively.
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Before giving Prop. 1, we need the following three definitions. We start with
the definition of connectivity [27].

Definition 2 (connectivity). Let i �= j be a pair of vertices of an undirected
graph G = (V , E). The connectivity of i and j is defined as the cardinality of the
smallest (possibly non unique) set S(i,j|G) of nodes to be removed to make i and
j disconnected.

Next, we give a slightly different definition of connectivity of two vertices [5].

Definition 3 (outer connectivity). Let i �= j be a pair of vertices of an
undirected graph G = (V , E). The outer connectivity of i and j is defined as

d (i, j | G) = min
S∈S(i,j| Gij)

|S|

where Gij = (V , E \ (i, j)) and |S| is the cardinality of S.

Hence, d (i, j | G) is the connectivity of i and j in Gij (that is the graph obtained
by removing edge (i, j), if present, from graph G).

Finally, we give the definition of the outer connectivity of the set E of missing
edges of G = (V , E) [5], that is, for a pair (i, j) ∈ V , (i, j) ∈ E if and only if i �= j
and (i, j) /∈ E .

Definition 4 (outer connectivity of the missing edges). The outer con-
nectivity of the missing edges of G = (V , E) is defined as

d
(
E | G

)
= max

(i,j)∈E
d (i, j | G) .

The following proposition (the proof of which can be found in [5]) describes
when the full-order partial correlation graph can be uncovered by computing
only limited-order partial correlation coefficients.

Proposition 1. Let G = (V , E) and G(q) =
(
V , E(q)

)
be the concentration and

the q-partial graph of XV , respectively. Then G = G(q) if and only if

d
(
E | G

)
≤ q .

Note that d
(
E | G

)
≤ q if and only if there exists a marginal distribution of

XV of dimension q + 2 in which the corresponding variables are conditionally
independent. Under the assumption of faithfulness G ⊆ G(q) [5]. Therefore,
Proposition 1 states that a missing edge in G is missing also in G(q) if and
only if the outer connectivity of the corresponding vertices is smaller or equal
to q. Hence, the q-partial graph and the concentration graph are identical if this
relation is satisfied for all missing edges in G [5] (see Fig. 2 for an illustration).

Note that sparseness is useful as long as it implies small separators for non-
adjacent vertices but there is no direct connection between the degree of sparse-
ness of G and the missing edges’ outer degree [5].
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X1

X2 X3

X4 X5

X6

Fig. 2. Outer connectivity illustrated. A simple network G consisting of 6 genes is
depicted. All pairs of non-connected genes can be separated by at least one subset of
at most 2 genes. For example, X3 and X4 can be separated by the set {X2, X5} (dotted
ellipse). Therefore we have G(2) = G(3) = G(4) = G.

Intuitively, larger values of q should be preferred. This is confirmed by the
following inclusion relation which holds under the assumption of faithfulness [5]:

G(q) ⊆ G(r) if r ≤ q . (2)

Hence, the higher the value of q, the closer the approximation to the true (con-
centration) graph. However, as Prop. 1 makes clear, it is possible to obtain a
good approximation of the concentration graph, and sometimes even the exact
concentration graph, without conditioning on all remaining genes (i.e., q = p−2,
where p is the number of genes).

In principle, q-order partial correlations can be computed for any q ∈ {0, . . . ,
p− 2}. However, in practice, four problems arise.

Problem 1. Computing a partial correlation coefficient of order q requires the
inversion of a n× (q + 2) submatrix of the concentration matrix (see (1)), where
n is the number of samples, which requires that this submatrix has full rank and
this holds [15], with probability one, if and only if

q < n− 2 . (3)

Problem 2. The computation of
(
p−2

q

)
q-partial correlation coefficients for each

of the p (p− 1) /2 possible pairs of genes can be computationally intensive, and
often even intractable for large networks, except if q takes on (very) small or
(very) large values. Therefore, unless full-order partial correlations are consid-
ered, limited-order partial correlations are restricted to q ≤ 3 in the litera-
ture [6,8,7,9], except for the approach proposed in [5] where higher values of q
are considered because only a (random) subset of the

(
p−2

q

)
q-partial correlation

coefficients are computed.

Problem 3. An edge is added to the q-partial graph if all of
(
p−2

q

)
null hypotheses

are rejected. But if the value of
(
p−2

q

)
is large then most, or even all, of the

edges are removed because the probability that at least one hypothesis of zero
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X1 X2

X3

X1 X2

X3

X1 X2

X3

Fig. 3. A simple network consisting of 3 genes (left). Gene X3 is regulated by both genes
X1 and X2, which are not correlated. Genes X1 and X2 are therefore not connected in
the independence graph (center), i.e. the 0-partial graph. In case of lack of faithfulness,
a spurious connection between X1 and X2 may be inferred when conditioning on gene
X3 in the 1-partial graph (right).

q-order partial correlation is wrongly non-rejected increases with the number of
performed tests [5].

Problem 4. The assumption of faithfulness is sometimes violated. This implies
that a missing edge in G(q) may be present in G(r), with r > q (as illustrated
in Fig. 3). Note that this undesirable effect is well-known in the literature on
causal inference [26,28] where it is referred to as the ”explaining away effect”.

The first problem is not very stringent as microarray data typically consist of
several tens or hundreds of samples. The second one, however, drastically limits
the order q of the partial graph. The third issue is equally serious, since it
hinders the applicability of high-order q-partial graphs. Finally, the last problem
has typically a weak impact on the estimates of partial correlation [5].

Hence, the second and third problem need to be addressed for limited-order
partial correlation graphs to be applicable in practice. It is the aim of our pro-
cedure, which we present in the next section, to tackle both problems.

4 The q-Nested Procedure

We now present an original approach to infer q-partial graphs. This method
takes advantage of the inclusion relation (2) to reduce the number of pairs of
genes for which to compute the q-partial correlation coefficients. It is inspired
by a simplified version of the PC-algorithm [28] recently proposed for variable
selection in high-dimensional linear models [10]. Furthermore, we show that for
each pair of genes only a small number of q-partial correlation coefficients (out
of
(
p−2

q

)
possible coefficients) have to be computed. This further reduces the

dimensionality of the inference problem.
Let us first assume that partial correlations are known.

4.1 Population Version

Recall from (2) that, under the assumption of faithfulness, G(q) ⊆ G(r) if r ≤ q.
This inclusion relation implies that every missing edge in G(r) is also missing in
G(q). Hence, if we have inferred G(r), we only need to compute q-partial cor-
relations between genes connected in G(r) to infer G(q), and not for all p (p− 1) /2
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possible edges. Assuming the concentration graph is sparse, this screening may
substantially reduce the dimensionality of the problem.

More specifically, let E(−1) = V × V = {(i, j) | i, j ∈ V , i �= j} be the set of
all possible edges (i.e., of all unordered pairs of genes). We can do screening
according to marginal correlations by building the set:

E(0) =
{

(i, j) ∈ E(−1) | ρ(i,j) = ρ(i,j|∅) �= 0
}

.

We then continue screening using higher-order partial correlations and building
the sets

E(q) =
{

(i, j) ∈ E(q−1) | ρ(i,j|S) �= 0, for all S ⊆ V \ {i, j} with |S| = q
}

,

for q ∈ {1, . . . , p− 2}, ending up with a nested sequence of sets:

E(0) ⊇ E(1) ⊇ · · · ⊇ E(k) ⊇ · · · ⊇ E(p−2) .

The dimensionality of the problem can be further reduced as the following
corollary shows. Note that a similar approach is used for the inference of directed
acyclic graphs [28]. First, we need the following proposition. The boundary of
vertex i in G, i.e., the set of vertices adjacent to i, is denoted by bdG (i).

Proposition 2. Let (i, j) ∈ E(q) for a fixed q ∈ {0, . . . , p− 3}. If there exists
a set S, with |S| = q + 1, such that ρ(i,j|S) = 0, then there exists two sets
Si ⊆ bdG(q) (i) and Sj ⊆ bdG(q) (j) such that ρ(i,j|Si) = 0 and ρ(i,j|Sj) = 0.

Proof. We have Xi ⊥⊥ Xj | XS and thus Xi ⊥⊥ Xj | XV\{i,j}. Using the global
Markov property [2], we have that Xi ⊥⊥ Xj | XbdG(p−2)(i)

and Xi ⊥⊥ Xj |
XbdG(p−2) (j)

. Since bdG(p−2) (i) ⊆ bdG(q) (i) and bdG(p−2) (i) ⊆ bdG(q) (i) (re-

call (2)), the proof is complete. ��

An immediate consequence of Prop. 2 is the following corollary.

Corollary 1. The screening procedure described above returns the same ap-
proximation of the concentration graph whether testing ρ(i,j|S) �= 0 for all
S ⊆ V \ {i, j}, for all S ⊆ bdG(q−1) (i) or for all S ⊆ bdG(q−1) (j) with |S| = q.

The corollary states that we do not need to consider all the
(
p−2

q

)
possible con-

ditioning sets of size q when testing for the presence of an edge (i, j). It suffices
to restrict the conditioning sets to sets (of size q) of genes that are adjacent to
either node i or node j. In practice, the smallest boundary is chosen.

For all i, j ∈ V and q ∈ {0, . . . , p− 2}, let

bdG(q) (i, j) =
{

bdG(q) (i) if |bdG(q) (i)| ≤ |bdG(q) (j)| ;
bdG(q) (j) otherwise .

The detailed description of our algorithm is given below.
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Algorithm 1. q-nested procedure

1 E (0) ←
{

(i, j) ∈ E (−1) | ρ(i,j) = ρ(i,j|∅) �= 0
}

2 q ← 0
3 while E (q) �= E (q−1) and q < p − 2 do
4 q ← q + 1

5 E (q) ←
{

(i, j) ∈ E (q−1) | ρ(i,j|S) �= 0,

for all S ⊆ bdG(q−1) (i, j) with |S| = q
}

end

4.2 Sample Version

For finite samples, partial correlation coefficients are computed by replacing the
concentration matrix K in (1) by its sample counterpart K̂.

In a frequentist approach to inference, we require the distribution function
of the sample partial correlation coefficient ρ̂(i,j|S) under the null hypothesis
ρ(i,j|S) = 0 for all S ⊆ V \ {i, j} to address the statistical testing problem of
non-zero partial correlation

H0 : ρ(i,j|S) = 0 versus H1 : ρ(i,j|S) �= 0 .

Here we apply Fisher’s Z-transform

Z(i,j|S) = tanh−1 ρ̂(i,j|S) =
1
2

log
(

1 + ρ̂(i,j|S)

1− ρ̂(i,j|S)

)
.

Using a significance level α, we reject the null-hypothesis H0 : ρ(i,j|S) = 0 against
the two-sided alternative H1 : ρ(i,j|S) �= 0 if

√
n− q − 3 Z(i,j|S) > Φ−1 (1− α/2) , (4)

where q = |S| and Φ (·) denotes the cumulative distribution function of the
standard normal distribution N (0, 1). Note that (4) implies

q < n− 2 . (5)

The sample version of the q-nested algorithm is obtained by modifying Algo-
rithm 1 as follows:

– Replace in Step 3 the condition q < p− 2 by q < n− 2 because of (3). Note
that inequality (5) is fulfilled.

– Replace in Steps 1 and 5 the statements about, respectively, ρ(i,j) = ρ(i,j|∅) �=
0 and ρ(i,j|S) �= 0 by the statistical hypothesis test described above. Note
that we correct the P -values over the multiple tests for all edges using the
Benjamini-Hochberg correction [29] for controlling the false discovery rate.
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5 Experiments

5.1 Datasets

We used the package GeneNet [30] for the statistical software R [31] to generate
10 networks with p = 50 genes, 123 edges (that is ∼ 10% of all possible edges),
and n = 30 samples.

More specifically, 10 random ”true” full-order partial correlation 50× 50 ma-
trices are generated by an algorithm which guarantees that the resulting matrices
are always positive definite [13]. The non-zero entries of these matrices corre-
spond to the edges of the ”true” networks. Next, for each network, simulated
data of the desired sample size n = 30 are drawn from the multivariate normal
distribution with mean zero and the ”true” correlation structure.

Although the model used for data generation is a simplification of real molec-
ular processes, it is important to faithfully evaluate the prediction results. This
is possible only if the true structure of the regulatory network is known.

5.2 Methods

We compare our q-nested procedure to the independence graph (see Sect. 2.1)
and the 1-partial graph (see Sect. 2.2). Higher-order partial graphs were not
considered because they are computationally expensive to infer.

5.3 Validation

A network inference problem can be seen as a binary decision problem where
the inference algorithm plays the role of a classifier: for each pair of genes, the
algorithm either adds an edge or not. Each pair of genes is thus assigned a
positive label (an edge) or a negative label (no edge).

A positive label (an edge) predicted by the algorithm is considered as a true
positive (TP) or as a false positive (FP) depending on the presence or not of the
corresponding edge in the underlying true network, respectively. The true and
false negatives (TN and FN, respectively) are defined analogously.

The use of receiver operator characteristic (ROC) curves is recommended
when evaluating binary decision problems in order to avoid effects related to the
chosen threshold [32]. However, if there is a large skew in the class distribution,
as is typically the case when inferring genetic networks because of their spar-
sity, precision-recall (PR) curves give a more accurate picture of an algorithm’s
performance [33].

Let the precision quantity

prec =
{

TP
TP+FP if TP + FP > 0 ;
0 otherwise ;

(6)

measure the fraction of true positives, i.e. true edges, among those inferred as
positive, and the recall quantity

rec =
{

TP
TP+FN if TP + FN > 0 ;
0 otherwise ;

(7)
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measure the fraction of true edges inferred among all true edges. These quantities
depend on the threshold chosen to return a binary decision. The PR curve is a
diagram which plots the precision versus recall for different values of the thresh-
old on a two-dimensional coordinate system [34]. The quality of an algorithm is
measured by the area under the curve (AUC) of the PR curve [33].

For the independence graph and the 1-partial graph, the quantities considered
are the correlation coefficients and the 1-order partial correlation coefficients, re-
spectively. In the case of the q-nested partial graph, if an edge has been ”screened
out”, it is the value of the last partial correlation coefficient (before the edge is
discarded) that is taken into consideration. Next, we transform the (partial)
correlation coefficients into binary values (i.e., edge or no edge) by means of
the statistical procedure described in Sect. 4.2 with α = 0.2 and compute the
F -measure [34]. This measure is defined as the harmonic mean of the precision
and recall quantities:

F (prec, rec) =
{ 2·prec·rec

prec+rec if prec + rec > 0 ;
0 otherwise .

(8)

5.4 Results

Figures 4 and 5 show the boxplots of the AUC values and of the F-measures,
respectively. q-Nested graphs seem to be perform slightly better than indepen-
dence graphs and 1-partial graphs.

More importantly, Table 1 shows the mean (and standard deviation) of the
percentage of edges (relative to the 50× 49/2 = 1225 possible edges) remaining
in the q-partial graphs after each screening step for values of q ∈ {1, . . . , 7} .
This illustrates the important reduction in dimensionality achieved through the
screening procedure. Of course, the result from Prop. 2 also drastically reduces
the dimensionality of the problem. Moreover, it downsizes the undesirable effects
of multiple testing (data not shown).
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Fig. 4. Boxplots of the AUC values for 10 networks
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Fig. 5. Boxplots of the F-measures for 10 networks

Table 1. Mean (and standard deviation) of the percentage of edges remaining after
each screening step

q % of rem. edges

1 25.4 (2.92)
2 24.3 (2.55)
3 20.1 (1.53)
4 17.4 (1.16)
5 15.3 (0.94)
6 13.2 (0.68)
7 11.1 (0.67)

6 Conclusion and Future Work

Limited-order partial correlation graphs have become increasingly popular to
infer large-scale genetic regulatory networks because of the ”small n, large p”
problem that arises with microarray data. Their effectiveness to approximate full-
order partial correlation graphs has been shown experimentally and theoretically
with the recently introduced q-partial graph theory that clarifies the connection
between the sparseness of the concentration graph and the usefulness of limited-
order partial correlation graphs.

The usefulness of q-partial graphs increases with q, so that a procedure that
can be applied for larger values of q is called for. Unfortunately, computing
limited-order partial correlation coefficients for large networks, even for small
order values, is computationally expensive, and often even intractable. Moreover,
problems deriving from multiple statistical testing arise, and one should expect
that most of the edges are removed.

We have proposed a procedure to tackle both problems by reducing the di-
mensionality of the inference task. By adopting a screening procedure recently
introduced in the feature selection literature, we iteratively build nested graphs
by discarding edges for which lower-order partial correlations are not significantly
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different from zero. Moreover, we showed that it is not necessary to condition on
all possible subsets of a given size, but only on subsets containing genes adjacent
to the pair being tested for partial correlation. This result enables to further re-
duce the dimensionality of the problem and also diminishes the issues related
to multiple testing. As we have shown experimentally, our q-nested procedure
allows us to faster infer limited-order partial correlation graphs and to consider
higher order values, increasing the accuracy of the inferred graphs.

Apart from faithfulness, the q-nested procedure does not require any addi-
tional assumptions. The sparseness of the concentration graph is not assumed
but exploited when present.

Future work will assess the q-nested approach on a larger number of datasets
with different parameter settings. More specifically, the effect of the sample size
and of the number of edges in the true underlying network on the proposed
procedure will be studied. Comparisons to the procedure presented in [5] as well
as to the full-order partial correlation technique of [14] that relies on a shrinkage
estimator of the covariance matrix will be undertaken. Finally, our method will
be applied to a real gene expression dataset.
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Abstract. We propose a computational method for reconstructing me-
tabolic networks. The method utilizes optimization techniques and graph
traversal algorithms to discover a set of biochemical reactions that is most
likely catalyzed by the enzymatic genes of the target organism. Unlike
most existing computational methods for metabolic reconstruction, our
method generates networks that are structurally consistent, or in other
terms, gapless. As many analyses of metabolic networks, like flux bal-
ance analysis, require gapless networks as inputs, our network offers a
more realistic basis for metabolic modelling than the existing automated
reconstruction methods. It is easy to incorporate existing information,
like knowledge about experimentally discovered metabolic reactions or
metabolites into the process. Thus, our method can be used to assist in
the manual curation of metabolic network models as it is able to suggest
good candidate reactions for filling gaps in the existing network models.
However, it is not necessary to assume any prior knowledge on compo-
sition of complete biochemical pathways in the network. We argue that
this makes the method well-suited to analysis of organisms that might
differ considerably from previously known organisms. We demonstrate
the viability of our method by analysing the metabolic network of the
well-known organism Escherichia coli.

1 Introduction

Structural models of cellular metabolism have proven to be very successful in an-
swering many relevant biological research questions. The global organization of
the metabolism can be discovered from the structural models [10]. In constraint
based modelling of the metabolism [5,32,35,36,37,27], phenotypic behaviour, ro-
bustness and metabolic capabilities of an organism are analysed based on the
structural models.

The process of creating a metabolic network model corresponding to the
genome of the organism under study is called metabolic reconstruction [17]. In or-
der to reconstruct a structural model of metabolism a complete set of metabolic
reactions operating in the organism has to be discovered. These reactions define
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the topology of an intertwined metabolic network, as the reactions are connected
to each other by common substrate and product metabolites.

The most common method for reconstructing the structural model of a
metabolic network is based on the combination of functional annotation of
metabolic genes in the target organism by sequence similarity and manual utiliza-
tion of literature information [13]. In the first technique, the functions of known
enzymatic genes in a database are assigned to homologous genes in the target or-
ganism, thus adding the corresponding enzymatic reactions to the reconstructed
metabolic network [17]. Knowledge on metabolic function annotation can also
be derived from other sources, such as chromosome clustering [18], detection of
protein fusion events [29], occurrence profiles [39], phylogenic profiles [7], and
regulons [30]. The metabolic network is then curated by manually adding exper-
imentally verified reactions and by fixing the observed inconsistencies.

A reaction gap is the most common example of an inconsistency in the re-
constructed metabolic network [31]. A reaction gap occurs, when substrates of
an internal reaction cannot be produced from the external substrates of the net-
work. In constraint based modelling of metabolism, reaction velocities, or fluxes,
in the metabolic network are explicitly modelled. As pathways with gaps cannot
carry any flux in steady state conditions, the most accurate results are obtained
when the analysis techniques are applied with gapless models.

Manual curation and gap-filling of genome-scale metabolic networks consist-
ing of hundreds, even thousands of reactions is, however, very time-consuming
and error-prone [16]. But, because of the indisputable usefulness metabolic net-
work models in system-wide biological studies, manual curation of metabolic net-
works is considered to be worthwhile for the ever increasing number of organisms
ranging from simple bacteria to mammalian cells [6,24,12,13,11,34]. Unfortu-
nately, most reconstructed models still contain some gaps even after the manual
curation.

Many computational methods and tools have been developed to assist the
metabolic reconstruction and curation of genome-scale metabolic network mod-
els. For instance, the Pathway Tools software reconstructs metabolic networks
by first determining how large portion of the enzymes of each pathway in a
pathway database are present in the organism [23]. This is done by comparing
a list of EC numbers given as input to the program against the EC numbers
in the MetaCyc pathway database. EC numbers specify a functional classifica-
tion of enzymatic activity [22]. Then the presence of each pathway is predicted.
Roughly, the more enzymes appear to be present, the more confident we are that
the pathway exists.

As a drawback, Pathway Tools cannot recreate truly novel subnetworks, as it
is limited to the pathways in its database. The studies of central pathways such
as TCA cycle, pentose phosphate pathway and glycolysis in microbial metabolic
networks have indicated that the structure of these pathways varies in many or-
ganisms, from the textbook definition [9]. Thus, it is useful not to let hard-coded



290 E. Pitkänen et al.

definitions of pathway structures based on previous knowledge affect the predic-
tion of pathways in excess in newly sequenced organisms. In addition, Pathway
Tools incorporates a second phase, where gaps left from the first phase are filled.
The method is called the Pathway Hole Filler, which is a Naive Bayesian clas-
sifier combining evidence from genome structure such as chromosome clustering
and others [19]. It predicts for each enzyme that was missing from the original
reconstruction whether it should be added to the metabolic network.

Recently, an optimization based method called GapFill for filling gaps in a
draft metabolic network was introduced by Kumar et al. [28]. In the method gaps
are first discovered, then filled one by one by adding reactions to the network
or by adding reverse directions for unidirectional reactions in the model (see
Section 4 for a more detailed comparison to the present method).

It has been observed that reconstruction benefits from having multiple data
sources combined [25]. In the approach of [26], experimental data is combined
with the knowledge on metabolic network structure. By assuming that the
genes encoding for enzymes on the same pathway are co-regulating, they try
to find similarly expressed genes which could then be annotated with enzy-
matic functions on the same pathway. In [21], a draft metabolic network is
automatically curated by minimizing the difference between the experimen-
tally determined metabolic fluxes and the fluxes estimated by the flux balance
analysis.

In the present paper, we introduce a new computational method for assisting
in the task of metabolic reconstruction. In the method, optimization techniques
and graph traversal algorithms are utilized to find a set of biochemical reac-
tions that is most likely catalyzed by the genes of the target organism. The
resulting network is guaranteed to be gapless, that is, each reaction in the re-
constructed network is connected with a feasible metabolic pathway to external
source metabolites, such as glucose. Thus, our method is able to provide fea-
sible suggestions that are backed by the genomic evidence about the topology
of the reconstructed metabolic network. This should significantly speed up the
curation of metabolic network models. Our method does not assume any ex-
isting knowledge on specific pathways. In other words, pathway collections or
logical rules coding pathway information are not needed. However, it is possi-
ble to utilise easily information about known reactions and metabolites to aid
in the reconstruction process. For example, knowledge about experimentally ob-
served metabolites and reactions can be easily exploited in the framework. Thus,
the framework can be used both to produce ab initio reconstructions from the
genome sequence data, as well as to fill the gaps in a draft model of a metabolic
network.

To the authors’ best knowledge, the presented method is the only compu-
tational technique for metabolic reconstruction that integrates the requirement
for structural consistency and the search of reactions that are most likely to be
catalyzed by the enzymes of the target organism to a single, global optimization
task.
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2 Methods

We formulate the metabolic reconstruction problem formally in the optimization
context, a setting popular in the analysis of reconstructed metabolic networks
[5,32]. We start by introducing first the key concept of reaction reachability, and
then define metabolic reconstruction as the problem of finding a set of reachable
reactions that is likely catalyzed by the genes of the target organism. Finally,
a formulation in a mixed integer linear programming framework to solve the
problem is given.

2.1 Reaction Reachability

Informally, a reaction gap occurs, when the metabolic network model is unable
to supply all substrates of some reaction in the network. The model obviously
contains an error: either the reaction in question should be removed, or the
network should be modified to be able to provide the substrates.

We give a formulation of this idea by looking at reachability in an and-or-
graph corresponding to the metabolic network under study [33]. In this context,
we relate reactions with and-nodes and metabolites with or-nodes. Particularly,
a reaction ri = (Ii, Pi) is specified by its substrates Ii and products Pi. We then
investigate whether reactions can be reached in the network using the following
rules, given network input metabolites A. The input metabolites A correspond
to the nutrients of the organism under study. A typical example of inputs would
include glucose as the carbon source.

– A reaction ri = (Ii, Pi) is reachable from A in R, if each metabolite in Ii is
reachable from A in R.

– A metabolite m is reachable from A in R, if m ∈ A or some reaction rj =
(Ij , Pj) such that m ∈ Pj is reachable from A in R.

We want all reactions in the reconstructed network to be reachable. This
corresponds to not having any reaction gaps in the network.

Definition 1 (Feasible metabolic network). A metabolic network consisting
of reactions R is called feasible with respect to the source metabolites A, if and
only if all reactions r ∈ R are reachable from A in R.

We will now formulate the discovery of the largest feasible network consisting
of reactions in R with respect to source metabolites A as a linear programming
problem. This formulation will be then utilized in the metabolic reconstruction.
By vi we denote the rate, or flux of reaction ri in the network. In other words,
vi models the activity of reaction ri. Now, the reachability of metabolites in the
network can be coded by two constraints on their fluxes. The first constraint
requires that the production of each metabolite not in A is equal or greater than
its consumption, ∑

i

δijvi − tj ≥ 0, (1)
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where δij is −1, 1 or 0 depending on whether reaction ri consumes, produces
or does not use metabolite mj , vi ≥ 0 is the rate of reaction ri and tj ≥ 0 is
the rate of the dilution reaction of metabolite mj. The dilution reactions are
required to ensure that there will be no cycles which are not connected with a
path to network inputs A.

This is achieved by constraints requiring that whenever a metabolite mj is
produced by at least one reaction, the flux of the dilution reaction for that
metabolite must be greater than zero,

tj ≥ α
∑

i∈P (mj)

vi, (2)

where P (mj) is the set of reactions producing metabolite mj and 0 < α < 1.
To see that metabolite dilution reactions ensure that there will be no cycles

which are not connected to network inputs A, consider a cycle with reaction
rates vi > 0. Then, as the influx of some metabolite mj would be greater than
zero, also the corresponding dilution reaction flux tj > 0. Since this dilution
reaction participates to the steady state constraint of metabolite mj , only a
part of the flux to mj can be used in fluxes leaving mj . Thus, as all metabolites
are constrained by (1), all reaction rates vi (and tj) in the cycle have to be zero.

We can find all reachable reactions in the network by maximising
∑

ri∈R vi

under the above constraints: the reaction ri is reachable if and only if vi > 0.

2.2 Metabolic Reconstruction Problem

Next we formulate metabolic reconstruction as a mixed integer linear program-
ming problem involving the choice of reachable reactions to maximise a given
score function over the reactions.

Problem 1 (Metabolic reconstruction). Given a set of reactions R, a set of input
metabolites A, a threshold value b, and a score function fb : R → R, find a
subset R of R such that

1. Fb(R) =
∑

r∈R fb(r) is maximized and
2. the metabolic network with reactions R is feasible with respect to inputs A.

The corresponding mixed integer linear programming problem is the following.

Problem 2 (Metabolic reconstruction MILP).

max
x

∑
ri

fb(ri)xi

such that

1
N

xi ≤ vi (3)

vi ≤ Mxi, (4)
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∑
i

δijvi − tj ≥ 0, (5)

tj ≥ α
∑

ri∈P (mj)

vi and (6)

xi ∈ N (7)

where xi ∈ {0, 1} specifies whether reaction ri is included in the result, N and
M are appropriately large numbers, 0 < α < 1, vi is the rate of reaction ri, tj is
the dilution reaction rate corresponding to metabolite mj and P (mj) is the set
of reactions producing metabolite mj .

Values for xi, vi and tj are chosen during the optimization, while N , M and
α are constants. Constraints (3) and (4) require that xi = 0 ⇔ vi = 0. Reac-
tion cycles not connected to network inputs are disallowed with constraints (5)
and (6).

2.3 Reaction and Network Scores

We derive scores fb for reactions from the sequence homology evidence from the
genome of the organism under study as follows. The score fb(r) for the reaction
r is the homology score corresponding to the best match for a sequence in the
target genome and a sequence which already has reaction r as its functional
annotation. In other words, scores fb can be calculated with

fb(r) = max
s∈G

max
t∈Ur

S(s, t)− b, (8)

where s is a sequence in the genome G of the organism under study and t is
a sequence chosen from the set of sequences Ur annotated with reaction r in
the protein database. Function S(s, t) gives the degree of sequence similarity for
sequences s and t; in this study, we use BLAST [2], the mainstay sequence search
tool in bioinformatics.

We score a network simply as the sum of scores of reactions R of the network,

Fb(R) =
∑
r∈R

fb(r).

The threshold parameter b > 0 specifies a value dividing reactions into two
groups. Reactions with a positive score fb(r) bring positive contribution to the
overall network score Fb(R). Thus, if we would not require that all reactions are
reached from inputs, the optimization process would add all such reactions to
the result, while leaving every reaction with a negative score out. In particular,
the optimization may include a reaction with fb(r) < 0 to the network only if
the addition makes possible with respect to the feasibility constraint to add also
reactions giving positive contribution to the score.

2.4 Divide-and-Conquer Approach

Unfortunately, the exact formulation of the above reconstruction problem is com-
putationally infeasible for genome-scale instances. To tackle with the complexity,



294 E. Pitkänen et al.

we revise the formulation by dividing the original problem into smaller subprob-
lems and solving the subproblems individually. By this heuristic divide-and-
conquer approach, we are able to solve realistic genome-scale instances. The
central idea is to first find a good acyclic path that will be augmented into a
feasible pathway, and repeat the process until we are satisfied with the outcome.

We first generate a random acyclic path P = (r1, . . . , rn), ri ∈ R, starting
from a randomly chosen source metabolite a ∈ A. The next reaction ri+1 on the
path is selected by taking a random reaction that consumes a random product
of ri while ensuring that the path stays acyclic. Additionally, we require that
dR(A, ri+1) > dR(A, ri) for all reactions on the path, where dR(A, r) is the
production distance from metabolites A to reaction r in the network R [33].
The production distance is the smallest diameter taken over all minimal feasible
pathways from A to r, while diameter of a pathway is the length of the longest
acyclic path in the pathway. In effect, the distance dR(A, r) is the minimum
number of successive reactions needed to convert metabolites A into products
of the reaction r. If dR(A, r) is defined, then there exists a feasible pathway
connecting A to r. Finally, we take the longest path P ′ = (r1, . . . , rk), 1 ≤ k ≤ n,
such that the path score is positive,

∑
1≤i≤k fb(ri) > 0.

We then augment this initial path P ′ by adding all acyclic paths which start
from sources A and end in some reaction r ∈ P ′, requiring that a product of each
reaction ri ∈ P ′, 1 ≤ i < n, is a substrate to the subsequent reaction ri+1 ∈ P ′.
Again, we require that the production distances of the reactions added increase
from sources to reaction r. This is done to restrict the potentially very large
search space while still ensuring that the reactions in pathway P ′ can be made
feasible by the reactions in these acyclic pathways. Such paths can be found by
backtracking from reactions ri ∈ P ′ towards reactions with smaller production
distances until a source metabolite is found.

The reactions on the augmented pathway then comprise the reaction set R
of the Metabolic Reconstruction Problem 1. The problem is formulated as a
Problem 2 instance and solved. We obtain a result pathway that is feasible with
respect to sources A. Further, the pathway is an optimal subset of the augmented
pathway.

We repeat the above process of generating and augmenting an acyclic path
for a fixed number of iterations, adding the metabolites on the previous result
pathway to the set of source metabolites for the generation of the next pathway.
Since each metabolite added to sources A is reachable from the initial sources,
each successive pathway generated is also feasible. Finally, we take the union of
all generated feasible pathways to be the final result.

2.5 Coding of Reaction and Metabolite Evidence

The above method allows for use of pre-existing knowledge of metabolic reactions
and metabolites. If we have evidence that a particular enzyme operates in the
cell, we can set a constraint to the optimisation problem stating that the reaction
has to be present in the solution. Consequently, the reconstructed model would
then contain both the reaction and a good-scoring combination of reactions
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needed to make the network with the added reaction feasible. In the same way
evidence on the existence or absence of metabolites can be encoded into the
optimisation problem. Such evidence is available via metabolomics experiments,
for example.

Particularly, we can take a known metabolic network as a starting point and
find best-scoring reactions to add to fill the gaps in the network. This initial
network could be for example derived from sequence homology evidence, or be
the result of further manual curation. In this way, our method would serve as
an additional tool in aiding the curator.

In practice, however, we do not set a hard constraint for reaction existence
as described above. Instead, the reaction is rescored to a high value and the
optimisation problem is solved. If a reaction can be feasibly connected to the
network, the solver adds a good-scoring pathway which precedes the reaction to
the network. On the other hand, if the reaction cannot be feasibly connected,
the solver returns a solution model that does not contain the reaction. In the
formulation above, the solver would simply state that the problem is unsolvable,
which is not desirable.

3 Experiments

We implemented our divide-and-conquer method, denoted SCAR for Struc-
turally Consistent Automatic Reconstruction, as a script-driven program. A
Python [38] script is used to generate subproblem instances for the optimiser.
The mixed integer linear programming solver lp solve [3], licensed under LGPL,
was used to solve the individual subproblems. The Python script merged the
results from solved subproblems as the final result.

To test our method, we reconstructed a feasible metabolic network for the
well-known organism Escherichia coli from genome data. In particular, we were
interested in seeing whether the feasibility constraint that was enforced in the
reconstruction would cause the method to drop metabolic reactions which were
known to be present in the metabolism.

We downloaded the E. coli K12 protein sequences from NCBI with the ac-
cession number U00096 [4,14]. There were 4331 coding subsequences (CDS) in
total. As the enzyme database, we used UniProt version 9.3 [8] which contained
250296 protein sequences. We looked for the substring “(EC x.x.x.x)” in the tex-
tual description given for each sequence to find out which enzyme each sequence
coded for. In this way, we obtained 101137 sequences with an EC number1.

As the reaction database R, we used MetaCyc version 10.6 [15] with 6241
reactions of which 5255 had associated EC numbers. In what follows, this set of
reactions is referred to as the universal metabolic network.
1 Each Uniprot entry specifies the enzymatic reaction only at EC number level. EC

number can specify more than one concrete reaction, such as EC 2.4.1.1 which cor-
responds to phosphorylases operating on various sugar molecules. When the EC
number of an enzyme corresponds to multiple reactions in the reaction database,
each matching reaction receives the sequence homology score from that enzyme.
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Fig. 1. Number of gaps, or reactions not connected to sources with a feasible pathway,
in metabolic networks obtained with the thresholding method

We compared the E. coli protein sequences against all protein sequences from
UniProt with an EC number using BLAST [2]. E-value cutoff of BLAST was set
to 10 to detect remote homologs. From the BLAST scores obtained this way for
each sequence pair, we derived the reaction scores for MetaCyc reactions using
the equation (8).

Our method was compared against the baseline reconstruction method which
is based only on sequence homology scoring. In this thresholding method, a re-
action is chosen into the reconstruction only if the reaction score is higher than
some specified threshold. Naturally, the resulting metabolic network contains
gaps because the feasibility is not enforced in any way.

We reconstructed a metabolic network for E. coli using our method on the
data discussed above. We experimented with different threshold value param-
eters, varying the value from 0 to 400 in increments of 25. Different values of
threshold parameter model the degree of confidence we want the reconstructed
model to obtain from the sequence homology: with high values of the parame-
ter, smaller subnetworks with higher sequence homology evidence are produced,
while with lower parameter values larger networks with less sequence based evi-
dence are reconstructed. As the set of source metabolites A, we used 111 metabo-
lites including glucose, which is the main carbon source of E. coli, and cofactor
molecules that are known to be present in the organism in abundance, such as
ATP, NAD and CO2.

The number of gaps in metabolic networks obtained with the thresholding
method is shown in Figure 1. This value can be seen as a measure of the manual
work needed to curate the initial reconstruction by hand.
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Table 1. Summary of results for our reconstruction method (SCAR) and the thresh-
olding method (THRE) for the different threshold parameter values showing the num-
bers of reactions in results, feasibility gaps in THRE result (#Gaps), reactions with
negative scores filling the gaps in the SCAR result (#Fillers), average reaction score
(Score) and average score for gap filling reactions in the SCAR result (Fill score). The
scores reported are fb(r) scores with b = 0. Only the increments of 50 are shown in the
threshold value.

Threshold #Reactions (S / T) #Gaps #Fillers Score (S/T) Fill score

0 1354/1964 372 338 292.7/336.7 0
50 938/1280 319 208 410.4/498.3 7.1
100 809/1067 348 174 469.1/583.4 13.8
150 755/960 318 175 487.3/634.5 18.0
200 649/865 299 132 548.0/685.1 28.0
250 597/796 281 126 580.7/724.4 34.4
300 551/742 259 117 597.7/757.5 41.9
350 500/700 283 101 637.1/783.5 57.4
400 469/642 265 97 659.1/820.6 97.8

A summary of the reconstruction results for both our method and the thresh-
olding method is shown in Table 1. Our method produces smaller networks than
the thresholding method as some reactions with a high score are not included in
the result. This happens when the addition of such a reaction would also require
that negative-scoring reactions were added to the network due to the feasibility
constraint and the score of the resulting pathway would be negative. In this case,
the pathway is not added to the network. On the average, 20–25% of reactions in
our method’s result had a negative score meaning that they were used to fill the
gaps in the network. Similarly, the average reaction score is smaller compared to

Table 2. Reactions included in the EcoCyc database that were not found by the
thresholding method (threshold value 200) because of low reaction scores, but which
were included in the SCAR reconstruction. MetaCyc reaction identifiers without the
trailing RXN shown. A dash signifies a missing EC number or name in MetaCyc.

Reaction EC Name Score

1.1.1.283 1.1.1.283 Methylglyoxal reductase (NADPH-dependent) 37
1.13.11.16 1.13.11.16 3-carboxyethylcatechol 2,3-dioxygenase 0
BETA-PHOSPHOGLUCOMUTASE 5.4.2.6 β-phosphoglucomutase 186
CHORPYRLY 4.-.-.- - 40
GALACTITOLPDEHYD 1.1.1.- - 0
GLUCONOLACT 3.1.1.17 Gluconolactonase 0
NAG6PDEACET 3.5.1.25 N-acetylglucosamine-6-phosphate deacetylase 0
OXALODECARB 4.1.1.3 Oxaloacetate decarboxylase 52
PDXJ 2.6.99.2 - 0
RXN-821 - - 0
RXN0-313 4.-.-.- - 0
RXN0-5116 2.7.1.16 - 0
TAGAALDOL 4.1.2.40 Tagatose-bisphosphate aldolase 69
TAGAKIN 2.7.1.144 Tagatose-6-phosphate kinase 124
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Fig. 2. Phosphatidylserine decarboxylase reaction (EC 4.1.1.65) and the network in a
SCAR reconstruction that fills the gap present in the thresholding reconstruction with
threshold value 200. Note that each reaction is considered to be bidirectional, thus
the directionality of arrows carries no other meaning than separating substrates and
products of the same reaction. The figure was generated with the BMVis visualisation
tool [1].
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the thresholding method as expected, because the method repairs the gaps with
low-scoring reactions.

Our method took about 150 seconds on the average to run per reconstruction
on a 1.6 GHz Pentium M processor. The running time can be tuned by setting
the maximum number of initial paths generated. In this experiment, we used a
maximum of 6000 paths which was experimentally verified to be enough for the
network score Fb(R) to converge.

At threshold parameter value b = 200, our method was able to recover 14
reactions missed by the thresholding method but found in the EcoCyc database.
EcoCyc is a comprehensive, manually curated database of E. coli metabolism
[24]. These reactions are shown in Table 2. As the score of each reaction is below
the threshold value, the reason why these reactions were added to the result was
to satisfy the feasibility constraint.

As an example of a gap that exists in the thresholded reconstruction but
which has been filled in a SCAR reconstruction, consider the reaction phos-
phatidylserine decarboxylase (EC 4.1.1.65) which received a score fb(r) = 412
from the BLAST alignment of E.coli sequence GI 1790604 and UniProt sequence
P0A8K4, with b = 200. Our method succeeded in repairing the gap; the reaction
and a feasible subnetwork that repairs the gap is shown in Figure 2.

4 Discussion

In this article we introduce a computational method to assist the reconstruction
of a metabolic network of an organism based on its genome information. The
method is based on optimization techniques and graph traversal algorithms. As
a distinctive feature, the presented method combines the search of reactions
that are most likely catalyzed by the genes of the target organism and the
filling the gaps in the reconstructed metabolic network to a single computational
step. It is easy to incorporate experimental evidence, such as information about
experimentally observed metabolites or reactions with the method to improve
the quality of the reconstructed metabolic network models.

As the present method constructs gapless metabolic networks, the recon-
structed models can contain also reactions that have no known catalyzing
enzyme, as long as these reactions improve the feasibility of the model. The ad-
vantages of this feature are twofold. First, we can augment the reaction database
utilized by the reconstruction algorithm with computer-generated, or hypothet-
ical, reactions [20] without the knowledge of enzymes possibly catalyzing these
reactions. Second, the identification of an unannotated but structurally neces-
sary reaction can serve as a hint for finding the gene responsible for that par-
ticular function. This capability is beyond most current computational methods
for metabolic reconstruction.

The present method shares some properties with recently introduced method
called GapFill [28]. The main difference between GapFill and the present method
is found from the weaker definition of the reaction gap applied in the GapFill.
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In GapFill, reaction gaps are thought to be removed as soon as the network
produces substrate metabolites for each of its internal reactions – even if the
network is unable to produce these metabolites from its external substrates.
This formulation easily leads to situations where the gaps in a draft network
are filled by small cycles where reactions produce substrates for each others, but
that are disconnected from the rest of the network. In the present method, on
the other hand, we require the substrates of each reaction in the network have
to be produced from the external sources. We argue that our stronger definition
of the reaction gaps is biologically more relevant: the network model where some
metabolites cannot be produced from the external sources is clearly incomplete.
For example in the most tasks of constraint based modelling of metabolism,
the reactions whose substrates cannot be produced from the external substrates
are irrelevant, and can be removed from the model as a preprocessing step.
Furthermore, in GapFill the gaps in the network are filled locally, and only the
number of reactions needed to fill the gaps is considered in the optimization.
The present method, on the other hand, looks for globally optimal modifications
to simultaneously fill all the gaps, taking also the available genomic evidence for
the existence of gap-filling reactions in the target organism into account.

To conclude, we believe that the present method is able to produce useful sug-
gestions about the structure of a metabolic network to guide a domain expert
in a very time-consuming task of metabolic reconstruction. To further improve
the accuracy of the reconstructed metabolic network models, we will investigate
alternative ways of scoring the reactions in a database. These alternatives con-
tain more advanced methods for detecting homologous sequences between the
enzymes in a database and the genome of the target organism that might share
a function, as well as the inclusion of the other type of data, such as whole-cell
metabolome measurements, into the computation of reaction scores.
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1 Department of Computer Science, TU Eindhoven, P.O. Box 513,
5600 MB Eindhoven, The Netherlands

H.Zantema@tue.nl
2 Department of Biomedical Engineering, TU Eindhoven, P.O. Box 513,

5600 MB Eindhoven, The Netherlands
D.Bosnacki@tue.nl

3 Institute for Computing and Information Sciences, Radboud University
Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

Abstract. We describe an improvement of an algorithm for detecting
frequently occurring patterns and modules in biological networks. The
improvement is based on the observation that the problem of finding fre-
quent network parts can be reduced to the problem of finding maximal
frequent item sets (MFI). The MFI problem is a classical problem in the
data mining community and there exist numerous efficient tools for it,
most of them publicly available. We apply MFI tools to find frequent
subgraphs in metabolic pathways from the KEGG database. Our exper-
imental results show that, compared to the existing specialized tools for
frequent subgraphs detection, the MFI tools coupled with an adequate
postprocessing are much more efficient with regard to the running time
and the size of the frequent graphs.

1 Introduction

Understanding the structure and dynamics of biological networks is one of the
main challenges of bioinformatics and systems biology. Insight into the network
organization and behavior helps us to understand the biological processes in-
side the cell. With the increase of network related experimental data effective
methods and models to analyze this data are needed.

A natural way to model biological networks is by means of graphs. The prob-
lem of finding frequent subgraphs in a collection of graphs representing biological
networks was introduced by Koyutürk, Grama and Szpankowski [8]. In a sense,
the problem is analogous to finding common subsequences in a collection of bio-
logical sequences that usually represent genes. Specialized tools for such sequence
alignment, like CLUSTAL and BLAST, have been used routinely by researchers.
The similarity between gene sequences detected in this way can be used to derive
different kinds of structural, evolutionary, and functional information.

Similarly, detecting common parts in biological networks within one organism
or across different organisms can provide insight into common motifs of cellular
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interactions, organization of functional modules, relationships and interactions
between sequences, and patterns of gene regulation.

The problem of finding all maximal frequent subgraphs can be formulated as
follows: given a collection of graphs and a natural number n, called threshold,
find all subgraphs that are contained in at least n graphs of the collection. An
additional condition is that the subgraphs are connected, i.e., between each two
nodes a, b of such a subgraph there is a path either from a to b or vice versa.
Moreover, we require that the graphs are maximal in the sense that they are not
contained in another frequent subgraph.

One can consider the graphs of the given collection as sets of edges. In this
way the problem of finding all maximal frequent subgraphs is reduced to the
problem of finding maximal frequent subsets that correspond to graphs consist-
ing of one connected component. Like the subgraphs above, a subset is frequent
and maximal if it is contained in more than a threshold number of sets of the
collection and it is not a subset of any other maximal frequent set. Thus, in
our approach we remove the connectedness requirement and we simply look for
unrestricted maximal frequent subsets. (The latter correspond to graphs that
are not necessarily connected.)

Our improvement is based on the fact that one can recover all maximal fre-
quent connected subgraphs if one knows all maximal frequent (unrestricted) sub-
graphs. Finding the latter boils down to the problem of finding so called maximal
frequent item sets (MFI), which is a classical problem in the area of data min-
ing. Thus, in the first step our method finds all maximal frequent subsets. In the
second step the collection of maximal frequent subsets (item sets) is processed
to find all maximal frequent subgraphs.

The algorithm by Koyutürk et al. in [8] is also based on the maximal frequent
item sets. This algorithm seeks to improve the MFI algorithm by taking into
account the additional information that the item sets that we are looking for are
connected graphs. In contrast, we use the MFI algorithm(s) as a black box and
obtain the final collection of subgraphs by a postprocessing of the output of the
MFI algorithm. In this way, one can take a full advantage of the highly efficient
algorithms and tools that are developed for data mining [2]. It turns out that
these fast algorithms fully compensate the additional overhead incurred by the
postprocessing.

Our experiments with biological networks extracted from the KEGG data-
base [12] show that one can achieve a significant speed-up compared to the
algorithm in [8]. More concretely, we applied our algorithm to graphs extracted
from metabolic networks as it was done in [8]. These graphs have enzymes as
nodes, while the edges represent functional relations between the enzymes. In
particular, there is an edge between two enzymes if the corresponding reactions
that they catalyze are related. This means that the output of one reaction is
an input for the other. Although some information is inevitably lost by such a
representation, the benefit is that the graph mining problem is simplified signif-
icantly. At the same time, in practice, the enzyme graphs can be related back to
the metabolic pathways in a straightforward way.
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The choice to use enzyme graphs derived from KEGG metabolic pathways is
mainly motivated by the fact that we want to compare our approach with the
existing state of the art method from [8]. This being said, our approach is much
more general and it can be applied to other kinds of biological networks as well.

To summarize, the main contributions of this paper are:

– Reduction of the problem of finding maximal frequent subgraphs to finding
maximal frequent item sets.

– As a result we are able to find frequent subgraphs for smaller thresholds and
much faster than the existing state of the art algorithm/tool by Koyutürk
et al. [8].

– We apply the algorithms to the new data set extracted from the latest version
of KEGG. The latter is significantly larger than the version of the KEGG
data used in [8].

Related work. There exists extensive literature on mining frequent patterns in
networks and in particular on mining frequent subgraphs which is beyond the
scope of this paper. Here we do not discuss also the class of approaches that
defines the mining problem as one of finding isomorphic subgraphs (e.g., [11,16]),
since they turn out to be too computationally expensive for the kind of biological
applications that we are targeting.

As we already emphasized, the main difference between our approach and
the one in [8] is that they adjust the MFI algorithm trying to exploit the con-
nectedness of the item sets/graphs. In contrast, we are using the MFI algorithm
unchanged and apply postprocessing to extract the maximal frequent subgraph
from its output. In [9] a new algorithm is presented that combines the algorithm
in [8] with a graph simplification technique, called ortholog graph contraction.
This algorithm was used for detecting conserved patterns in biological networks.
The MFS algorithm in [8] is a modification of the MFI algorithm in [3]. The lat-
ter also gives a nice overview of the state of the art MFI algorithms and tools. An
MFS algorithm which is extension of an a priori mining technique for MFI was
presented also in [6]. This algorithm works with the adjacency matrices of the
graphs. As a drawback it tends to be expensive for large sparse graphs that oc-
cur in biological applications. Another algorithm for finding MFS was presented
in [1]. Because of the relatively straightforward enumerative approach, this al-
gorithm cannot handle larger graph collections. Other algorithms for MFS were
given in [4,5,15]. The comparison of these works with our approach remains for
future work.

Paper layout. In Section 2 we introduce graph models of metabolic pathways
that are used in the experimental evaluation of our approach. Section 3 gives
the theoretical background and results on maximal frequent items and maximal
frequent subgraphs. Section 4 describes the main contribution of the paper –
the algorithm for finding maximal subgraphs. In Section 5 we report on some
experimental results with a prototype implementation of our algorithm. The
final section concludes the paper and points to some future work.
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2 Graph Models of Metabolic Pathways

In this section we define the graphs corresponding to metabolic pathways along
the lines of [8].

Each pathway can be seen as a set of chemical reactions that are catalyzed
by enzymes. Each reaction involves a set of compounds called metabolites.
Metabolites that are an input of the reaction are called substrates. The output
metabolites are called products. This intuition behind the metabolic pathways is
captured formally in the following definition.

Definition 1. A metabolic pathway (M, Z, R) is a collection of metabolites M ,
enzymes Z and reactions R. Each reaction r ∈ R is associated with a set of enzymes
Z(r) ⊆ Z, a set of substrates S(r) ⊆M , and a set of products T (r) ⊆ M .

The reactions may be connected with each other in the sense that products
of one reaction can be substrates for another. In the applications described in
this paper, we focus on capturing interconnections between enzymes. To this
end, we define directed graphs that have enzymes as nodes and where the edges
represent interactions between the enzymes. As the enzymes are closely related
to the reactions, we consider that there is a relation (edge in our graph) if there
exists a connection between the reactions, i.e., if a reaction corresponding to
the target enzyme consumes a product of a reaction corresponding to the source
enzyme. More formally,

Definition 2. With a given metabolic pathway (M, Z, R), we associate a di-
rected enzyme graph (V, E), where V and E are the sets of vertices and edges,
respectively, defined as follows:

– V = Z,
– E ⊆ V × V and (z, z′) ∈ E if and only if for some r, r′ ∈ R it holds that

• z ∈ Z(r), z′ ∈ Z(r′), and
• T (r) ∩ S(r′) �= ∅.

By representing the version of a given metabolic pathway for each organism of
some database [7,10],e.g. KEGG, one obtains a collection of enzyme graphs. All
graphs in such a collection have the same set of vertices V and they differ only
in the edge set E.

An interesting application of the enzyme graphs is in finding frequently oc-
curring patterns in metabolic pathways. Identifying those patterns can provide
insight into the evolution, structure and function of the metabolic pathways.
(See [8] for a more extensive discussion on the motivation.) The problem of find-
ing frequently occurring patterns can be translated into a problem of finding
maximal frequent subgraphs of the graphs in the collection. We also require
that these graphs are connected, since we are interested in related parts of the
metabolic pathway. The maximality requirement ensures that we obtain a com-
pact representation of the frequent patterns in the sense that no pattern is
contained in another pattern. We formalize these concepts in the next section.
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The above described conversion of metabolic pathways into enzyme graphs
simplifies the algorithmic analysis significantly. Nevertheless, the obtained re-
sults are still biologically relevant. With the conversion some information is in-
evitably lost. For instance, two different metabolic pathways that feature the
same enzymes and differ only in their reactions can be associated with the same
enzyme graph. Thus, strictly speaking the conversion back from an enzyme graph
to a metabolic pathway is not unique. (See [8] for an example of metabolic path-
ways and their corresponding graphs.) However, in practice usually it is easy
to recover the interesting biological information from the enzyme graphs, i.e. to
revert back to the original metabolic pathway graphs.

3 Maximal Frequent Subgraphs and Maximal Frequent
Item Sets

This section gives the basic definitions and concepts about maximal frequent
subgraphs and maximal frequent item sets. It also presents some original results
that are used later on in the design of the algorithm for finding maximal frequent
subgraphs.

A graph (V, E) is given, where V is the set of nodes (vertices) and E ⊆ V ×V
is the set of edges. Also a set of subgraphs (V, Ei) is given for i = 1, . . . , n,
satisfying Ei ⊆ E for all i = 1, . . . , n. In all our observations on graphs the set V
of nodes is fixed. The only difference in the graphs is in the set of edges, always
being a subset of E. In the sequel we identify a graph (V, E′) with its set of
edges E′.

Although the graphs are directed, the direction of the arrows does not play
a role and the graphs can be considered to be undirected without affecting
the algorithms that we give in the sequel. Consequently, two edges (v, v′) and
(w, w′) are said to be connected if {v, v′}∩ {w, w′} �= ∅. A graph E′ is said to be
connected if for every two edges e, e′ ∈ E′ there exist edges e1, . . . , ek ∈ E′ for
some k such that e = e1, ek = e′ and the two edges ei and ei+1 are connected for
all i = 1, . . . , k− 1. It is easy to see that this coincides with the usual definition
that requires that between any two nodes of the graph there is a path.

Given a threshold t, a graph E′ is said to be a frequent item set if

#{i ∈ {1, . . . , n} | E′ ⊆ Ei} ≥ t.

where t is a natural number and #S denotes the number of elements in the set
S. Given a threshold t, a graph E′ is said to be a frequent subgraph if it is a
connected frequent item set.

A graph E′ is said to be a maximal frequent item set if it is a frequent item
set and there is no frequent item set E′′ distinct from E′ such that E′ ⊆ E′′ ⊆
E. Likewise, a graph E′ is said to be a maximal frequent subgraph if it is a
frequent subgraph and there is no frequent subgraph E′′ distinct from E′ such
that E′ ⊆ E′′ ⊆ E. Finally, a graph E′′ is said to be a component of a (possibly
not connected) graph E′ if E′′ ⊆ E′, E′′ is connected and there is no connected
graph Ẽ distinct from E′′ such that E′′ ⊆ Ẽ ⊆ E′.
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Fig. 1. A graph collection example

We illustrate these notions by the following example. Let us consider the
graphs in Fig. 1.

We choose the threshold to be 2. Then there are two maximal frequent item
sets: {a, b, d} and {d, e}. Note that the maximal frequent item sets {a, b, d} is not
connected. There are also two maximal frequent subgraphs: {a, b} and {d, e}.

Our algorithm and its runtime improvement upon earlier algorithms is based
on the following observations:

– Components of a graph are easily found for any given graph by a standard
algorithm.

– Maximal frequent item sets can be found much faster than maximal frequent
subgraphs.

– Maximal frequent subgraphs can be obtained by decomposing maximal fre-
quent item sets into components, as is stated by the following theorem.

Theorem 1. Every maximal frequent subgraph is a component of a maximal
frequent item set.

Proof. Take an arbitrary maximal frequent subgraph E′; we have to prove that
it is a component of a maximal frequent item set. By definition E′ is frequent.
Next obtain E′′ from E′ by adding edges outside E′ one by one as long as the
new set is frequent. So E′′ is frequent, and no other edge can be added to E′′ by
which it remains frequent, so E′′ is a maximal frequent item set. Now it remains
to prove that E′ is a component of E′′. By definition E′ is connected; we have to
prove that no connected graph Ẽ distinct from E′ exists such that E′ ⊆ Ẽ ⊆ E′′.
Assume it exists, then it is frequent since Ẽ ⊆ E′′ and E′′ is frequent. Moreover
it is connected, so Ẽ is a frequent subgraph. This contradicts the assumption
that E′ is a maximal frequent subgraph. ��

The following theorem is useful to establish which of the components of a max-
imal frequent item set are maximal frequent subgraphs.
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Theorem 2. Let U be a set of frequent subgraphs such that every maximal fre-
quent subgraph is in U . Then the set of maximal frequent subgraphs is equal
to

{E′ ∈ U | there is no Ẽ ∈ U distinct from E′ satisfying E′ ⊆ Ẽ}.

Proof. Assume E′ is a maximal frequent subgraph. Then it is in U . Due to
maximality there is no strictly greater frequent subgraph Ẽ, by which E′ is in
the given set.

Conversely let E′ be in the given set. Since it is in U it is a frequent subgraph.
Now construct Ẽ from E′ by adding edges as long as Ẽ is a frequent subgraph.
Now by construction Ẽ is a maximal frequent subgraph. So Ẽ ∈ U . Since E′ is
in the given set, this is only possible if Ẽ = E′. Hence E′ is a maximal frequent
subgraph. ��

4 An Algorithm for Finding Frequent Subgraphs Via
Frequent Item Sets

This section describes the algorithms that are used in the sequel supplemented
by some illustrative examples.

For our small example in Fig. 1 we can construct all maximal frequent sub-
graphs out of the two maximal frequent item sets {a, b, d} and {d, e} as follows:

– We decompose the frequent item sets into their components {a, b}, {d} and
{d, e}.

– By Theorem 1 we know that every maximal frequent subgraph coincides
with one of these components, so in Theorem 2 we may choose U to be the
set of these three components.

– We observe that {d} ⊆ {d, e} and that the other pairs of components are
incomparable.

– By Theorem 2 we conclude that there are exactly two maximal frequent
subgraphs: {a, b} and {d, e}.

Now we extend the idea of this example to a general applicable algorithm.
In order to compute the maximal frequent subgraphs from the set of compo-

nents of maximal frequent item sets, we have to remove all components which
are contained in another component. One way to do this is to first make the
set of all components of maximal frequent item sets and then for every pair of
components to check whether one is contained in the other, and if so, remove the
smaller. Slightly more efficiently, the same can be done on-the-fly, as is presented
in the algorithm FindMFS given in Fig. 2.

This algorithm has been designed in such a way that according to Theorems
1 and 2 at the end MFS consists exactly of the set maximal frequent subgraphs:
all components of all maximal frequent item sets are computed, and during the
execution of the algorithm, for any two of them for which the smaller is strictly
contained in the larger, the smaller is removed. As ingredients of the algorithm
we need:
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MFI := FindMFI({E1, . . . , En});
MFS := ∅;
for all E ∈ MFI do

begin
C := FindComponents(E);
MFS′ := MFS;
for all X ∈ C do

begin
MFS := MFS ∪ {X};
for all Y ∈ MFS′ do

begin
if X �= Y ∧ X ⊆ Y then MFS := MFS \ {X};
if X �= Y ∧ Y ⊆ X then MFS := MFS \ {Y };
end

end
end

Fig. 2. Algorithm FindMFS for finding MFS via MFI

– The computation FindMFI of the set of all maximal frequent item sets. For
this we use the the tool Afopt [13,2].

– The computation FindComponents of all components of a possibly non-
connected graph. For this we use the standard algorithm (c.f., [14]) starting
by a single edge and repeatedly adding all connected edges.

In our graph collection example the algorithm starts by finding the set of
maximal frequent item sets to be MFI = {{a, b, d}, {d, e}}. Assume that E =
{a, b, d} is first chosen in the outer loop. Then the two components {a, b} and
{d} are computed. Since MFS′ is still empty, after the first execution of the
body of the outer loop, the set MFS consists of these two components. In the
second execution of the body of the outer loop the remaining set {d, e} is chosen
and decomposed into components. It turns out that this set is one component
itself, and is added to MFS. Next in the inner loop it is checked whether this
new component {d, e} is either a subset or a superset of a component we found
before. It is: {d} ⊆ {d, e}, by which {d} is removed from MFS, yielding the final
set MFS = {{a, b}, {d, e}}, indeed being the set of maximal frequent subgraphs.

5 Experimental Results and Discussion

In this section we give some experimental results with our approach and we
compare them with the results obtained with the pathway miner tool pwmine de-
scribed in [8]. We applied our algorithm to metabolic pathways from the KEGG
database. Because of the comparison with above mentioned tool pwmine, we
chose the same three metabolic pathways as in [8]: Glutamate, Pyrimidine and
Alanine-Aspartate. In the sequel we discuss the results for each pathway sepa-
rately.
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We did two sets of experiments. In the first set we applied pwmine and our
approach to the same data that was used in [8]. In the second set the tools were
applied to new data from the KEGG database (as it was on January 1, 2008).
The enzyme graphs were automatically extracted from the corresponding XML
files. In KEGG each pathway has one general XML file. There is also one specific
XML file per organism for that pathway in which the enzyme graph is given.
Using the information in those files, we extracted those graphs and translated
them into the corresponding input formats for the tools pwmine and Afopt using
Java programs.

All experiments were performed on a PC with four 1.99 GHz Dual Core AMD
Opteron 270 processors and 16GB memory, running under Linux. All time mea-
surements were done using the time command. We obtain the total time used
by adding the user time (u) and the system time (s). (We avoid using the total
time as it includes the time consumed by other processes of the system.)

The columns in the tables indicate the following:

– T (%) gives the threshold value as percentages of organisms/graphs in the
dataset.

– T (# org.) indicates the absolute threshold value in number of organisms/grafs
for that dataset.

– #fr. edg. indicates the number of distinct frequent edges.
– #MFS gives the number of maximal frequent subgraphs.
– Max E indicates the number of edges in the largest maximal frequent sub-

graph.
– The ”pwmine” column contains the runtime in seconds of the tool pwmine.
– The ”FindMFS” column gives the total time (in seconds) we needed to cal-

culate the maximal frequent item sets (MFI) and to extract all maximal fre-
quent subgraphs from MFI. This was done by a Java implementation of the
algorithm FindMFS given in Fig. 2 (Section 3). All programs can be down-
loaded from http://www.findmfs.tk/. (As it was previously mentioned, we
used the tool Afopt to find the MFIs that we downloaded from [2].)

The time it took to produce the input files for pwmine and the files for Afopt
is not taken into account. This is required only once per dataset and as such it
causes only a negligible overhead.

5.1 Glutamate

Table 1 contains the experimental results for the Glutamate pathway obtained
with the KEGG data used in [8]. At that time (2003) the KEGG database
contained data for this pathway for 155 organisms. Therefore we consider a
collection of the corresponding 155 enzyme graphs.

With this version of the KEGG database, for thresholds greater than 10%
pathway mine is still faster than FindMFS. For thresholds of 5% and 7.5%
FindMFS wins. Actually, for 5% the difference is already quite significant: pwmine
cannot produce a result within 2000 seconds while FindMFS needs less than 2
seconds to find all maximal frequent subgraphs. For practical reasons this detail
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Table 1. Experimental results for the Glutamate pathway with data from [8]

T (%) T (# org.) #fr.edg. #MFS Max E pwmine FindMFS

5.0 8 190 132 30 >2000 1.880
7.5 12 103 56 15 1.488 1.088
10.0 16 70 34 15 0.384 0.931
12.5 19 58 39 13 0.127 0.949
15.0 23 36 21 11 0.028 0.830
17.5 27 26 13 10 0.016 0.904
20.0 31 23 12 9 0.010 0.801
30.0 47 10 7 3 0.008 0.757
40.0 62 4 2 3 0.008 0.859
50.0 78 1 1 1 0.007 0.807
60.0 93 0 0 0 0.009 0.744
70.0 109 0 0 0 0.008 0.923
80.0 124 0 0 0 0.008 0.778

Table 2. Experimental results for the Glutamate pathway with new KEGG data

T (%) T (# org.) #fr.edg. #MFS Max E pwmine FindMFS

5.0 35 115 1260 76 >2000 11.602
7.5 52 113 959 70 >2000 6.361
10.0 70 107 658 62 >2000 5.158
12.5 87 100 498 49 >2000 3.716
15.0 105 90 376 42 >2000 3.197
17.5 122 87 275 38 >2000 2.196
20.0 140 82 222 37 >2000 2.249
30.0 209 57 135 29 >2000 1.794
40.0 279 42 36 25 >2000 1.084
50.0 349 28 29 18 10.88 1.132
60.0 419 18 14 11 0.124 1.022
70.0 489 13 13 3 0.028 0.89
80.0 558 0 0 0 0.027 0.661

may be only slightly beneficial, but it indicates what could happen when dealing
with a larger amount of data, as we show in the sequel.

In Table 2 the analogous measurements for both tools are given using new
data from the KEGG database (as of 01-01-2008). The Glutamate pathway in
that version of the database contained 698 organisms.

With the new data FindMFS is a clear winner for thresholds below 60%. Al-
ready for a threshold of 40% FindMFS is more than 1,000 times faster than
pwmine. Moreover, pwmine is not able to produce results within 2000 seconds for
thresholds below 40%.

Using the old KEGG data, we were able to find the examples of maximal
frequent subgraphs for Glutamate that were reported in [8] and that are given in
Fig. 3. (Of course, this comes as no surprise, since we used the same data.) Using
different thresholds one can obtain different versions of the graph in Fig. 3. By
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6.1.1.17 6.3.5.1

6.3.1.2 6.3.5.2

2.4.2.142.6.1.16

Fig. 3. Glutamate maximal frequent subgraphs (old data)

setting the threshold to 29%, which amounts to 45 of 155 organisms, one obtains
the graph of 4 nodes and 6 edges which are shown in bold. All the enzymes in
this subgraph are related through the use of the metabolite L-glutamine (see [8])
for more details).

By lowering the threshold to 19.3% (30 organisms) we get a graph of 5 nodes
and 10 edges which is a supergraph of the above described graph. In Fig. 3 the
nodes and the edges of the new graph are drawn with solid lines. The new graph
is a supergraph of the old one and the new enzyme is also added because of
a reaction involving L-glutamine. Finally, a threshold of 14.2% (22 organisms)
gives another maximal graph that comprises 6 nodes and 13 edges and that
contains the previous two. The new nodes and edges are denoted with dotted
line. In this case too, the new enzyme is related to the L-glutamate.

The graphs in Fig. 3 are found with the new data as well by applying the
same thresholds. Only this time they are embedded as subgraphs of larger max-
imal frequent subgraphs. For instance, taking the lowest threshold of 29% (202
organisms out of 698 in the new data) the corresponding graph from [8], i.e., the
bold line graph in Fig. 3 obtained with the same threshold, can be found back
as a subgraph of 9 larger graphs that have sizes of 12, 16, 18, 21, 22, 23, and 29
edges. The smallest of those graphs (12 edges) is given in Fig. 4.

The corresponding subgraph in Fig. 3 is drawn in bold in Fig. 4 too. The new
enzymes EC 1.4.1.13, EC 1.5.1.12, and EC 2.6.1.1 are again related to the nodes
of the old graph via L-glutamate.

Alternatively, the graph obtained with threshold 29% with the old data is
found as a maximal frequent subgraph also with the new data. Only the threshold
should be raised to 58% (405 out of 698 organisms).
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6.3.5.1

6.3.5.2

2.4.2.142.6.1.16

1.4.1.13

1.5.1.122.6.1.1

Fig. 4. Glutamate maximal frequent subgraphs (new data)

5.2 Pyrimidine Pathway

Tables 3 and 4 contain the results with the old (156 organisms) and new KEGG
data (697 organisms), respectively, for the Pyrimidine pathway. Similarly as for
the Glutamate pathway above, on the new larger data set, FindMFS outperforms
pwmine for thresholds under 60%. The latter is not able to produce a result
within a reasonable time for thresholds below 30%. Also for this pathway we
were able to recover the maximal subgraphs reported in [8]. Using the same
thresholds they are part of larger maximal subgraphs.

Table 3. Experimental results for the Pyrimidine pathway with data from [8]

T (%) T (# org.) #fr.edg. #MFS Max E pwmine FindMFS

5.0 8 172 191 37 >2000 2.827
7.5 12 126 185 19 10.333 2.597
10.0 16 91 120 15 0.306 1.690
12.5 20 71 67 15 0.090 1.001
15.0 23 57 49 12 0.026 1.048
17.5 27 42 35 9 0.013 0.832
20.0 31 36 23 7 0.008 0.674
30.0 47 13 8 4 0.007 0.734
40.0 62 5 4 2 0.007 0.628
50.0 78 0 0 0 0.007 0.553
60.0 94 0 0 0 0.007 0.531
70.0 110 0 0 0 0.006 0.678
80.0 125 0 0 0 0.007 0.531
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Table 4. Experimental results for the Pyrimidine pathway with the new KEGG data

T (%) T (# org.) #fr.edg. #MFS Max E pwmine FindMFS

5.0 35 135 2684 70 >2000 49.151
7.5 52 108 3126 57 >2000 61.632
10.0 70 96 3595 50 >2000 63.989
12.5 87 90 3263 48 >2000 43.869
15.0 105 88 2396 46 >2000 27.46
17.5 122 83 1800 42 >2000 17.241
20.0 139 75 1390 38 >2000 12.103
30.0 209 64 546 30 >2000 4.401
40.0 279 52 310 26 1202.748 2.769
50.0 349 38 148 17 12.224 2.151
60.0 418 32 43 12 0.348 1.468
70.0 488 21 13 8 0.039 0.998
80.0 558 9 6 3 0.032 0.86

Table 5. Experimental results for the Alanine-Aspartate pathway with data from [8]

T (%) T (# org.) #fr.edg. #MFS Max E pwmine FindMFS

5.0 8 178 100 31 >2000 1.331
7.5 12 114 72 18 11.464 1.107
10.0 16 61 34 16 2.494 0.818
12.5 20 52 30 15 0.715 0.923
15.0 23 39 21 12 0.115 0.791
17.5 27 31 15 12 0.061 0.816
20.0 31 21 13 11 0.024 0.821
30.0 47 11 3 8 0.008 0.763
40.0 62 8 3 4 0.007 0.606
50.0 78 1 1 1 0.006 0.742
60.0 94 0 0 0 0.007 0.595
70.0 110 0 0 0 0.006 0.689
80.0 125 0 0 0 0.012 0.730

5.3 Alanine-Aspartate Pathway

The results with the Alanine-Aspartate pathway with the old 156 organisms
(Tab. 5) and new 698 organisms (Tab. 6) data show the same trend like in the
previous two cases. For lower thresholds FindMFS is much faster than pwmine.

6 Conclusions

We presented a new approach for mining frequently occurring patterns in bi-
ological networks. In particular we showed how state-of-the-art algorithms for
mining maximal frequent item sets can be employed for finding maximal frequent
subgraphs. We verified our approach experimentally on collections of metabolic
pathways from the KEGG database.
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Table 6. Experimental results for the Alanine-Aspartate pathway with the new KEGG
data

T (%) T (# org.) #fr.edg. #MFS Max E pwmine FindMFS

5.0 35 106 172 54 >2000 2.905
7.5 52 95 177 48 >2000 2.292
10.0 70 86 158 39 >2000 1.869
12.5 87 77 93 37 >2000 1.688
15.0 105 72 84 30 >2000 1.965
17.5 122 63 71 30 >2000 1.12
20.0 140 61 55 29 >2000 1.433
30.0 209 43 36 23 498.561 1.061
40.0 279 32 19 18 13.348 0.921
50.0 349 30 18 13 0.491 1.031
60.0 419 17 13 7 0.033 0.985
70.0 489 11 10 3 0.027 0.838
80.0 558 0 0 0 0.015 0.704

With our approach we obtain a real-time response for nearly all thresholds for
the current state of the KEGG database. For practical applications, analogous to
BLAST and CLUSTAL queries, such a fast feedback to the user is of utmost im-
portance. In contrast, the present MFS algorithms are not able to produce results
within a reasonable time for thresholds below 30%. Moreover, for thresholds for
which they do give results, our approach is up to 1,000 times faster.

As our approach is applicable to any type of biological networks, it would be
interesting to apply it on other case studies. We intend to investigate the effi-
ciency of our approach in case of a smaller number (less than 30) of large graphs
(more than 10,000 edges). This is complementary to the application described
in this paper in which we deal with a large collection of relatively small graphs.

Back to the KEGG metabolic pathways application, instead of applying our
approach indiscriminately to the whole database, one can narrow the graph
collection to a given class of organisms. It would be interesting to see if there is
a correlation between the maximal graphs that are found and the evolutionary
distance between different organisms.

In this paper we focused mainly on the algorithmic side of mining frequent
patterns in biological networks. The interpretation of the obtained results from
a biological point of view is an important avenue of future research.
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Abstract. Protein-Protein Interaction (PPI) networks contain valuable informa-
tion for the isolation of groups of proteins that participate in the same biological
function. Many proteins play different roles in the cell by taking part in several
processes, but isolating the different processes in which a protein is involved is
often a difficult task. In this paper we present a method based on a greedy lo-
cal search technique to detect functional modules in PPI graphs. The approach is
conceived as a generalization of the algorithm PINCoC to generate overlapping
clusters of the interaction graph in input. Due to this peculiarity, multi-facets
proteins are allowed to belong to different groups corresponding to different bio-
logical processes. A comparison of the results obtained by our method with those
of other well known clustering algorithms shows the capability of our approach
to detect different and meaningful functional modules.

1 Introduction

Proteins are the building blocks of all organisms and play a fundamental role in execut-
ing and regulating most biological processes. Recently, it has been noted that, to fully
understand cell activity, proteins cannot be analyzed independently from the other pro-
teins because they seldom act in isolation to perform their tasks [25]. Advances in tech-
nology have allowed researches to derive, through experimental and in-silico methods,
the collection of all interactions between proteins of an organism. The availability of
protein-protein interaction (PPI) networks has thus stimulated the search for automated
and accurate tools to analyze pair-wise protein interactions with the aim of extracting
relevant functional modules. A functional module is a group of proteins participating
to the same biological function. Their detection provides important knowledge to better
understand the behavior of organisms.

PPI networks are naturally modelled as graphs where nodes represent proteins and
edges represent pairwise interactions. Dense regions of a given PPI network correspond
to highly interacting proteins that could be involved in common biological processes.
One of the main difficulty in analyzing PPI graphs is their scale-free topology. A scale-
free graph is characterized by the property that the degrees k of vertices are distributed
according to a power law function, as P (k) ∝ k−α, where α > 0. This implies that
most proteins interact with only a few other proteins, while a small number of proteins,
known as hubs, have many interactions. Hubs proteins have been investigated [13] and
recognized to have an important role for the life of organisms. Typically, because of
their characteristic of being connected to a high number of proteins, they participate in

M. Elloumi et al. (Eds.): BIRD 2008, CCIS 13, pp. 318–330, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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multiple biological processes. Traditional clustering methods, however, assign a protein
to only one group, which is unlikely for biological systems. In such a way these methods
hamper the possibility of proteins to be clustered in several groups, on the basis of
the different functions they have in the cell. This represents a significant inability of
these approaches to describe the complexity of biological systems. To overcome such a
problem, recent proposals have suggested different strategies [19,24,3].

In this paper, we present a partitioning technique of protein-protein interaction net-
works to produce overlapping clustering of the interaction graph. The algorithm, named
Multi-Functional PINCoC (MF-PINCoC), is an extension of the method PINCoC, a
PPI network Co-Clustering based algorithm, presented in [20], suitably modified to
allow the participation of proteins to multiple functional groups. Co-clustering methods
[16], differently from clustering approaches, aim at simultaneously grouping both the
dimensions of a data set.

The PPI network is represented through the binary adjacency matrix A of the associ-
ated graph, where rows and columns correspond to proteins and a 1 entry at the position
(i,j) means that the proteins i and j interact. The algorithm searches for, eventually
overlapping, dense sub-matrices containing the maximum number of ones by using a
greedy local search technique. It starts with an initial random solution constituted by a
single protein and finds a locally optimal solution by adding/removing connected pro-
teins that best contribute to improve a quality function. In order to enable participation
of a protein to more groups, its degree k, i.e. the number of other proteins with which it
is connected, is computed. A protein can be added to the current cluster if the number
of clusters to which it has already been assigned is less than its degree. The method is
enriched with one step of backtracking, to limit the effects of the initial random choice
of a protein to build a cluster, and a remove strategy of proteins, to escape poor local
optima. When the algorithm cannot improve any more the solution found so far, the
computed cluster is returned. At this point a new random protein is chosen, and the
process is repeated until all the proteins are assigned to a group.

MF-PINCoC has two fundamental advantages with respect to other approaches pre-
sented in the literature. The first, inherited from PINCoC, is that the number of clusters
is automatically determined by the algorithm. The second, which is its main charac-
teristic, is that for each protein interacting with other proteins, MF-PINCoC is able to
identify the different groups in which the protein is involved, each group being distin-
guished by a different biological property. Note that, differently from other techniques
[24], MF-PINCoC allows the participation to different clusters not only to the highly
connected proteins recognized as hubs 1, but also to all the other proteins. Such a pecu-
liarity is automatically incorporated in the approach without any lack in efficiency, and
it avoids leaving possible candidates to be multi-facets proteins out from the analysis.

In the experimental result section we show that MF-PINCoC is able (i) to efficiently
isolate groups of proteins corresponding to the most compact sets of interactions, and
(ii) to assign proteins to more than one cluster, each characterized by a different biolog-
ical function. A comparison with other well known protein clustering methods points
out the very good results of our approach with respect to them.

1 In [24] the authors recognized as hubs those proteins involved in a number of interactions
between 40 and 283.
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The paper is organized as follows. The next section describes the MF-PINCoC al-
gorithm and the variations introduced w.r.t. PINCoC to allow overlapping clusterings.
Section 3 reports the related work on protein clustering. Section 4 illustrates the exper-
iments carried out on the Saccaromyces cerevisiae protein data set and compares the
obtained results with those of [4,14,24]. Finally, in Section 5 we draw our conclusions.

2 Approach Description

In this section we recall the notation adopted by both the MF-PINCoC and PINCoC al-
gorithms, and describe the extensions realized to allow for multiple group participation
of proteins.

A PPI network P is modelled as an undirected graph G = (V, E) where the nodes
V correspond to the proteins and the edges E correspond to the pairwise interactions.
If the network is constituted by N proteins, the associated graph can be represented
with its N × N adjacency matrix A, where the entry at position (i, j) is 1 if there is
an edge between nodes i and j, 0 otherwise. The problem of finding dense regions of
a PPI network P can be transformed in that of finding dense subgraphs of the graph
G associated with P , and consequently, dense sub-matrices of the adjacency matrix
A corresponding to G. Searching for dense sub-matrices of such a matrix A can be
viewed as a special case of co-clustering a binary data matrix where the set of rows
and the set of columns represent the same concept. In order to better explain the idea,
first a definition of co-clustering is given, and then the formalization of the problem
of clustering proteins as a co-clustering problem is provided. Co-clustering [16,7], also
known as bi-clustering, differently from clustering, tries to simultaneously group both
the dimensions of a data set. A co-cluster of a matrix A is defined as a sub-matrix
B = (I, J) of A, where I is a subset of the rows X = {I1, . . . , IN} of A, and J is a
subset of the columns Y = {J1, . . . , JM} of A.

Then, the problem of co-clustering may be formulated as follows: given a data ma-
trix A, find row and column maximal groups which divide the matrix into regions that
satisfy some homogeneity characteristics. The kind of homogeneity a co-cluster has to
fulfil depends on the application domain. In our case we would like to find as many
proteins as possible having the highest number of interactions. This corresponds to
identify highly dense squared sub-matrices, i.e., containing as many values equal to 1
as possible. Higher the number of ones, more likely those proteins are to be functionally
related.

Let aiJ denote the mean value of the ith row of the co-cluster B = (I, J), and aIj

the mean of the jth column of B. More formally,

aiJ = 1
|J|
∑

j∈J aij , and aIj = 1
|I|
∑

i∈I aij

The volume vB of a co-cluster B = (I, J) is the number of 1 entries aij such that
i ∈ I and j ∈ J , that is vB =

∑
i∈I,j∈J aij .

Given a co-cluster B = (I, J), the power mean of B of order r, denoted by Mr(B)
is defined as

Mr(B) =

∑
i∈I(aiJ )r +

∑
j∈J (aIj)r

|I|+ |J |
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A measure based on volume and row/column mean, that allows the detection of
maximal and dense sub-matrices, can be defined as follows.

Given a co-cluster B = (I, J), let Mr(B) be the power mean of B of order r. The
quality of B is defined as

Q(B) = Mr(B)× vB

The problem of protein clustering can be formulated as follows: given a data matrix
A, find row and column maximal groups that partition the matrix into sub-matrices
{B1, . . . Bh}, each having maximal Q(Bi) values.

It is worth to note that high values of the exponent r bias the quality function to-
wards matrices containing a low number of zeroes. In fact, it amplifies the weight of
the densely interconnected nodes, while reducing those of less connected in the com-
putation of the quality function. In the following the terms co-cluster, cluster, and
sub-matrix are used to express the same concept.

MF-PINCoC starts with an initial random cluster Bi = (Ii, Ji) constituted by a
single row and a single column such that Ii = {l} and Ji = {l}, where 1 ≤ l ≤ N
is a random row/column index. Then it evolves the initial cluster by successive trans-
formations of Bi, until the quality function is improved. The transformations consist
in the change of membership (called flip or move) of the row/column that leads to the
largest increase of the quality function. If a bit is set from 0 to 1 it means that the corre-
sponding protein, which was not included in the cluster Bi, is added to Bi. Vice versa,
if a bit is set from 1 to 0 it means that the corresponding protein is removed from the
cluster. During its execution, in order to avoid getting trapped into poor local maxima,
instead of performing the flip maximizing the quality, with a user-provided probabil-
ity p the algorithm selects the row/column of Bi scoring the minimum decrease of the
quality function, and removes it from Bi. This kind of flip is called REMOVE-MIN.
The flips are repeated until either a preset of maximum number of flips is reached, or
the solution cannot ulteriorly be improved (get trapped into a local maximum). Until
the number of flips is below a fixed maximum value and the quality function increases,
MF-PINCoC executes a REMOVE-MIN move with probability p, and a greedy move
with probability (1−p); otherwise, the cluster Bi = (Ii, Ji) is returned. At this point the
algorithm performs one step of backtracking, i.e., for each h ∈ Ii it temporary removes
h from Ii and tries to find a node l such that Ii − {h} ∪ {l} improves the quality of
Bi. In such a case h is removed and l is added. If more than one l node exists, the one
generating the better improvement of Q(Bi) is chosen. Finally, Bi is added to B, its
rows/columns are removed from A, a new random cluster is generated, and the process
is repeated until all the rows/columns have been assigned.

As previously pointed out, many proteins may be involved in several biological func-
tions by interacting with different groups of proteins. In order to allow these multi-facets
proteins to be assigned to more than one cluster, we relax the constraint adopted in PIN-
CoC to exclude a protein to be considered for inclusion in another cluster, once it has
already been put into a group. To this end, for each protein we compute its degree k, i.e.
the number of other proteins with which it is connected. When building a new cluster,
a protein can be added to the current cluster if the number of clusters to which it has
already been assigned is less than its degree. In such a way each protein, not only hubs,
can belong to multiple clusters, provided that its contribution to the quality function is
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effective, i.e. it is the choice that produces the best improvement. In the next section we
report the main proposals to protein clustering recently presented in the literature.

3 Related Work

Clustering approaches to PPI networks can be broadly categorized as distance-based
and graph-based [15] ones. Distance-based clustering approaches apply traditional clus-
tering techniques by employing the concept of distance between two proteins [2,18].
Graph-based clustering approaches consider the network topology and partition the
graph trying to optimize a cost function [12,5,10,4,23,22,14,19,24]. In the following
some of the main proposals are described.

Molecular complex detection (MCODE) [4] detects dense and connected regions by
weighting nodes on the basis of their local neighborhood density. To this end, the k-
core concept is applied. A k-core is a graph in which each vertex has degree at least
k. The highest k-core of a graph is the most densely connected subgraph. The core-
clustering coefficient of a node, i.e. the density of the highest k-core of the vertices
directly connected to it, is then used to give a weight to each vertex. MCODE performs
three steps: vertex weighting, complex prediction, and optional postprocessing to add
or remove proteins. In the first step nodes are weighted according to the density of
the highest k-core. In the second step the vertex with the highest weight is selected as
seed cluster, and new nodes are included in the cluster if their weight is above a fixed
threshold. This process is repeated for the next-highest unexamined node. In such a
way the densest regions of the graph are identified. Postprocessing is finally optionally
executed to filter proteins according to certain connectivity criteria.

The Restricted Neighborhood Search Clustering (RNSC), proposed by King et al.
[14], is a cost-based local search algorithm that explores the solution space of all the
possible clusterings to minimize a cost function that reflects the number of inter-cluster
and intra-cluster edges. The idea resembles our approach, however, RNSC uses two
cost functions. The first, called the naive cost function, for each node v, computes the
number of bad connections incident with v, i.e. one that exists between v and a node
not belonging to the same cluster of v, or one that does not exist between v and another
node in the same cluster as v. The second one, called the scaled cost function, measures
the size of the area that v effects in the clustering. The algorithm begins with a random
clustering, and attempts to find a clustering with low naive cost by moving a vertex
from a cluster to another one. Then it tries to improve the solution by searching for a
clustering with low scaled cost. Differently from the approach presented here, neither
MCODE nor RNSC allow the participation of a protein to multiple clusters.

Pereira et al. [19] transform the interaction graph into the corresponding line graph,
in which edges represent nodes and nodes represent edges. Then they apply the graph
clustering algorithm TribeMCL of [10] to group the interaction network corresponding
to the line graph, and transform back the obtained clusters. The approach of clustering
the line graph produces an overlapping graph partitioning of the original protein-protein
interaction graph, thus allowing proteins to be present in multiple functional modules.

In [1] CFinder, a program for detecting and visualizing densely interconnected and
overlapped groups of nodes, is presented. CFinder uses the Clique Percolation Method
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[9] to find k-clique percolation clusters, i.e. groups of nodes that can be reached via
chains of k-cliques and the link in these cliques. The parameter k has to be provided
in input. Approaches such as [1] may be viewed as general approaches to study the
structure of networks, suitably represented as graphs (e.g., genetic or social networks
and microarray data), rather than a specialized technique to cluster PPI networks.

In [8] Cho et al. propose a flow-based modularization approach to identify over-
lapping functional modules in a PPI network. The modularization process consists of
three phases: informative protein selection, flow simulation to detect preliminary mod-
ules and a post-process to merge similar preliminary modules. Differently from such
an approach, MF-PINCoC does not need any post-processing step to produce the final
overlapping clusterings.

Ucar et al. [24] propose an approach to reduce the scale-free topology of PPI net-
works by duplicating the hub nodes. After this refinement, the resulting graph is clus-
tered by using three known graph partitioning methods. Because of the duplication
process, hub proteins can be placed in multiple groups. Of course this multiple partici-
pation, differently by our approach, is not possible for the other proteins.

A different method, based on an ensemble framework, is described in [3]. The au-
thors use three traditional graph partitioning algorithms with two metrics to obtain six
basis clusterings. Then apply different consensus methods to decide each protein to
which cluster should belong. A soft consensus clustering variant has also been devel-
oped to allow proteins having high propensity towards multiple memberships, to be
assigned to different clusters. Though amenability to multiple membership is computed
for all the nodes, the authors note that hub proteins have the highest probability to par-
ticipate in more than one cluster. Both these last two methods need as input parameter
the number of clusters to find. Our approach, on the contrary, searches for all the possi-
ble clusters it can find in the network.

In the next section we report the results obtained by our approach and compare them
with those obtained by MCODE and RNSC, two of the most known methods in the liter-
ature [6]. Such a comparison further confirms the importance of allowing for multiple-
cluster participation; in fact, constraining each protein to belong to only one module
causes clusterings that are often less significant. Moreover, a discussion regarding the
participation of proteins to multiple clusters, with respect to the hub proteins identified
in [24], will be reported in the last sub-section.

4 Experimental Validation

In this section we present the results obtained by running MF -PINCoC on the PPI
network of budding yeast Saccaromyces cerevisiae. The data set has been extracted
from the DIP database [21] (http://dip.doe-mbi.ucla.edu/). At the time of download
(May 2007) it consisted of 5,027 proteins and 22,223 interactions.

4.1 Validation Metrics

Before presenting the experiments, we describe the validation metrics used to asses the
quality of the results. We used two metrics, a topological measure (clustering coeffi-
cient) and a domain based measure (p-value).
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Clustering Coefficient: the concept of clustering coefficient has been defined by Watt
in [26] and takes into account only the nodes of a network and how they are linked
together. Given a node i, let ni be the number of links connecting the ki neighbors of i
to each other. The clustering coefficient of i is defined as Ci = 2ni/ki(ki−1). Note that
ni represents the number of triangles passing through i, and ki(ki − 1)/2 the number
of possible triangles that could pass through node i. The clustering coefficient CBj of
a cluster Bj is the average of the clustering coefficients of the proteins belonging to
B. Analogously, the clustering coefficient CB of a clustering B = {B1, . . . , Bh} is
CB =

∑
CBj /h.

p-value: in the PPI networks it is important to verify if the clusters obtained corre-
spond to a function meaningful from a biological point of view. This validation can be
done by using the known biological associations from the Gene Ontology Consortium
Online DataBase [11] . The Gene Ontology database provides three vocabularies of
known associations: Molecular Function, Cellular Component, and Biological Process.
We used the process vocabulary for validation by querying the GO Term-Finder tool
(http://db.yeastgenome.org/cgi-bin/GO/goTermFinder) and the p-values returned to ob-
tain a statistical and biological meaningfulness of a group of proteins. The p-value is a
commonly used measure of the functional homogeneity of a cluster. It gives the prob-
ability that a given set of proteins occurs by chance. In particular, given a cluster of
size n with m proteins sharing a particular biological annotation, then the probability
of observing m or more proteins that are annotated with the same GO term out of those
n proteins, according to the Hypergeometric Distribution, is:

p− value =
n∑

i=m

(M
i )(N−M

n−i )
(N
n )

where N is the number of proteins in the database with M of them known to have that
same annotation. Thus, the closer the p-value to zero, the more significant the associated
GO term. The biological significance of a group is settled by using a cut-off value to
distinguish significant from insignificant groups. If a cluster has a p-value below the
cut-off, it is considered insignificant. In our experiments we used a cut-off of 0.05.
As observed in [24], it is interesting to have a global measure of an obtained clustering,
instead of the p-value of a single group. The p-value score of a clustering is then defined
as

clustering score = 1−
∑nS

i min(pi) + (nI × cutoff)
(nI + nS)× cutoff

where min(pi) is the smallest p-value of the partition i, nS is the number of significant
partitions, and nI is the number of insignificant partitions.

4.2 Comparison of MF-PINCoC, MCODE, and RNSC

In this section we compare the results obtained by running MF-PINCoC, MCODE, and
RNSC on the S. Cerevisiae network. In particular, such a comparison has been carried
out not only to investigate the ability of our method to discover significant functional
modules w.r.t. other well consolidated techniques, but also to analyze how allowing
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(a) (b)

Fig. 1. Comparison among the three methods, showing:(a) Clustering Score; (b) Clustering Co-
efficient

proteins to participate in different clusterings may be useful to obtain more significant
groups.

MF-PINCoC needs as input parameters the probability p of a REMOVE-MIN move,
the number of maximum moves allowed, and the order r of the quality function. We
set the former to 0.1, the second to 1,000, and the latter to 3. It is worth to note that (i)
a low value of probability p is preferable to avoid the disruption of the greedy steps; (ii)
the number of maximum flips has never been reached, in fact on average not more than
50 flips were executed before reaching a local optimum; (iii) the order value used is a
compromise between the compactness of clusters and their size. As regards MCODE
and RNSC, we run the two methods with the default parameters set by the authors.
MF-PINCoC returned 6,108 clusters, 5,189 were couples of proteins, 145 cliques con-
stituted by triples, 588 of size between 4 and 6, the remaining 186 with a number of pro-
teins between 7 and 40. MCODE obtained only 57 clusters, 17 of which were triples.
The cluster size is between 3 and 59. The clusters covered only 789 proteins out of
the 5,027 present. RNSC obtained 2,524 clusters, 1,017 were singletons, 972 couples
of proteins, 375 triples, 134 clusters of size between 4 and 7, and the remaining 26 of
size between 8 and 21. Because of the different number of clusters obtained, we chose
50 random clusters returned by each method with maximum size and queried the GO
Term-Finder tool. MF-PINCoC gave back one insignificant cluster, while MCODE and
RNSC gave 6 and 5 insignificant groups, respectively.

Figure 1 graphically illustrates the behavior of MF-PINCoC, MCODE and RNSC in
terms of both domain-based and topological measures. In particular, Figure 1 (a) shows
the clustering scores, computed on the 50 chosen clusters, for the three methods. The
figure points out that the clustering score of MF-PINCoC (0.980) is greater than those
of the other two methods, which is 0.879 for MCODE and 0.882 for RNSC respec-
tively. This means that the biological meaning of the clusters obtained by MF-PINCoC
is, on average, better than the clusters generated by the other two methods. Figure 1 (b)
shows the clustering coefficients computed on all the obtained clusters. The clustering
coefficient of MF-PINCoC has been computed for two different values of the parame-
ter r (r = 3, 4). As already observed in section 2, higher values of r bias our method
towards denser but smaller clusters. In fact, for r = 4 we obtained 6,322 clusters,
5,332 were couples, 138 cliques constituted by triples, 724 of size between 4 and 6, the
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Table 1. Some significant clusters obtained by the three methods MF-PINCoC, MCODE and
RNSC

Cluster p-value Associated process

MF-PINCoC PFS2,PTI1,MPE1,REF2,YTH1,FIP1,CFT1, 2.17E-26
CFT2,PTA1,YSH1,HCA4,PAP1,RNA14,GLC7

MCODE CFT1,CFT2,FIP1,GLC7,MPE1,PAP1,PFS2,PTA1,PTI1, 4.67E-27 mRNA
MPE1,PAP1,PFS2,PTA1,PTI1,REF2,RNA14,YSH1,YTH1 Polyadenylation

RNSC REF2,PCF11,GLC7,RNA14,YTH1,FIP1,PAP1,CFT1, 1.08E-28
CFT2,PTA1,YSH1,PTI1,PFS2,MPE1,HCA4,SSU72

MF-PINCoC NUP84,NUP60,CRM1,PAB1,MSN5,NUP57,NUP42,NUP49, 6.61E-26
GSP1,NUP145,SRP1,NUP2,NUP100,KAP123,KAP95,PSE1,NUP116 Nuclear Transport

MCODE MSN5, NTF2, NIC96, NUP145, NSP1, GSP1 1.66E-09
MF-PINCoC HAS1,MAK21,CIC1,SDA1,NOP6,NUG1,NOP7,CKA1,NOP2,SSF1, 1.68E-22 Ribosome

NOP4,BUD20,RPF2,YTM1,RLP7,NOP15,MAK5,NSA2,ERB1,TIF6,NOG1
Biogenesis

RNSC URB1, NOP4, MAK21, HAS1, NOC2, BRX1, CIC1, 2.90E-15 and Assembly
NOP12, PUF6, DBP10, NOP2, SSF1, RPF2, DRS1, MAK5

MF-PINCoC NUP84,CRM1,NUP120,MSN5,NUP42,NUP145,NUP57, 2.03E-23
NUP49,SRP1,NUP2,NUP100,KAP95,PSE1,NUP116 Nuclear

mRNA splicing,
MCODE SPP381, MSL1, LEA1, SMX3 1.19E-06 via spliceosome

RNSC CDC6, ORC1, ORC2, ORC3, ORC4, ORC5, ORC6 6.16E-16

remaining 128 of size between 7 and 33. Thus, with respect to the previous experiment,
with r = 3, clusters have a lower number of proteins. However, the clustering coeffi-
cient is 0.69 with r = 4 and 0.13 with r = 3. On the other hand, MCODE scored a
clustering coefficient 0.23, and RNSC 0.43. This points out that, in order to obtain a
better value also in terms of topological connectivity, the input parameter r has to be
properly tuned.

Table 1 shows some of the clusters obtained by the three methods, for which the GO
validation returned the same associated process. The table points out the good capability
of MF -PINCoC to isolate functional modules.

4.3 Multi-functional Proteins

We now show, with some examples, how MF-PINCoC is able to cluster multi-facets
proteins into different functional modules, each characterized by a particular function.
In table 2 we report the protein name, the number of proteins with which it is connected
(denoted degree), the list of proteins participating to the same cluster, and the associ-
ated biological process. We consider three proteins KAP95, LSM8, and CKA1 that have
been discussed by Ucar et al. in [24], and compare their results with ours. As reported
in [24], KAP95 is an essential protein known to take part in nucleocytoplasmatic trans-
port. MF -PINCoC groups KAP95 with other 5 proteins (NTF2, GSP1, PSE1, SRP1,
NUP1) participating to this same biological process. Ucar et al. point out that one the
partitions they found (NTF2, SSA1, YRB1, RNA1, GSP1, SRM1, MTR10, KAP122,
KAP142, KAP124, NUP1, NUP2, NUP42, NUP60, NUP82, NUP145, NUP157, NUP-
170) contained 8 NUPs proteins and 3 KAPs proteins, known as nucleoporins and
karyorephins respectively, with p-value 1.07E-27. We obtained an analogous result, in
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two different clusters. The former contains 9 NUPs proteins (NUP2, NUP84, NUP60,
NUP57, NUP42, NUP49, NUP145, NUP100, NUP116) and two KAPs proteins (KAP-
95 and KAP123), sharing the Nuclear Transport biological process with p-value 6.61
E-26, the second one contains 4 NUPs proteins (NUP116, NUP57, NUP60, NUP100,
NUP145) and 3 KAPs proteins (KAP95, KAP104, KAP123), sharing the cellular lo-
calization process, with p-value 2.06E-09.

The hub protein LSM8 has been found by Ucar et al. with other 10 proteins (LSM2,
LSM3, LSM5, PRP3, PRP4, PRP6, PRP21, PRP31, SMB1, SPP381) with biological
process mRNA splicing and p-value 1.2E-12. We found the same protein in several
groups, in particular, as reported in the table 2, LSM8, for this same process, has been
grouped with 12 proteins (LSM3, PRP3, PRP4, PRP6, PRP8, PRP31, SMB1, SPP381,
SMD3, SMX2, SNU114, SNU66) having p-value 1.46E-23. The two sets of proteins
are almost the same, the difference is that the cluster found by MF-PINCoC does not
contain LSM2, but has four new proteins, SMD3, SMX2, SNU114, SNU66, and a p-
value much higher, thus a better biological meaning. However, LSM8 has been grouped
with other proteins forming other functional modules, like reported in the table. For

(a) (b)

(c)

Fig. 2. PPI networks of clusters obtained showing:(a) first cluster reported in table 2 relative to
the CKA1 protein; (b) third cluster reported in table 2 relative to the CKA1 protein; (c) second
cluster of table 2 relative to the LSM8 protein
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Table 2. Some examples of hub proteins and the clusters they participate

Hub-Protein degree Clusters p-value Associated process
KAP95,KAP123,NUP2,NUP84,NUP60, 6.61E-26 Nuclear Transport

NUP42,NUP49,NUP145,NUP100,NUP116,
SRP1,CRM1,PAB1,PSE1,GSP1

KAP95 58 MSN5,NUP57,KAP95,KAP104,KAP123, NUP116, 2.06E-09 Cellular localization
NUP57,NUP60,NUP100,GSP1,SRP1,PSE1

KAP95, NTF2,GSP1,PSE1,SRP1,NUP1 1.71E-09 Nucleocytoplasmatic transport
LSM3, LSM8, PRP3, PRP31, PRP4, PRP6, PRP8, 1.46E-23 Nuclear mRNA splicing,
SMB1, SMD3, SMX2, SNU114, SNU66, SPP381 via spliceosome

LSM8 71 LSM8, LSM1, LSM2, LSM3, LSM4, LSM5, LSM6, LSM7, 3.02E-22 mRNA metabolic process
DCP1,PAT1,PRP31, PRP4, PRP8, SMD3, SNU114

LSM1, LSM8,LSM2,EDC3,KEM1,DCP2, LSM4 1.44E-06 Biopolymer catabolic process
HAS1,MAK21,CIC1,SDA1,NOP6,NUG1,NOP7,CKA1, 1.68E-22 Ribosome biogenesis

NOP2,SSF1,NOP4,BUD20,RPF2,YTM1, and assembly
RLP7,NOP15,MAK5,NSA2,ERB1,TIF6,NOG1

CKA1 66 RPF2,YTM1,NOG1,ERB1,MAK5,HAS1,TIF6,CKA1, 9.96E-07 Cellular component
MAK21,NOP2,NOP4,NOP6,NOP7,NOP15,CIC1,SSF1 organization and biogenesis

CKA1,CKB1,CKA2,CKB2,SPT16,CTR9,SIN3,FKH1 1.03E-07 Transcription, DNA-dependent

example, it is clustered with 7 proteins of the LSM family, which are known to interact
each other in the mRNA metabolic process, with a very low p-value (3.02E-22).

CKA1 is a protein involved in several cellular events. Ucar et al. located CKA1 in
three different partitions. One is annotated with the biological process transcription,
DNA-dependent and p-value 2.3e-19, the second one with protein amino acid phospho-
rylation and p-value 1.2E-05, the third group is annotated with organelle organization
and biogenesis and p-value 3.2E-12. MF-PINCoC found, among the others, a group
with p-value 1.68E-22 and annotation ribosome biogenesis and assembly, another one
with p-value 9.96E-07 and process cellular component organization and biogenesis, the
third one with p-value 1.03E-07 and biological process transcription, DNA-dependent.
Finally, figure 2 draws three clusters of proteins in which CKA1 and LSM8 are in-
volved. In particular, figures 2(a) and 2(b) show the first and third clusters reported in
table 2 relative to the CKA1 protein. Figure 2(c) displays the second cluster of table 2
relative to the LSM8 protein. The graphs have been drawn by using the PIVOT software
[17]. These results point out that the strategy of allowing proteins to belong to different
clusters seems to be effective in grouping multi-functional proteins into multiple func-
tional groups, to individuate biologically significant modules, each corresponding to a
different function in which these proteins are involved.

5 Conclusions

We proposed the algorithm MF -PINCoC, an extension of the algorithm PINCoC, aim-
ing at individuating clusters of multi-facets proteins in PPI networks. One of the main
feature of the method consists in allowing proteins to be placed in multiple clusters. This
is a distinguished advantage since it enables a more accurate representation of the com-
plexity of biological systems and the detection of different functional modules in which
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proteins are involved. As proved by tests carried out on the Saccaromyces cerevisiae
proteins data set, the presented method returns partitions that are biologically relevant,
correctly clustering proteins which are known to participate in different biological pro-
cesses. A comparison with other existing approaches shows that MF -PINCoC is com-
petitive with respect to these methods according to validation techniques commonly
adopted in the literature.
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Abstract. We propose an approach to network querying in protein-
protein interaction networks based on bipartite graph weighted match-
ing. An algorithm is presented that first “focuses” the potentially rel-
evant portion of the target graph by performing a global alignment of
this one with the query graph, and then “zooms” on the actual matching
nodes by considering their topological arrangement, hereby obtaining a
(possibly) approximated occurrence of the query graph within the target
graph. Approximation is related to node insertions, node deletions and
edge deletions possibly intervening in the query graph. The technique
manages networks of arbitrary topology. Moreover, edge labels are used
to represent and manage the reliability of involved interactions. Some
preliminary experimental analysis is also accounted for in the paper.

1 Introduction

Last years have witnessed the collection of enormous amounts of biological in-
formation that need to be interpreted for the purposes of molecular biology ap-
plications. Such information include mainly string-shaped data (e.g., DNA and
protein sequences) but also complex structure ones, notably, protein-protein in-
teraction (PPI) networks and metabolic pathways. Through the last few years,
the research in bioinformatics has been mainly directed towards the analysis of
string-shaped data and many important results have been obtained (see, e.g.,
[2] for a survey). Nevertheless, computer-based methods devoted to analyzing
complex structure biological data are relevant as well, and strongly needed.

In this respect, as stated by Sharan and Ideker in [11], one of the main modes
to compare biological networks is network querying, “in which a given network
is searched for subnetworks that are similar to a subnetwork query of interest”.
Such a problem, that parallels that of string pattern matching, “is aimed at
transferring biological knowledge within and across species” [11]. In fact, PPI
subnetworks may correspond to functional modules made of proteins involved in
the same biological processes. Unfortunately, as subgraph isomorphism checking
is involved, the applicability of exact approaches to solve network querying is
rather limited due to the NP-completeness of the problem [7]. Thus, approaches
have been proposed where the search is constrained to simple structures, such
as paths and trees [9,10,12], some heuristic methods have been presented to deal
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with true subgraph queries [15], whereas only a few techniques have been pro-
posed based on exact algorithms, so that their practical applicability is limited
to queries that are sparse graphs or containing a small number of nodes [16].

This paper provides a contribution in this setting, by proposing a new technique
to network querying, which we briefly summarize below, whose main character-
istics are as follows: (i) it allows to manage arbitrary topology networks, (ii) it
allows to take into account reliability values associated with interactions and (iii)
it is capable of singling out also approximated answers to the query graph, as cor-
responding to evolution determined variations in the sets of nodes and edges. To
the best of our knowledge, this is the first technique that comprises all those three
characteristics, as also pointed out in the following Section 3.

To illustrate the main ideas underlying our approach, assume we are given
a target protein-protein interaction network GT and a (typically much smaller)
query network GQ, and that we are interested in finding a (possibly approx-
imated) occurrence of GQ in GT. To this end, our technique first “focuses” a
portion of the target network being relevant to the query one as resulting by
aligning the two networks. To do that, a minimum bipartite graph weighted
matching [6] is used working on the basis of protein sequence similarities. This
initial “global” alignment produces a preliminary solution, whose topology may,
however, significantly disagree with that of the query network. Therefore, our
algorithm “zooms” towards a suitable solution, that matches to a sufficiently
large extent the query topology. This is obtained by refining similarity values
associated with pairs of proteins in GQ and GT taking into account topology
constraints, and then looking for a new alignment of the networks. The process
is iterated, going through a number of alignments until one is obtained that
satisfies both protein similarities and topological constraints.

Note that repeatedly computing such global alignments provides some guar-
antees that the resulting solution remains close to the globally optimum match.
Furthermore, differently from other network querying techniques we are aware
of, which are typically based on a oil-stain visiting strategy, our global alignment
strategy permits to naturally deal with missing edges (possibly corresponding
to information missing in the database): this case corresponds to producing an
alignment of the query network with a generally unconnected subgraph of the
target one.

The rest of the paper is organized as follows. The next section illustrates in
detail the proposed approach. Section 3 surveys some related literature. Section 4
discusses some preliminary experimental results we obtained with our technique
and, finally, in Section 5 some conclusions are drawn.

2 The Proposed Approach

Before explaining the technique in detail, we give two preliminary definitions
useful to formulate the problem under consideration.

Definition 1. (Protein Interaction Graph) A Protein Interaction Graph is a
weighted (undirected) graph G = 〈P, I〉, such that:
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– P = {p1, p2, . . . , pn} is the set of nodes, each of which represents a protein;
– I = {〈{pi, pj}, ci,j〉} is the set of weighted edges, each denoting an interaction

between proteins, and the label ci,j is the reliability factor associated to that
interaction.

Definition 2. (Distance Dictionary) Given a query protein interaction graph
GQ and a target protein interaction graph GT, the Distance Dictionary DD is a
set of triplets 〈pQ

i , pT
j , di,j〉, where pQ

i belongs to GQ, pT
j belongs to GT and di,j is

the distance value associated to the pair pQ
i and pT

j .

Thus, let GQ = 〈PQ, IQ〉 and GT = 〈PT, IT〉 be two protein interaction graphs.
In particular, GQ denotes the query network to search for in the target network
GT. Assume that a distance dictionary DD(0) is available that stores information
about protein sequence similarities of GQ and GT (details about the computation
of DD(0) will be given in Section 2.1).

At step 0, the algorithm first aligns GQ and GT by exploiting a minimum bi-
partite graph weighted matching procedure [6] applied to the bipartite weighted
graph GQT = 〈PQT, IQT〉 such that:

– PQT = PQ ∪ PT,
– IQT = {〈{pQ

i , pT
j }, d

(0)
i,j〉} is the set of weighted edges, where the label d(0)

i,j is
the distance score between pQ

i and pT
j as stored in the distance dictionary

DD(0).

The result of running the weighted matching algorithm on GQT is returned in
a dictionary DDS(0) ⊂ DD(0) storing the triplets 〈pQ

i , pT
j , d(0)

i,j〉 corresponding to
computed node pairings.

Before going on with illustrating our algorithm, we need to introduce some
further concepts. Thus, define unmatchT(DDS(0)) the set of nodes pT

j ∈ PT such
that (i) pT

j is on the shortest path connecting two nodes pT
j1 and pT

j2 in PT, (ii) the
triplets 〈pQ

i1, p
T
j1, d

(0)
i1,j1〉 and 〈pQ

i2, p
T
j2, d

(0)
i2,j2〉 belong to DDS(0), and (iii) pQ

i1 and
pQ

i2 are directly linked by an edge in GQ. Moreover, define unmatchQ(DDS(0)) the
set of nodes pQ

i ∈ PQ that have not been paired with any node of GT in DDS(0).
Define the extended dictionary DDS(0)+ = DDS(0) ∪DDS(0)

in ∪DDS(0)
del , where

DDS(0)
in = {〈•, pT

j ,−〉} for pT
j a node in unmatchT(DDS(0)), and DDS(0)

del = {〈pQ
i , •,

−〉} for pQ
i a node in unmatchQ(DDS(0)). Let GS = 〈P S, IS〉 be the subgraph of

GT such that P S is the set of nodes of GT occurring in DDS(0)+, and the set of
edges IS is as follows. An edge is added in GS between proteins pT

h and pT
k if (i)

there is an edge 〈pT
h, pT

k , ch,k〉 in GT, (ii) there is an edge 〈pQ
i , pQ

j , ci,j〉 in GQ, and
(iii) the triplets 〈pQ

i , pT
h, d(0)

i,h〉 and 〈pQ
j , pT

k , d(0)

j,k〉 belong to DDS(0). Moreover, for
those pairs of proteins pT

h and pT
k for which conditions (ii) and (iii) above hold,

but condition (i) does not, all the edges in the shortest path connecting pT
h and

pT
k in GT are added to GS. The edge labels of GS are those of GT. We refer to

σ(0) = 〈GS, DDS(0)+〉 as an approximate occurrence of GQ in GT.
Note that σ(0) may well encode a suitable matching for GQ in GT or, otherwise,

some relevant topological differences might be there significantly distinguishing
GQ and GS. In order to evaluate the “quality” of σ(0), we introduce a measure
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Algorithm for protein interaction graph querying

Input:
a basic distance dictionary DD(0);
a query protein interaction graph GQ = 〈PQ, IQ〉;
a target protein interaction graph GT = 〈PT, IT〉;
real values πins, πdel, πegd, πcm, IMAX, α, β, γ;
an integer value MaxIteration

a threshold value Dth;
Ouput:

an approximate occurrence σ∗ of GQ on GT s.t. Dσ∗ ≤ Dth;

1: h = 0;
2: for k = 1 to MaxIteration do
3: compute σ(h) = 〈GS, DDS(h)+〉 solving minimum bipartite weighted

matching problem on GQT = 〈PQT, IQT〉 s.t.
PQT = PQ ∪ PT,

I = {〈pQ
i , pT

j , d(h)
i,j 〉} if 〈pQ

i , pT
j , d(h)

i,j 〉 ∈ DD(h);

4: compute Dσ(h);
5: if (Dσ(h) > Dth)
6: h = h + 1;

7: for each 〈pQ
i , pT

j , d(h-1)
i,j 〉 ∈ DDS(h-1)

8: refine DD(h-1) to obtain DD(h) using:

9: d(h)
i,j = d(h-1)

i,j + α· μ′
ins· dins + β· μ′

del· ddel + γ· μ′
egd· degd+

−μ′
cm· dcm;

10: else stop and return σ∗ = σ(h);
11: return “No solution found.”

Fig. 1. The proposed algorithm

of the “distance” between subgraphs, which is encoded in a distance score Dσ(0)

that, for the sake of the readability, will be detailed below in Section 2.1. For
the moment being, let us just state that the larger Dσ(0) is, the more GS dif-
fers from GQ. Thus, we are going to consider σ(0) an acceptable solution if the
corresponding Dσ(0) is less than a given fixed quality threshold Dth.

We can thus resume to illustrating our algorithm. Its next step is to evaluate
Dσ(0) for σ(0) and compare it to Dth. If Dσ(0) ≤ Dth, then σ(0) is returned as
the output. Otherwise, a further minimum bipartite graph weighted matching
step is performed as explained below. Let σ(h) = 〈GS, DDS(h)+〉 be the approx-
imate occurrence computed at the generic step h of the algorithm using the
dictionary DD(h) such that Dσ(h) > Dth. The next run of the bipartite weighted
matching algorithm uses an updated dictionary DD(h+1) obtained from DD(h)

and DDS(h)+ as explained next. Initially, DD(h+1) is set equal to DD(h), then
some of its entries are refined, using DDS(h)+ as follows. Let:
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d(h+1)
i,j = d(h)

i,j + α·μins· (
1− d(h)

i,j

Ci· IMAX

) + β·μdel· (1− d(h)
i,j) + γ·μegd· (

1− d(h)
i,j

Ci
)+ (1)

−μcm· (
d(h)

i,j

Ci
)

where:

– the triplet 〈pQ
i , pT

j , d(h)
i,j 〉 belongs to DDS(h),

– the term Ci is defined as the sum of the reliability factors of the edges
incident on pQ

i ,
– IMAX serves the purpose of bounding from above the number of insertions

per single edge that we use in the computation,
– μins is the penalty score for node insertions, μdel that for node deletions,

μegd that for edge deletions,
– μcm is a bonus score that rewards correct matches of edges,
– α, β, γ are real values used to weigh the penalty factors μins, μdel and μegd

so that α + β + γ = 1.

The rationale of the formula, whose terms will be detailed in the following Section
2.1, is that of modifying the original values of protein similarity in such a way as
to take into account information about the topology mismatches of the current
solution. By the virtue of this update, the following run of the bipartite weighted
matching produces a new solution σ(h+1).

Iterations proceed until to either a good approximate solution σ∗ is found
(that is, Dσ∗ ≤ Dth) or, otherwise, a maximum number of iterations (MaxIt-

eration) is reached, in which case no solution is returned.
A snapshot of the algorithm is shown in Figure 1.

The following result holds.

Proposition 1. Let n and m be the number of nodes in the target and query net-
works, respectively. In the worst case the algorithm runs in O(MaxIteration ·
n3) time.

Proof. The shortest path between each pair of nodes in the target network can be
pre-computed by the Floyd-Warshall algorithm in O(n3). During each iteration,
two steps are performed. The first one is the computation of a potential solution,
obtained by solving a bipartite graph maximum weight matching. The second
step is the refinement of the similarity values associated with matching nodes.
The time required to compute the maximum weight matching of a bipartite graph
made of n nodes is O(n3) [6]. Since n is always larger than m, the maximum
number of nodes in the bipartite graph is O(n), thus the first step costs O(n3).
The refinement step costs O(m2) because the number of the edges in the query
graph is at most m2 and all the edges (interactions) have to be explored once to
refine the similarities of corresponding nodes. The maximum number of iterations
is MaxIteration, thus, overall, the algorithm runs in O(MaxIteration · n3)
time.
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Fig. 2. (a) Node insertion; (b) node deletion

2.1 Technical Details

This section is devoted to illustrate some technical details regarding the param-
eters and other concepts we have used above.

Basic distance dictionary. As already pointed out, a preprocessing of the
protein interaction graphs GQ and GT in input is necessary in order to evaluate
the sequence similarity of pairs of proteins (pQ, pT) such that pQ belongs to
GQ and pT belongs to GT. All information obtained during the preprocessing
stage are stored in the basic distance dictionary DD(0), that is computed as
follows. The Blast 2 sequences algorithm [14] is executed to align the amino
acid sequences of pairs of proteins from GQ and GT, respectively. The resulting
BLAST E-values are used to compute a distance score d(0)

i,j for each pair of nodes
pQ

i of GQ and pT
j of GT, according to the following formula:

d(0)
i,j =

{
1, if E ≥ 10−2

1− 2
20

log E , if E < 10−2

where E is the BLAST E-value as returned by Blast 2 on input pQ
i and pT

j .
Note that the E-value can assume, in general, values greater than 1, and the

lower it is, the more similar the protein sequences are. The formula reported
above serves the purpose of both normalizing the distance score thus that it
varies between 0 and 1 and obtaining more significant variations when the E-
value reaches very small values (corresponding to very similar sequences).

Node insertion/deletion. As pointed out in the Introduction, given a query
graph in input, our approach aims at searching for its approximate occurrences
in the target network. In fact, as pointed out in [1], during the evolution of an
organism, some events may occur that modify the associated network structure.
Those events are gene duplication, that causes the addition of new nodes, and
link dynamics, corresponding to gain and loss of interactions through mutations
in existing proteins. In its turn, a gene duplication may be associate to both
node insertions and node deletions [3,12].

Thus, a node insertion event may be associated to the presence of one or more
surplus nodes in the path connecting two nodes pT

i and pT
j in the target network,

when they are recognized to correspond to two nodes pQ
i and pQ

j in the query
network, connected by just one edge. Figure 2(a) clarifies the issue, where the
case of a single node insertion is represented.
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To take into account node insertions, we define the number of node insertions
between each pair of nodes pT

i and pT
j belonging to a connected subgraph of GT

w.r.t. the query network GQ as the number of nodes in the shortest path linking
pT

i and pT
j in GT.

A node deletion event occurs when there is some node in the query graph that
does not correspond to any node in the target network (see Figure 2(b)). This
is taken care of using scores, as will be detailed below.

Distance Score. The distance score Dσ for an approximate occurrence σ is
obtained by evaluating: (i) protein sequence similarity, (ii) network topology,
(iii) number of node insertions, (iv) number of node deletions and (v) number
of edge deletions, where edge deletions are intended in terms of edges that occur
in the query but not in the target graph, and that are interpreted as lack or
incorrectness of information.

Thus, let GQ be the query protein interaction graph, GT be the target protein
interaction graph and σ(h) = 〈GS, DDS(h)+〉 (DDS(h)+ = DDS(h) ∪ DDS(h)

in ∪
DDS(h)

del ) be an approximate occurrence of GQ on GT. The distance score Dσ(h)

associated to σ(h) is computed according to the following formula:

Dσ(h)
=

∑
〈pQ

i ,pT
j ,d

(h)
i,j 〉∈DDS(h)

d(h)
i,j + μS

ins + μS
del + μS

egd − μS
cm (2)

where d(h)
i,j is the distance score of nodes pQ

i and pT
j as stored in DDS(h) (if are such

a triplet exists), μS
ins is the penalty score for node insertions, μS

del is the penalty
score associated to node deletions, μS

egd is the penalty score associated to edge
deletions and μS

cm is a bonus score to reward presumably correct matches. In
particular, the three penalty scores are computed as follows:

– Let E = {〈{pQ
i , pQ

l }, ci,l〉} be the set of edges in GQ, each of which corre-
sponding to a pair of triplets 〈pQ

i , pT
j , d(h)

i,j〉 and 〈pQ
l , pT

k , d(h)

l,k〉 in DDS(h).
Then:

μS
ins =

∑
〈{pQ

i ,pQ
l },ci,l〉∈E

πins · nins · ci,l

where πins is a fixed given penalty associated to a single node insertion and
nins is the number of nodes on the shortest path between pT

j and pT
k (if any).

– μS
del = |DDS(h)

del | · πdel where πdel is the penalty associated to a single node
deletion.

– Let F = {〈{pQ
i , pQ

l }, ci,l〉} be the set of edges in GQ, each of which corre-
sponding to a pair of triplets 〈pQ

i , pT
j , d(h)

i,j 〉 and 〈pQ
l , pT

k , d(h)

l,k〉 in DDS(h) such
that pT

j and pT
k are non connected in GT. Then:

μS
egd =

∑
〈{pQ

i ,pQ
l },ci,l〉∈F

πegd · ci,l

where πegd is a fixed given penalty associated to a single edge deletion w.r.t.
GQ.
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The bonus score μS
cm, is computed as follows:

– Let G = {〈{pQ
i , pQ

l }, ci,h〉} be the set of edges in GQ, each of which corre-
sponds to a pair of triplets 〈pQ

i , pT
j , d(h)

i,j 〉 and 〈pQ
l , pT

k , d(h)

l,k〉 in DDS(h), such
that the edge 〈{pT

j , pT
k}, cj,k〉 is in GT. Then:

μS
cm =

∑
〈{pQ

i ,pQ
l },ci,l〉∈G

πcm ·
ci,l + cj,k

2

where πcm is a fixed given score associated to the correct match between the
two edges in GQ and GT.

Note that, in the formulae above, reliability factors cil are exploited in order to
weigh penalty and bonus scores between proteins by the probabilities that the
corresponding interactions actually hold.

Refined similarity scores. Let GQ be the query protein interaction graph, GT

be the target protein interaction graph, DD(h) be a distance dictionary involving
all the pairs of proteins of GQ and GT. Furthermore, let σ(h) = 〈GS, DDS(h)+〉,
s.t. DDS(h)+ = DDS(h) ∪DDS(h)

in ∪DDS(h)
del and DDS(h) ⊂ DD(h), be an approxi-

mate occurrence of GQ in GT. The penalty scores μins, μdel and μegd, necessary
to compute the refined similarities according to formula (1), are evaluated as
follows:

– Let Ei = {〈{pQ
i , pQ

l }, ci,l〉} be the set of edges incident onto pQ
i in GQ, each

of which corresponding to a pair of triplets 〈pQ
i , pT

j , d(h)
i,j 〉 and 〈pQ

l , pT
k , d(h)

l,k〉 in
DDS(h). Then:

μins =
∑

〈{pQ
i ,pQ

l },ci,l〉∈Ei

min{nins, IMAX} · ci,l.

where IMAX, nins and IMAX are as explained in the previous section.
– Let DDdel,i be a subset of DDS(h)+ that contains the triplets 〈pQ

l , •,−〉 such
that the nodes pQ

l are connected by an edge to pQ
i in GQ, and nadj,i be the

number of nodes directly linked by an edge to pQ
i in GQ. Then:

μdel =
|DDdel,i|

nadj,i

– Let Fi = {〈{pQ
i , pQ

l }, ci,l〉} be the set of edges incident on pQ
i in GQ, each

corresponding to the triplets 〈pQ
i , pT

j , d(h)
i,j 〉 and 〈pQ

l , pT
k , d(h)

l,k〉 in DDS(h) such
that there does not exist any path in GT connecting pT

j and pT
k . Then:

μegd =
∑

〈{pQ
i ,pQ

l },ci,l〉∈Fi

ci,l

The bonus score μcm of formula (1) is computed as follows:
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– let Gi = {〈{pQ
i , pQ

l }, ci,l〉} be the set of edges incident on pQ
i in GQ, each

corresponding to the triplets 〈pQ
i , pT

j , d(h)
i,j 〉 and 〈pQ

l , pT
k , d(h)

l,k〉 in DDS(h) such
that there exists the edge 〈{pT

j , pT
k}, cj,k〉 in GT. Then:

μcm =
∑

〈{pQ
i ,pQ

l
},ci,l〉∈G

ci,l + cj,k

2

3 Related Work

Network querying techniques as applied to biological networks, which are briefly
surveyed below, can be divided in two main categories: those ones searching for
efficient solutions under particular topological constraints imposed on the query
graph, e.g., the query is required to be a path, and those more general ones that,
like ours, manage arbitrary query topologies.

Specific query topologies. Kelley et al. developed PathBLAST [9], a procedure
to align two PPI networks in order to identify conserved interaction pathways
and complexes. It searches for high scoring alignments involving two paths, one
for each network, in which proteins of the first path are paired with putative
homologs occurring in the same order in the second path.

The algorithm MetaPathwayHunter, presented in [10] solves the problem of
querying metabolic networks, where the queries are multi-source trees. MetaP-
athwayHunter searches the networks for approximated matching, allowing node
insertions (limited to one node), whereas deletions are not dealt with.

The references [12] and [3] illustrate two techniques for network querying,
called QPath and QNet. In particular, QPath queries a PPI network by a query
pathway consisting of a linear chain of interacting proteins. The algorithm works
similarly to sequence alignment, so that proteins in analogous positions have
similar sequences. PPI networks interactions reliability scores are considered,
and insertions and deletions are allowed. QNet is an extension of QPath in
which queries can take the form of trees or graphs with limited tree-width.

As already stated, differently from the approaches surveyed above, our tech-
nique deals with arbitrary topologies in both the query and the target networks.
In that, it is more closely related to the works described below.

General query topologies. The system GenoLink presented in [4] is able to inte-
grate data from different sources (e.g., databases of proteins, genes, organisms,
chromosomes) and to query the resulting data graph by graph patterns with con-
straints attached to both vertices and edges; a query result is the set of all sub-
graphs of the target graph that are similar to the query pattern and satisfy the
constraints. The goals of [4] are clearly different from our own, since the aim here
is that of comparing heterogeneous graphs via constrained network querying.

Ferro et al. in [5] present a tecnique called NetMatch, a Cytoscape plug-in
for network querying allowing for approximated querying. A query in NetMatch
is a graph in which some nodes are specified and others are wildcards (which
can match an unspecified number of elements). Although dealing, as we do, with
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approximate network querying, the technique in [5] mainly focuses on topological
similarity, whereas our results are deeply influenced by information about node
similarities as well which, we argue, are to be considered essential for the analysis
of PPI networks.

In [15], a tool for querying large graph data-sets, called SAGA, is described.
The tool allows for searching for all the subgraphs contained in a graph data-set
that are similar to a query graph. The authors define a concept of similarity
between subgraphs based on the structural distances of the match, the number
of mismatches and the number of gaps. An index-based heuristic is exploited
for the purposes of the query processing. SAGA has been successfully exploited
to query biological pathways and literature data-sets, although it shows some
limitations in dealing with dense and with large query graphs.

In [16] the problems of path matching and graph matching are considered.
An exact algorithm is presented to search for subgraphs of arbitrary structure
in a large graph, grouping related vertices in the target network for each vertex
in the query. Being an exact matcher, it is only practical for queries having a
number of nodes as large as 20 in the query network, though its performances
improve if the query is a sparse graph. However, for the same reason of being
an exact matcher, this is the reference technique we chose in our comparative
experiments (see, below, Section 4.1).

The techniques presented in [4,5,15,16], are closely related to our own, but with
the following differences: (i) none of them exploits edge labels to manage interac-
tion reliability factors which, considered the diverse trustability of methods used
to establish the various protein interactions to hold, are practically very relevant to
correctly single out, in the target network, highly-probable matchers of the query
network; (ii) our technique does not imply any constraint on the number of in-
volved nodes or the density of the query subgraph; (iii) as far as we know, our
technique is the first naturally dealing with edge deletions, thus that possible in-
completeness in the available information about interactions is dealt with.

4 Experimental Results

In this section, we illustrate some preliminary results we obtained by running our
algorithm on the four PPI networks of S. cerevisiae, D. melanogaster, C. elegans
and H. sapiens. In particular, as described in detail in Sections 4.1, we exploited
S. cerevisiae, D. melanogaster and C. elegans networks to compare our results
with those presented in [16] for the same organisms. Section 4.2 illustrates how
the S. cerevisiae and H. sapiens networks have been queried to further assess the
ability of our technique in recognizing conservations across species. To this end,
we considered some well characterized groups of both yeast and human proteins
for which the biological processes they are involved in are understood.

For the experiments, we chose to fix the parameter values as follows. Factors
πins, πdel, πegd and πcm have been all set to one, α has been set to 0.3, β to
0.1, γ to 0.6 and IMAX to 5. Note that, within the preliminary test experiments
accounted for below, we did not perform a fine tuning on such parameters, which
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is deferred to further experimental work. The algorithm was implemented on a
3.4 GHz Pentium IV with 4 GB RAM. The resulting running times of the
experiments we conducted vary from a minimum of 53 seconds to a maximum
of about 17 minutes.

4.1 Querying D. melanogaster and C. elegans by S. cerevisiae

We compared our method with the one presented in [16]. In particular, we fo-
cused first on a path of the S. cerevisiae network to query the C. elegans network.
This path, denoted by “Query” in Figure 3(b), corresponds to the longer mating-
pheromone response pathway from the protein interaction network of S. cerevisiae
[8]. The same figure also shows the output returned by the approach of Yang and
Sze [16], and the outputs returned by our algorithm when run on “whole” the C.
elegans network and on a “connected” part of it, resp. In the figures, graph nodes
are labeled by protein names, dashed edges correspond to node insertions, whereas
cross edges represent edge deletions. In particular, we obtained at most two node
insertions per edge on this example, whereas Yang and Sze fixed a priori the max-
imum number of node insertions per edge to be equal to one (our algorithm does
not require any such a limitation about the maximum number of node insertions
to be fixed). The table in Figure 3(a) reports the E-values corresponding to the
solutions returned by the considered approaches.

Looking at the results shown in Figure 3(b), the first important observation
is that our algorithm is able to associate the MAP kinases Fus3p of S. cerevisiae
and mpk-1 of C. elegans, whose associated E-value equals zero, on that agreeing
with the results reported in [16]. The results of both our executions agree with
Yang and Sze also for the S. cerevisiae and C. elegans proteins Ste7p/Mig-15
and Mat1ap/K09B11.9. Furthermore, the result on the connected subnetwork of
C. elegans is the same of Yang and Sze also for Ste4p/F08G12.2, Ste5p/ttx-1 and
Dig1p/Y42H9AR.1. On the contrary, both executions of our algorithm returned
a different result for the protein Ste11p of S. cerevisiae that, in [16], is paired
again with Mig-15 (which was paired with Ste7p as well). This incongruence
might be caused for Yang and Sze admit multiple pairings of proteins; on the
contrary, our approach search for one-to-one pairings. In any case, the result
our approach returns is significant from the biological standpoint, since proteins
Ste11p and F31E3.2 both belong to putative serine/threonine-protein kinase
family (as well as Ste7p and Mig-15). Results returned in both executions of our
algorithm are slightly better, in terms of E-values, than those reported in [16]
for the two proteins Ste12p and Gpa1p. Furthermore, we are able to pair also
protein Ste18p, that Yang and Sze do not associate to any protein of C. elegans.

The second example is one where the query is a yeast graph with general
topology representing a related functional module from Spirin and Mirny [13].
Figure 4(a) illustrates the yeast query, Figure 4(b) shows a table containing the
E-values corresponding to the results returned by our algorithm (applied on con-
nected subnetworks) and by Yang and Sze, resp., when applied on both C. elegans
and D. melanogaster. Figure 4(c) and Figure 4(d) illustrate the corresponding
result subgraphs. In this experiment, the bait used to query C. elegans and
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pQ
i E-value E-value E-value

Yang and Sze Whole net subnet

Mat1ap 3 · 10−3 3 · 10−3 3 · 10−3

Ste12p 1 · 10−3 2 · 10−4 2 · 10−4

Dig1p 2 · 10−5 3 · 10−4 2 · 10−5

Fus3p 0 0 0

Ste7p 7 · 10−34 7 · 10−34 7 · 10−34

Ste5p 5 · 10−3/ 2 · 10−3 5 · 10−3

6 · 10−3

Ste11p 2 · 10−35 2 · 10−17 3 · 10−14

Gpa1p 1 · 10−2/− 4 · 10−3 2 · 10−3

Ste4p 2 · 10−14/ 7 · 10−10 4 · 10−15

4 · 10−15

Ste18p − 1 · 10−3 2 · 10−3

(a)

Query

mpk−1

Mig−15
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Whole Connected Yang and Sze

K04D7.1
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Mat1ap K09B11.9
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Y42H9AR.1
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F13H8.2

(b)

Fig. 3. Comparison on the longer mating-pheromone response pathway

D. melanogaster networks is a well characterized yeast signalling cascade. This
yeast pathway controls peculiar yeast processes that are pheromone response
(via Fus3p) and pseudohyphal invasive groth pathway (via Kss1p) through a
so-called MAPK pathway (Mitoge activated protein kinase). The MAPK sig-
nalling cascades are likely to be found in all eukaryotic organism although the
substrates phosphorylated by these kinases and the final response can be differ-
ent in different organisms. Thus, in response to the query network, our technique
retrives two C. elegans and D. melanogaster MAPK cascades (Figure 4(c)-left
an Figure 4(d)-left), as suggested by the presence of several MAPK (i.e. pro-
teins mkk − 4, pmk − 1, mpk − 1, jnk − 1 in C. elegans, and proteins ERKA,
CG7717 in D. melanogaster, resp.) and other S/T kinases (i.e. proteins mig−15,
gsk − 3 in C. elegans and CG7001, cdc2c, CG17161 in D. melanogaster, resp.).
This example illustrates well a peculiarity of our approach, that is, trying to find
a good compromise between node similarity and network topology. In fact, the
solution of [16] presents, in some cases, lower E-values than the correspondent
ones in our solution, but our algorithm is able to pair all the proteins of the
query network, which the technique in [16] does not, where three node deletions
in C. elegans and four ones in D. melanogaster, respectively, can be observed.

4.2 Querying H. sapiens by S. cerevisiae

In Figure 5 and Figure 6 two yeast queries are shown that are matched to the
target human network. In particular, the query network in Figure 5 concerns
proteins that control cell-cycle transitions. The progression through the cell-
division cycle in eukaryotes is driven by particular protein kinases (CDK) which
trigger the transition to the following phase of the cycle. These enzymes are
serine/threonine kinases that require for their activation to be associated with
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Fig. 4. Comparison on the functional module from Spirin and Mirny [13]
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Fig. 5. Querying H. sapiens by S. cerevisiae: example 1
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Fig. 6. Querying H. sapiens by S. cerevisiae: example 2

regulative subunits known as cyclins. The query is composed of the budding yeast
S. cerevisiae cyclin dependent kinase (CDC28) which associates with all different
cyclins (CLN1, CLB2, CLB5, CLN2, CLN3). In yeast, different cyclins work
in different phases of the cell cycle binding the same CDK. Mammalian cells,
instead, have evolved multiple CDKs, each one working only with some cyclins.
Consequently, in the human CDK network retrieved by applying our algorithm,
some yeast interactions correspond to multiple-edge interactions in the human.
For example, human cyclin D (CCND1) does not interact directly with CDK2
(CDK2) because it binds the homologs CDK4 and CDK6, but they have as a
common partner the inhibitory protein p21 (CDKN1A) that is found as a node
insertion in our approach (not explicitly shown in Figure 5). Instead cyclin A2
(CCNA2) and cyclin E (CCNE1) are directly connected to CDK2.

In the second experiment, we queried the human network with the yeast actin-
related-proteins graph. Results are illustrated in Figure 6. Actin is well conserved
among eukaryotes being a main component of the cytoskeleton. In yeast, it binds
several proteins which regulate its polymerization/depolymerization and which
are presented in the graph. Human homologs of the yeast proteins have been cor-
rectly paired (i.e., ACT 1/ACTG1, COF1/CFL2, V RP1/WIPF1, PFY 1/
PFN2, LAS17/WAS in yeast and human, respectively). Furthermore, as in the
previous example, the network has increased its complexity moving from yeast to
human. Thus, while PFN2 and CFL2 are still directly linked to actin, an insertion
node, not shown in Figure 6, divides the regulators WIPF1 and WAS from it.

This latter set of experiments has preliminarily confirmed that our technique
is indeed able of retrieving biologically meaningful subgraphs matching the query
network in the target one.
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5 Concluding Remarks

In this paper we presented an approach to search for approximate occurrences in
protein-protein interaction networks based on bipartite graph weighted match-
ing. To summarize, the technique presents the following characteristics: (i) it
manages networks of arbitrary topology, both for query and for target ones, (ii)
edge labels are used to represent and manage the reliability of involved interac-
tions and (iii) node insertions, node deletions and edge deletions are dealt with.
The preliminary experimental results we obtained with it are quite encouraging.

Possible extensions of the technique may regard the possibility of “fixing”
some nodes of the query network whose homolog in the target one is known; this
may help the biologist to guide the algorithm towards solutions where known
correspondences between proteins are imposed.
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Abstract. The Edinburgh Mouse Atlas aims to capture in-situ gene
expression patterns in a common spatial framework. In this study,
we construct a grammar to define spatial regions by combinations of
these patterns. Combinations are formed by applying operators to
curated gene expression patterns from the atlas, thereby resembling
gene interactions in a spatial context. The space of combinations is
searched using an evolutionary algorithm with the objective of finding
the best match to a given target pattern. We evaluate the method by
testing its robustness and the statistical significance of the results it finds.

Keywords: gene expression patterns, in situ hybridization, spatio-
temporal atlases; evolutionary algorithms.

1 Introduction

The location of expressing genes can be revealed by performing in-situ hybridi-
sation on either embryo sections or wholemount embryos. This process uses
labelled rna that binds to mrna in the cell, which is a good indication the cor-
responding gene in the cell is active. Essentially, the result is a stained embryo
or part thereof, where the stain indicates where the gene is expressing. As these
patterns exhibit gradients, and as the process is quite sensitive, the resulting
data needs careful examination before inferring the location of a gene expres-
sion pattern. The Edinburgh Mouse Atlas Project (emap) [1] has a curators
office, which performs these examinations and translates these patterns into the
common spatio-temporal framework for the developing Mus Musculus.

emap is a unique resource that captures data in one common spatio-temporal
framework, thereby opening the possibilities to perform queries and analyses in
both embryo space and embryo development time to explore how genes interact
on an inter-cellular level. Currently the spatial data can be queried by defining
a pattern in the context of the embryo. The database will then return all gene
expression patterns that intersect with the query domain, sorted by similarity
with that domain. In addition the spatial patterns can be clustered in terms of
spatial similarity to reveal putative syn-expression groups. More sophisticated
analysis involving pattern combinations is not however possible. Recently the
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push is towards gene marker studies that try to redefine the spatial context of
embryos in terms of where genes are expressing.

We have developed a methodology to define a given target pattern by the
combination of multiple gene expression patterns via several gene interactions
operations. The target pattern can be the expression pattern of a particular
gene, a pattern defined by a human, a pattern defined by anatomical compo-
nents or by any other means of defining spatial area within the context of the
model mouse embryo. The method searches for a set of genes and combines their
expression patterns using predefined operations to closely match the target pat-
tern, thereby attempting to define this pattern spatially. The objective of this
study is to measure the robustness of the methodology and validate the signifi-
cance of the resulting gene interactions. This is important as much noise exists
in the acquisition of the patterns as well as much inaccuracy may exist in the
target pattern.

In the next section we describe the Edinburgh Mouse Atlas Project, a spatio-
temporal framework for capturing anatomy and gene expression patterns in de-
veloping stages of the mouse. Then, in Section 3, we describe the methodology
for constructing and searching gene interaction trees. Experiments and results
are provided in Section 4. Last, we provide a discussion in Section 5.

2 Edinburgh Mouse Atlas Project

emage (http://genex.hgu.mrc.ac.uk/) is a freely available, curated database
of gene expression patterns generated by in situ techniques in the developing
mouse embryo [1]. It is unique in that it contains standardized spatial represen-
tations of the regions of gene expression for each gene, denoted against a set
of virtual reference embryo models. As such, the data can be interrogated in a
novel and abstract manner by using space to define a query. Accompanying the
spatial representations of gene expression patterns are text descriptions of the
sites of expression, which also allows searching of the data by more conventional
text-based methods terms.

Data is entered into the database by curators that determine the level of
expression in each in situ hybridization experiment considered and then map
those levels on to a standard embryo model. An example of such a mapping is
given in Figure 1. The strength of gene expression patterns are classified either
as no expression, weak expression, moderate expression, strong expression, or
possible detection. Possible detection means the curator is uncertain whether
the region exhibits gene expression, hence we exclude these regions from our
analyses.

In this study we restrict to a subset of the data contained in the database.
This subset of data originates from one study [2] and contains 1970 images of in
situ gene expression patterns in a wholemount developing mouse embryo model
of Theiler Stages 15–19 [3]. The study includes 1131 genes; a subset of genes were
screened two or three times. By mapping the strong and moderate expression

http://genex.hgu.mrc.ac.uk/
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(a) Original image shows
expression of Hmgb1 in a
mouse embryo at Theiler
Stage 17

(b) Standard embryo with mapped levels of expression

Fig. 1. An example of curating data; the gene expression in the original image on the
left is mapped on to the standard embryo model of equal developmental stage on the
right (entry emage:3052 in the online database)

patterns of these images on to the two-dimensional model for Theiler Stage 17
shown in Figure 1(b), we can work with all these patterns at the same time.

3 Combining Gene Expression Patterns

To make possible a directed search for a given target pattern we need to define
how patterns can interact, to define how interactions are structured, to define
a function that allows to measure the quality of matching two patterns and to
have a mechanism whereby we can search the space of pattern interactions. The
following sections will discuss each of these in detail.

3.1 Defining the Interaction Patterns

The interaction patterns are shown in Figure 2. Each interaction pattern is an
operation on a spatial pattern where the operation, either or, and or xor, is
performed over each pixel1 in the space as defined by the pattern. The and

operation is also referred to as the conjunction of patterns, whole the or oper-
ation is referred to as the disjunction of patterns. This definition on sets takes
every pixel location as an item and then a pattern is defined as a a set of pixel
locations.

In terms of gene interactions, the and operation represents two genes that
require co-location in time and space in order to express. The xor operation
represents two genes cancelling each other’s expression out when co-located. The
or operation merely takes the conjunction and no visible interaction occurs.
1 Alternatively in a dimension higher than two it will be performed over a voxel.
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G1 G2

(a) or: conjunction

G1 G2

(b) and: disjunction

G1 G2

(c) xor: conjunction ex-
cept for the disjunction

Fig. 2. Types of interactions of two gene expression patterns G1 and G2

3.2 A Grammar for Interactions

Below, we define a simple BackusNaur form grammar [4] to allow arbitrary
large interaction trees to be constructed. In practice, the size of these trees
is restricted in the search algorithm. The operations are the binary opera-
tions over patterns as defined in the previous section and the existing pat-
terns are unique identifiers to studies in the Edinburgh Mouse Atlas database
(http://genex.hgu.mrc.ac.uk/), where in the study we have used the con-
junction of strong and moderate strength gene expression patterns.

<pattern> ::= <existing pattern> | (<pattern> <operation> <pattern>)
<operation> ::= AND | OR | XOR
<existing pattern> ::= EMAGE:1, EMAGE:2, ..., EMAGE:1970

When combining patterns in this fashion it is possible to create the empty set.
For example, let us apply and to two patterns, where one pattern expresses only
in the tail and the other pattern only expresses in the head; as these patterns
do not overlap, the operation will yield an empty pattern. This has two major
consequences. First, sub-trees that produce empty patterns can increase the
complexity of a large tree without adding any value. Second, allowing useless
sub-trees inflates the size of the search space. To counteract this, we prune these
empty patterns from trees by removing their sub-trees. If exactly one of the
inputs of an operation is empty, we replace the operation by the non-empty
pattern. If both patterns are empty, the parent will resort to an empty pattern
itself and then let the next parent node deal with the problem. As this is a
recursive mechanism. it does mean the result of a whole tree can be empty if the
root node produces an empty pattern, in which case we discard the whole tree
from the search. This procedure has two positive effects. First, the search space
is reduced as useless sub-trees are not considered. Second, in the experiments
this has lead to the prevention of so-called bloat [5, page 191] in the evolutionary
algorithm, which is described later.

Worth noting is that the operation not cannot be included in the operations
due to the nature of the patterns. A gene expression pattern is the result of a
stain observed through a curation process. If we would negate the pattern, i.e.,
take the whole embryo and subtract the pattern, we then explicitly assert that
no gene expression occurs in the negated pattern. This assertion is false on many

http://genex.hgu.mrc.ac.uk/
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(a) Target pattern (emage:2903) consists of the conjunction of strong and moderate
expression of the gene Dmbx1 in the forebrain

(b) Evolved interaction tree, that tries to match the target pat-
tern in Figure 3(a) and conforms to the grammar: (emage:714 and

(emage:1411 or (emage:1083 or emage:2568))); the similarity to the
target is equal to 0.804

Fig. 3. An example of an interaction tree and a target. The yellow parts (bright)
represent strong and moderate expression of the corresponding genes in the model
embryo, represented in red (darker).
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grounds; the curator may have seen only part of the embryo and the curator also
notes weak and possible expression, which is not considered in the patterns we
use here.

3.3 Matching Patterns

A function is required to compute the quality of a match between two patterns.
This will allow the evolutionary algorithm described next to direct its search
toward better matches. Given two patterns p1 and p2, we measure their similarity
using the Jaccard Index [6]:

similarity(p1, p2) =
area(p1 ∩ p2)
area(p1 ∪ p2)

, (1)

In Figure 3(a), a target pattern is given. The similarity of this pattern with
the result from the evolved interaction tree, i.e., the pattern in the root of the
tree, shown in Figure 3(b) is equal to 0.804.

The Jaccard Index was used in two previous studies on hierarchical clustering
and association rules mining in which it gave the best results. It will be used
also as a measure of quality of success in the experiments.

3.4 An Evolutionary Algorithm to Search for Sentences

The evolutionary algorithm [7] operates on the representation defined in Sec-
tion 3.2, i.e., a binary tree where each internal node is one of the three binary
operators defined over images and each leaf is a pattern takes from a predefined
set of patterns.

Initially one hundred trees are randomly generated by growing them randomly
[8]. A stochastic process is used to determine at each decision point whether a
given node becomes either a leaf node, i.e., a pattern, or an internal node, i.e., an
operation. If it becomes an operation we repeat this process for all the children
of that node. The stochastic process makes a node a leaf with the probability of
1/(1+depth of the node in the tree) and an internal node otherwise. The actual
choice of operation or pattern is a random uniform selection. Important to note
is that the same mechanism is used to create random trees that serve to provide
the target patterns in the experiments.

To create new individuals, two genetic operators are used. A crossover which
picks one node (which can be a leaf) uniform randomly in two distinct trees and
then replaces the sub-tree of the node pointed at in the second tree with the
sub-tree of the node pointed at in the first tree. The result is the new offspring,
which then undergoes mutation by again selecting a node (which can be a leaf)
and then replacing its sub-tree with a randomly generated sub-tree. Trees that
exceed 200 nodes and leafs are discarded, although this has not occurred in the
experiments.

The objective function is the similarity function (Equation 1), which needs
to be maximised. The offspring will always replace the tree that represents the
pattern with the worst match, i.e., lowest fitness, in the population.
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The algorithm terminates when the mean fitness of the population has con-
verged to a preset value. More specifically, if μ is the mean fitness of the pop-
ulation and σ is the standard deviation of the population, then the algorithm
terminates if μ

μ+σ ≥ 0.85. To ensure timely termination, a maximum is set of
5 000 evaluations. The algorithm also terminates if a perfect match with the
target pattern is found, i.e., if the optimisation function is equal to 1.0.

4 Experiments and Results

We perform two experiments. The first experiment will be used to determine
the robustness of the method. More specifically, it will be used to determine the
number of runs required of the evolutionary algorithm to get a reliable result.
The second experiment will take patterns from the gene expression database
and use these as targets for the methodology, after which the significance of the
interaction trees is validated using an overrepresentation analysis.

4.1 Robustness of the Methodology

To evaluate the robustness of the approach we devise an experiment whereby
target patterns are randomly perturbed. We provide the perturbed pattern to
the evolutionary algorithm and measure how well it is able to match the orig-
inal pattern. Both the amount of perturbation and how well the evolutionary
algorithm matches the original pattern are measured in the same way as the
objective function of the evolutionary algorithm (see Equation 1).

The following procedure is repeated 261 times. We create a random tree in
the same manner as described in the initialisation phase of the evolutionary
algorithm. The resulting pattern of this tree forms the original target pattern.
Each pixel in the original target pattern undergoes a translation using a uni-
form random distribution over a domain of −20 and +20 in both x and y
directions; the size of the bounding box of the embryo domain is 267 × 258.
This process yields a perturbed pattern. The evolutionary algorithm is then
run sixty times2 with a unique seed to its random generator with as its tar-
get pattern the perturbed pattern. The best solution of one run of the evolu-
tionary algorithm is called the output pattern. On average the size a the tree
creating the original target pattern consists of 6.30 nodes (with a standard
deviation 3.90).

We measure the amount of perturbation of the original target pattern with
the perturbed pattern using the similarity defined in Equation 1. We measure
the success of a run of the evolutionary algorithm by applying the same function
to the output pattern of the run with the original target pattern. If the similarity
between these two patterns is 1.000 we then check if the evolved tree is equal to
the tree that created the original target pattern.

Figure 4 shows the average success of the evolutionary algorithm in matching
the original target pattern. Each point is the average of sixty unique runs and
2 One run of the algorithm takes about six minutes on a 2.33Ghz Intel Core Duo.
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Fig. 4. Average amount of perturbation (x-axis) to the average success of matching the
original pattern (y-axis). Every point is averaged over 60 unique runs of the evolution-
ary algorithm with 95% confidence intervals included. A linear regression is provided
over the averaged points.
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Fig. 5. Every point is the best match found (y-axis) in 60 unique runs of the evolu-
tionary algorithm on one perturbed target pattern (x-axis)
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is accompanied by a 95% confidence interval. A regression is performed with
Marquardt-Levenberg’s nonlinear least-squares algorithm [9, page 683] on the
averages, which results in a regression of y = 0.528x+0.291 where the correlation
coefficient is r = 0.593, the rms of residuals is 0.156, and the variance of the
residuals is 0.024.

Figure 5 shows the best match found in the sixty runs for each original target
pattern generated. The match is calculated between the best result from the
evolutionary algorithm on the perturbed target pattern and the original target
pattern. A large set of the points, 82.8% correspond to a similarity match of 1.0.
After examining the corresponding trees for each of these matches, we confirm
the evolutionary algorithm was able to recreate all the original trees for these
cases.

4.2 Matching Gene Expression Patterns from the Mouse Atlas

We take the set of 1970 gene expression patterns as introduced in Section 2.
Every pattern belongs to a gene for which the expression has been mapped to a
standard model embryo. We repeat the following operation for every pattern in
the set. The pattern is temporarily removed from the total set and is deemed the
target pattern. The evolutionary algorithm will then try to construct a pattern
that matches it as close as possible by creating an interaction tree that only
makes use of the remaining gene expression patterns. In other words, we are
using mapped gene expression patterns from the Mouse Atlas itself as target
patterns.

For each target pattern we run the evolutionary algorithm sixty times, as
the results from the experiments in Section 4.1 show this leads to robust solu-
tions. The total number of runs of the evolutionary algorithm in this experiment
becomes 118 200. For the resulting interaction tree of each run, we determine
whether the genes used in that interaction tree are statistically overrepresented
with respect to groups of genes associated with annotations in the Gene Ontology
(GO) [10]. Numerous software package support this type of statistical verifica-
tion. Here we use the free and Open Source GO::TermFinder Perl module [11].
It works by calculating a p-value using the following hypergeometric distribution
without re-sampling:

p-value =
n∑

j=x

(
M
j

)(
N−M
n−j

)
(
N
n

) (2)

In this equation, N is the total number of genes in the background distri-
bution, which is all genes in our study and therefore equal to 1131, M is the
number of genes within that distribution that are annotated (either directly or
indirectly) to the node of interest in the Gene Ontology, n is the size of the list
of genes of interest, i.e., in the tree interaction, and k is the number of genes
within that list annotated to the node. To account for falsely finding significant
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hypothesis due to random chance given multiple events, we use Bonferroni cor-
rection. We deem results significant if p < 0.05.

The statistical analysis gives us a list of items, where each item consists of
a target pattern that belongs to a gene, the resulting interaction tree of the
corresponding run, a value to express the match between the target pattern
and the pattern originating from the interaction tree as calculated using Equa-
tion 1, a p-value as calculated using Equation 2, a GO term G, and a list of
genes that simultaneous appear in the interaction tree and are attributed to the
GO term G. In addition to these results, we also include the size of the target
pattern in relation to the total embryo. This helps us to discard patterns that
take up almost all of the embryo, which tend to correspond to housekeeping
genes.

Some disadvantages exist in using this methodology to validate statistical
significance, as it depends fully on the current annotations of the Gene Ontology.
It may prevent us from extracting new discoveries in the following ways. It may
happen the evolutionary algorithm finds a set of genes that interact, but which
are not associated with an annotated term in the Gene Ontology, or because the
term simply does not exist. Another possibility is that the set of interaction genes
is small and can be found by chance alone, in which case it will be discarded
on the basis of the p-value. Also plausible is that genes cannot contribute to the
likelihood that the interaction tree they are part of passes the significance test
because although they do exist in the Mouse Atlas Database, they do not exist
in the Gene Ontology,.

This overrepresentation analysis yields 6666 items from 1992 unique runs of
the evolutionary algorithm. It is possible a set of genes is involved in multiple
Gene Ontology terms. The total number of items is too large to include here
or to ask a developmental biologist to poor over. We therefore filter the list of
items by only including those where the result of the interaction tree matches
with more than 0.70 similarity to the target pattern and the relative size of the
target pattern is less than 0.50 of the embryo.

After filtering, we are left with 230 items, of which we present 45 filtering
in Table 1. Each row in the table corresponds to the results of performing an
overrepresentation analysis in the context of one GO term with the genes from
one interaction tree that tries to match one gene expression pattern from the
database. To illustrate the real output, we show the corresponding target pattern
and the interaction tree of two of these results, which are shown in Figure 6 and
Figure 7.

In Figure 7(b), the interaction tree shows all three types of interactions. First
the intersection of the patterns of Hoxa9 and Gli3 is taken (and), after which
the result undergoes a xor with the pattern of Otx2. Last, the result of that
interaction is then merged (or) with the pattern of the gene Lsr to form the result
of the interaction tree. This result has a similarity of 0.722 when compared to the
target gene expression pattern of Pygo1 shown in Figure 7(a) using Equation 1.
In [12], the interaction between the genes Otx2 and Gli3 is described in the
context of the development of the inner ear.
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Table 1. Items resulting from checking statistically overrepresentation of genes against
annotated Gene Ontology terms. Every row consists of the target pattern as an emage

id, the run number, the relative size of the target pattern, the match between the target
pattern and the result from the interaction tree, the p-value from the overrepresentation
analysis, the genes corresponding to both the tree and the GO term, and the GO term
where the analysis was performed against.

emage run size match p-value genes GO term

1182 10 0.39 0.75 0.021 Ube2g2 Zfp36l2 cellular macromolecule catabolic
process

1182 34 0.39 0.74 0.00066 Shh Pecam1 lipid raft
1182 34 0.39 0.74 0.0027 Ube2g2 Shh proteasomal ubiquitin-dependent

protein catabolic process
1182 34 0.39 0.74 0.027 Ube2g2 Shh cellular protein catabolic process
1182 34 0.39 0.74 0.027 Ube2g2 Shh modification-dependent

macromolecule catabolic process
1182 34 0.39 0.74 0.027 Ube2g2 Shh modification-dependent protein

catabolic process
1182 34 0.39 0.74 0.027 Ube2g2 Shh proteolysis involved in cellular protein

catabolic process
1182 34 0.39 0.74 0.027 Ube2g2 Shh ubiquitin-dependent protein catabolic

process
1204 8 0.0049 0.72 0.0095 Lpp Cxadr Bcl6 biological adhesion
1204 8 0.0049 0.72 0.0095 Lpp Cxadr Bcl6 cell adhesion
1205 2 0.0041 0.74 0.029 Nkx2-2 Nkx6-2 pancreas development
1224 3 0.0059 0.71 0.007 Rnf6 Rnf14 Hlcs Pias2 ligase activity, forming

carbon-nitrogen bonds
1224 3 0.0059 0.71 0.046 Rnf130 Rnf6 Mbtps1 proteolysis
130 18 0.024 0.73 0.0026 Actc1 Shh Nkx2-5 Bmp4 muscle cell differentiation
130 18 0.024 0.73 0.0029 Actc1 Shh Bmp4 myoblast differentiation
130 18 0.024 0.73 0.0081 Actc1 Shh Nkx2-5 striated muscle cell differentiation
130 18 0.024 0.73 0.012 Actc1 Shh Bmp4 muscle fiber development
130 18 0.024 0.73 0.012 Actc1 Shh Bmp4 skeletal muscle fiber development
130 18 0.024 0.73 0.013 Actc1 Shh Nkx2-5 Bmp4 striated muscle development
130 18 0.024 0.73 0.017 Nkx3-1 Shh prostate gland development
130 18 0.024 0.73 0.017 Shh Bmp4 telencephalon regionalization
130 4 0.024 0.74 0.00013 Actc1 Nkx2-5 Bmp4 muscle cell differentiation
130 4 0.024 0.74 0.00045 Actc1 Nkx2-5 Bmp4 striated muscle development
130 4 0.024 0.74 0.0015 Actc1 Nkx2-5 Bmp4 muscle development
130 4 0.024 0.74 0.0033 Actc1 Bmp4 myoblast differentiation
130 4 0.024 0.74 0.0062 Actc1 Nkx2-5 striated muscle cell differentiation
130 4 0.024 0.74 0.008 Actc1 Bmp4 muscle fiber development
130 4 0.024 0.74 0.008 Actc1 Bmp4 skeletal muscle fiber development
130 4 0.024 0.74 0.023 Actc1 Bmp4 skeletal muscle development
130 7 0.024 0.73 0.02 Csrp3 Nkx2-5 cardiac muscle development
130 7 0.024 0.73 0.021 Actc1 Csrp3 I band
130 7 0.024 0.73 0.021 Actc1 Csrp3 contractile fiber
130 7 0.024 0.73 0.021 Actc1 Csrp3 myofibril
130 7 0.024 0.73 0.021 Actc1 Csrp3 sarcomere

1326 18 0.0049 0.71 0.047 Nr1i3 Nr2e3 steroid hormone receptor activity
1326 29 0.0049 0.74 0.021 Lpp Sox9 Tnxb Bcl6 biological adhesion
1326 29 0.0049 0.74 0.021 Lpp Sox9 Tnxb Bcl6 cell adhesion
1327 16 0.0059 0.74 0.033 Nefl Nbn neuromuscular process controlling

balance
1327 17 0.0059 0.76 0.025 Tnxb Zfp146 heparin binding
1327 17 0.0059 0.76 0.035 Tnxb Zfp146 carbohydrate binding
1327 17 0.0059 0.76 0.035 Tnxb Zfp146 glycosaminoglycan binding
1327 17 0.0059 0.76 0.035 Tnxb Zfp146 pattern binding
1327 17 0.0059 0.76 0.035 Tnxb Zfp146 polysaccharide binding
1327 29 0.0059 0.91 0.0041 Cdkn1c Mxi1 Nr2e3 negative regulation of transcription

from RNA polymerase II promoter
1327 29 0.0059 0.91 0.009 Cdkn1c Mxi1 Nr2e3 negative regulation of transcription,

DNA-dependent
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(a) Target pattern (emage:2188) consists of the conjunction of strong and moderate
expression of the gene Mid1

(b) Evolved interaction tree, that tries to match the target pattern
in Figure 6(a) and conforms to the grammar: (emage:2125 or

(emage:2460 xor emage:64)); the similarity to the target is equal
to 0.753

Fig. 6. An example of an interaction tree and a target. The yellow parts (bright)
represent strong and moderate expression of the corresponding genes in the model
embryo, represented in red (darker). The genes Anapc11, Rnf34 and Pax5 are overrep-
resented with respect to the GO terms biopolymer modification, cellular macromolecule
metabolic process, cellular protein metabolic process, post-translational protein modifi-
cation and protein modification process with p-values 0.0069, 0.021, 0.021, 0.0057 and
0.0064, respectively.
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(a) Target pattern (emage:2625) consists of the conjunction of strong and moderate
expression of the gene Pygo1

(b) Evolved interaction tree, that tries to match the target pat-
tern in Figure 7(a) and conforms to the grammar: (emage:2813 or

(emage:3271 xor (emage:1378 and emage:418))); the similarity
to the target is equal to 0.722

Fig. 7. An example of an interaction tree and a target. The yellow parts (bright)
represent strong and moderate expression of the corresponding genes in the model
embryo, represented in red (darker). The genes Otx2 and Gli3 are overrepresented
with respect to the GO term cell fate specification with p-value = 0.046.
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5 Discussion

With the increase of resolution and speed in which in-situ data can be cap-
tured [13,14], these type of studies become more useful in a similar manner to
how microarray studies have become mainstream techniques. Where microarray
gives insight into many genes at once, in-situ studies have the benefit of high
precision in terms of spatial context. To make the data that result from from
this technique more digestible to developmental biologists, we need mechanisms
that allow investigation of multiple gene interactions within a spatio-temporal
context. In this paper, we have identified, designed, implemented and evaluated
one such mechanism in the spatial context a developing mouse embryo.

The approach uses a grammar to define a search space that allows several types
of spatial gene interaction patterns to be combined. An evolutionary algorithm
is used to search this space with the aim of maximising the match with a given
target pattern. This target pattern can be created by a human, or represent
a particular space of an embryo, such as anatomical components, the spatial
expression pattern of one gene or even the combination of expression patterns of
a number of genes. The output consists of interaction trees that show how a set
of spatial expression patterns of multiple genes should be combined using either
the conjunction, disjunction or exclusive or operations over these patterns.

The domain of in-situ hybridization studies potentially contains much noise
and uncertainties. To validate whether our approach will cope within such an
environment we generated gene interactions that then represent target patterns.
These patterns were then slightly perturbed to form a test suite that allowed
us to analyse the robustness of the system. The results show that running the
evolutionary algorithm sixty times and then selecting the best solution from
those runs leads to sufficiently matching solutions. The results from the second
experiment show how interaction trees can be evolved to match gene expression
patterns in the same database. By using an overrepresentation analysis against
annotated genes that correspond to terms in the Gene Ontology, we were able
to show the method is able to extract statistically significant gene interactions.

Our future goal is to provide an interface freely accessible via any web browser
to allow biologists to define target patterns that allow them to perform the
combinatorial search introduced in this study.
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Abstract. The accurate diagnosis of complex disorders is the prerequi-
site of appropriate and effective treatment. Ideally, the diagnostic process
should include the evaluation of molecular and clinic tests alongside med-
ical observations; these clinical observations and laboratory outcomes are
usually integrated by an expert physician or one prevails and the other is
used for mere confirmation. In clinical bioinformatics, complex datasets
are investigated with the aim to improve the clinical management of
diseases. The integration of data from disparate data sources is urgently
needed and is the prerequisite in the implementation of network medicine
which views disease relevant properties as networks and tries to untangle
the information content in these networks. Here we developed a graph
theoretical framework for combining and untangling the relationships
of physiological and molecular data. We then applied the methodology
to determine disease related abnormalities of a molecular network de-
rived from serum of patients with schizophrenia and affective disorder.
The universality of the concept is demonstrated by an integration of the
metabolic data with a standard laboratory test of glucose measurements.
The generation of compound networks allows the integrated analysis of
disease relevant information and the detection of robust patterns ulti-
mately facilitating the description of complex disorders. This approach
could lead to an automatized methodology for improving disease classi-
fication and diagnosis.

1 Introduction

The correct identification of a medical condition is central in clinical practice.
The diagnostic process is the evaluation of a patient’s display of clinical symp-
toms that are more or less specific for a certain disease. While some diseases
are clearly classifiable purely on the basis of the displayed symptoms, others
are difficult to identify unambiguously or discriminate from confounding factors.
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Fig. 1. We show a schematization of the approach to detect robust disease patterns in
complex disorders. The upper layer shows the connectivity between disorders based on
partially overlapping effects on clinical and metabolic measurements. The middle and
lower layer show the relationship between disease phenotypes and clinical or molecular
abnormalities, a directed network in which every patient is connected to the respective
clinical or molecular abnormality. This information is used to determine robust disease
patterns.

Due to their inherent heterogeneity, psychiatric disorders are a good example
illustrating the problem of correct diagnosis. Symptoms often overlap with other
neuropsychiatric or neurodegenerative disorders and other conditions such as
drug or alcohol abuse. Therefore, relying on the display of symptoms may be
insufficient as diagnostic criteria are often based on mere clinical observations
defined decades ago and might not reflect the biochemical underpinning of a
given disease. Extensive research efforts have thus been made to develop diag-
nostic tools based on biochemical alterations to facilitate objective diagnosis.
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For some diseases, advanced statistical methods are already in place to facilitate
automatic classification based on molecular readouts. In medical data reposito-
ries, phenotype as well as molecular data are now available for many disorders,
turning the diagnostic process into a multiscale problem. While the identifica-
tion of medical conditions based on only the physiological information may be
inaccurate and subjective, relying on molecular information alone might result
in the loss of valuable information. Therefore, a unifying concept is needed to
combine molecular and physiological information to capture diverse hallmarks of
complex disorders and facilitate better diagnostic approaches. Here, we present
a novel approach based on graph theory to integrate quantitative as well as qual-
itative information gathered on a given disorder. We use complex networks to
describe associations between these pieces of information and point to statistical
measurements that can be used to investigate the resulting networks (Figure 1).

Clinical evaluation of medical conditions is based on the display of different
symptoms. Therefore, symptoms can be represented as a network in which they
are connected to each other when displayed simultaneously. The same concept
applies for molecular alterations of a certain disease where molecules are con-
nected in a network when altered in the same medical condition. Symptoms and
molecular alterations can thus be represented in a directed graph in which each
symptom is connected to the respective molecular alterations.

Here, we introduce a graph theoretical approach to combine molecular and
clinical data as a novel concept to improve clinical diagnosis. In the next para-
graph we will describe an approach to generate networks from the data and
illustrate how to determine robust and relevant patterns within networks. Then
we will present one case study exemplifying the application of the methodology
on metabolic profiles of a large sample cohort of human serum and its integra-
tion with a standard laboratory test. Finally we will discuss the generalization
of this concept in the broader context of molecular medicine.

2 State of the Art Clinical Bioinformatics

The investigation of complex disorders will take advantage from advances in the
field of Clinical Bioinformatics [1] which is concerned with bringing together
bioinformaticians and biostatisticians to develop methods and tools for analysis
and visualisation of complex datasets. In contrast to the classical bioinformat-
ics field which focuses on the analysis of molecular biological information (See
[2,3,4,5] for an introduction to Bioinformatics), here the main focus is to col-
late heterogeneous data sets from disparate data sources (e.g. patient clinical
records, proteomics and transcriptomics data, e.g. the analysis of translational
patterns, and pathomorphology, i.e. readouts for cancer patterns) and develop
novel algorithms for the analysis of heterogeneous data. Thus, the key goal is
the simultaneous evaluation of clinical and basic research data with the aim
to improve medical care and health science achievements (See [6] for data ex-
ploitation methods in cancer therapy development). It is noteworthy that the
field of systems biology overlaps with these aims. Again, the challenge is the
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integration and interpretation of biological data generated by a range of tech-
nologies. Currently, the major focus of systems biology is the investigation of the
inter- and intra-cellular networks through mathematical modelling and simula-
tion, particularly focusing on the dynamic characteristics of biological systems
[7,8,9,10]. Biologists represent biochemical and gene networks as state transi-
tion diagrams with rates on transition. This approach provides an intuitive and
qualitative understanding of the gene/protein interaction networks underlying
basic cell functions through a graphical and database-oriented representation
of the models. More mathematical approaches focus on modelling the relation-
ships between biological parameters using a connectivity network, where nodes
are molecules and edges represent weighted ontological/evolutionary connections
[16,13,11,14,15,12]. Network properties have been elucidated for several bio-
logical processes, for example metabolic pathways [23,24], signal transduction
[25,26,27,28], transcriptional regulation [29] and other cellular processes [30,31].
In order to visualize the influence of connectivity on network topology, we would
like to introduce the connectivity distribution P (k), which is proportional to the
number of sites with connectivity k. The probability distribution of a regular lat-
tice is extremely peaked around the lattice’s coordination number (the number of
vertices directly connected in the lattice), being a δ-function. P (k) of a random
graph follows a Poisson distribution, centred around the mean connectivity 〈k〉.
Both of those choices are characterized by a well defined value of the mean con-
nectivity 〈k〉, and small variance 〈k2〉−〈k〉2. A meaningful measure is the degree
of clustering of the network, which can be defined as the number of neighbours
of a given node which share an edge. In a regular lattice the clustering coefficient
is high, while in a random graph it is vanishingly low. Finally, one is interested
in the average length of the minimum path that connects any two vertices, called
the diameter of the graph. This is large in a regular lattice, and low in a ran-
dom graph. The study of biological networks has shown major differences from
regular and random graphs. The degree distribution often exhibits a power-law
(i.e. P (k) � k−γ , with γ � 2). This distribution is characterized by a relatively
large number of highly connected hubs. Moreover, such distributions have a di-
verging second moment 〈k2〉 for γ ≤ 3 and a diverging average connectivity 〈k〉
for γ ≤ 2. An important class of biological networks show scale-free connectivity
properties [22]. A simple model to generate networks with scale-free properties
is based on the preferential attachment. A major challenge in analyzing complex
networks is to identify communities of genes that share features and similarities.
Clustering algorithms in complex network data allow classifying ensembles of
nodes and untangling the information content of the networks of relationships.

3 Methods and Algorithm

Advanced clustering techniques have been implemented to better identify clus-
ters of related proteins from local similarity searches; tribeMCL [19] implements
a relatively recent procedure, the Markov Clustering Algorithm (MCL, [20]) and
was introduced to partition proteins into families. The main advantage of the
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MCL over other clustering methods is that there is no need to specify the number
of clusters.

1. Generation of the homology network: The networks generated in this study
were based on n x m matrices containing the measurement information of m
different molecular readouts from n individuals. From this matrix a directed
graph with n + m nodes was created. Edges were introduced between indi-
vidual ni and molecule mj if its measurement value was outside two standard
deviations of the control mean. From the resulting network, it is possible to
build two graphs, one that connects all molecules that are simultaneously
changed in the same patient and a second graph that connects all patients
that share molecular alterations. Here, we focus on the latter type. The links
of these graphs are weighted by the frequency of two connected molecules
being altered in the same patient. The frequency of randomly co-occurring
changes was estimated by a large number of random networks. These were
generated by the above mentioned method starting from random matrices.
These were drawn from a normal distribution and were of the same size and
average variability as compared to the empirical matrix. The frequency of
random co-occurrences were subtracted from the empirical frequencies in-
creasing the computational speed due to the higher sparsity of the network.

2. Clustering of the homology network: we use a clustering algorithm that does
not need information on the number of clusters which is often unknown in
large–scale protein comparisons. Although there is now a wide range of clus-
tering algorithms, only a restricted number can successfully handle a network
with the complete and weighted graph properties. Among them, we cite the
recent method proposed by [35] that is based on simulated annealing to ob-
tain clustering by direct maximization of the modularity. The modularity
has been introduced by [16] and it is a measure of the difference between
the number of links inside a given module and the expected value for a ran-
domized graph of the same size and degree distribution. The modularity Q
of a partition of a network is defined as Q =

∑
s

[
ls
L −

(
ds

2L

)]
where the sum

is over all modules of the partition. ls and ds describe the number of links
and the total degree of the nodes inside module s and L the total number
of links of the network [36]. In a recent work on resolution limits in commu-
nity detection [36] the authors give evidence that modularity optimization
may fail to identify modules smaller than a certain scale, depending on the
total number of links in the network and on the number of connections be-
tween the clusters. Because of its properties, at the end, we implemented the
Markov Clustering Algorithm (MCL, [20]). Its input is a stochastic matrix
where each element is the probability of a transition between adjacent nodes.
To increase the computational speed of the community detection, a nuisance
parameter was used to assign an exponential weight to the transition prob-
abilities. The weights between mi and mj were given by e(β·ωij) where β is
the nuisance parameter and ωij is the frequency of molecules mi and mj

being simultaneously altered in the same patient. β was always set to 5. We
modified the Java version of the MCL algorithm [37] to include the strategy
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of Gfeller et al., [38] which allow detecting unstable nodes and compare
results obtained with different granularity (inflation) parameters. In this al-
gorithm, the starting matrix is modified to produce a novel matrix with a
certain amount of noise added. The noise is homogeneously distributed be-
tween −σwij and σwij where wij is the edge weight and σ a fixed noise
parameter, 0 ≤ σ ≤ 1. The noise is added randomly to edges and the MCL
clustering is performed on many noisy realization of the matrix. At each
’noisy’ repetition, the algorithm records all the nodes belonging to the same
cluster. After the prefixed number of repetitions has been concluded we end
up with a matrix storing Pij values corresponding to the fraction of times
nodes i and j have been grouped together. Unstable nodes are identified as
those having edges with less than a fixed values θ. We then calculate several
distinct measures informing on the clustering and its stability such as the fol-
lowing clustering entropy: S = −1/L

∑
ij [Pij log2Pij +(1−Pij)log2(1−Pij)],

where the sum is over all edges and the entropy is normalized by the total
number of edges, L [39]. This might be used to detect the best clustering ob-
tained after a long series of clusterings with different granularity parameters
each time.

The entropy can be used to study the stability of communities obtained
from the clustering procedures. Due to the repeated noisy realisations of
the original matrix, nodes may be attached to different communities af-
ter the clustering procedure. However, if the investigated system is very
stable, nodes tend to cluster with the same communities regardless of the
added noise. The stability of the different communities can be investigated
by analysing the entropy as a function of the clustering parameter r as the
network breaks down into increasingly separated clusters as r increases.

In alternative to the MCL it is possible to use the Super Paramagnetic
Clustering [40] that implements a method used for Ising systems in theoret-
ical physics (http://mips.gsf.de/proj/spc).

3.1 Data Used in This Study

Metabolites are the last element in the gene-protein-metabolite cascade and
are closely associated with an organism’s phenotype. They are often consid-
ered as the downstream readouts of regulatory and metabolic processes. The
metabolome, defining the entire system of metabolites, is highly complex and
dynamic in nature which accounts for its quick response to changes in the state
of an organism. Thus, it lends itself especially for the investigation of disorders
that are highly influenced by environmental factors. In this study, we performed
metabolic profiling of serum from 312 individuals. The ethical committees of
the Medical Faculty of the University of Cologne approved the protocols of this
study. Informed consent was given in writing by all participants and clinical in-
vestigations were conducted according to the principles expressed in the Decla-
ration of Helsinki. The generated dataset contained molecular information about
metabolite levels as well as clinical information about the disease state of the
investigated individuals. We assessed glucose concentrations in the serum and
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CSF of all individuals and integrated the information with mass spectrometric
data.

4 Results

We profiled serum metabolites of 312 individuals using a Liquid Chromatography
Time of Flight (LCT, Waters, Milford MA) mass spectrometer. Raw data were
processed using MarkerLynx V4.1 (Waters, Milford MA) and exported to the
freely available software package R. Here, the number of variables (detected
peaks corresponding to a certain number of metabolites) was reduced to 225 by
a stringent filtering step that retained only those molecules that were measured in
every sample. The sample collection included 70 samples taken from drug naive
first onset schizophrenia patients, 37 samples from affective disorder patients,
59 control samples taken from healthy volunteers and other sample groups not
considered in this manuscript. We then encoded the molecular and physiological
information into a network. For every patient, molecules differing significantly
from the control mean (p=0.05) were identified and connected to the respective
patient. This procedure generated a directed graph with 312 patient nodes and
225 molecule nodes in which all patients were connected to their respective
molecular abnormalities. Based on this information, a graph was generated that
connected all molecules that were simultaneously changed in the same patient. As
a second step, we performed clustering analysis to detect layers of relationships
and communities composing the graph. For this purpose clustering procedures

Fig. 2. Entropy of metabolic network created from all patient information throughout
the clustering procedure. As the network is broken down into community structures, the
entropy increases and reaches stable values at a clustering coefficient of approximately 2.
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Fig. 3. Comparison of the stability of the primary fatty acid networks determined
from schizophrenia and affective disorder patients. The stability is measured using the
networks’ entropy during the clustering procedure. The entropy is decreased at a lower
rate in affective disorder, reflecting higher stability and a stronger alteration of the
primary fatty acid network.

which don’t require cluster number specification were used. An entropy measure
was used to assess the stability of the detected communities when noise is applied
during the clustering procedure. Figure 2 shows the entropy of the network of 225
molecules determined from all patients. The entropy increased with increasing
clustering coefficients as the completely connected network was broken down into
distinct community structures. The entropy was stable for clustering coefficients
grater than two, implying that the detected communities were stable. At this
clustering coefficient, the network derived from schizophrenia patients featured
one prominent community structure consisting of 24 metabolic peaks. Based on
exact mass and isotopic pattern, these molecules were manually identified to be
primary fatty acid amides. The identity of two of these molecules (Oleamide and
Linoleamide) was confirmed by re-analyzing commercially available standards
that were infused in pure form or spiked into a serum sample. In a second
replication of the study, similar results were obtained ruling out the influence of
possible confounding factors such as plasticizers contained in the instrumental
setup. Our analysis suggests that molecules with high connectivity might have
a greater probability of being involved in connected physiological processes.

Figure 3 compares the stability of the network of 24 peaks between drug naive
patients suffering from first onset, paranoid schizophrenia and affective disorder
patients. The network was present for both disorders implying that significant
abnormalities were detected for both patient groups. For schizophrenia patients,
the entropy increased at a lower clustering coefficient and followed a log-linear
shape. For affective disorder patients, the network was more stable and split
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Fig. 4. Network properties during the clustering procedure. Graph density (top panel)
and diameter (middle panel) decreased at a lower rate in schizophrenia and affective
disorder. The transitivity is identical for both graphs and does not change during the
clustering.

apart at a higher clustering coefficient. The shape of the entropy curve was linear
for affective disorder patients and reached a far lower value than the network
derived from schizophrenia patients. These results show that in affective disorder,
the network of primary fatty acid amides was strongly connected and very stable
due to a higher degree of alteration of the molecules in this patient group.
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Fig. 5. Degree distribution during the clustering procedure in schizophrenia (left panel)
and affective disorder. In both disorders, the community structures are centered around
the primary fatty acid amide network. This effect is more pronounced in affective
disorder.

Consistent with the finding that the network is more stable in affective dis-
order, at the same clustering coefficient (r=2), the network contained 24 nodes
in schizophrenia, but 49 nodes in affective disorder after the clustering proce-
dure. To exemplify the inclusion of clinical meta-data into this framework, we
use a standard laboratory test of glucose levels in the cerebrospinal fluid (CSF)
and serum of the patients. This information was added to the original matrix of
metabolic measurements and the clustering procedure repeated. In schizophre-
nia, CSF glucose levels co-cluster with the metabolic network of primary fatty
acid amides indicating their simultaneous involvement in the pathology. For
affective disorder, both the CSF and serum glucose levels co-cluster with the
network of 49 molecules.

Furthermore, we assessed properties of network topologies during the cluster-
ing procedure. Figure 4 shows graph density, diameter and transitivity as the
clustering procedure continued and the network was broken down into commu-
nity structures. Besides the high degree of similarities between networks derived
from schizophrenia and affective disorder patients, the measured indicators de-
creased at a lower rate and reached higher equilibrium values in schizophrenia
patients. This observation resulted from different stabilities as the schizophrenia
graph decomposed into six clusters of connected molecules, whereas the affec-
tive disorder graph broke down into one stable cluster at r=2. Figure 5 shows
the degree distribution during the clustering procedure for both disorders. It
is apparent that in affective disorder, the degree distribution was dominated
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by one peak that refers to a molecule that is contained in the primary fatty acid
networks in both disorders. In schizophrenia, the degree distribution was more
complex but also centred around the primary fatty acid network.

5 Discussion

5.1 Robust Disease Patterns in Serum of Schizophrenia and
Affective Disorder

We have performed an extensive analysis of robust metabolic patterns in the
serum of schizophrenia and affective disorder patients. We were able to link the
disease phenotype to its respective molecular abnormalities in a directed graph.
Subsequently, a complete molecular network was created linking metabolites
that were altered in the same patient. This complete graph is weighted by the
degree of alteration in the disease state. It can be expected that robust and
disease specific abnormalities are present in the majority of patients and more
pronounced than randomly co-occurring alterations. To identify robust disease
patterns, a technique is needed which allows the identification of robust patterns
by breaking weaker connections between metabolites. For this purpose, we ap-
plied a clustering procedure and identified a network of primary fatty acid amides
that was robustly altered in both disorders. We chose to use the Markov Clus-
tering algorithm, but other clustering procedures are equally compatible with
the framework presented here. An entropy measure that quantifies the stability
of the networks was used to compare the disorders and revealed more stable
graph topologies in affective disorder. We also exemplify several graph theoreti-
cal measures such as the degree distribution that can be used to assess the state
of the network at any given time during the clustering procedure. Important
nodes can thus be identified and their relation to other molecules investigated.
For the serum metabolites investigated in this study, only molecules involved in
the primary fatty acid amide network had relevant connectivities. One feature
of the presented methodology that is of particular advantage is its extendibility
to patient data of any nature. We exemplified this property by combining the
metabolomics dataset with glucose measurements from the CSF and serum of
all patients and controls. The generated network is thus a compound network
that features molecular abnormalities and clinical meta-data at the same time.
Robust and disease specific patterns can be detected as described above as the
clustering procedure is invariant with respect to the origin or type of measure-
ment associated with the disease phenotype. We showed that in schizophrenia,
CSF glucose measurements co-cluster with the network of primary fatty acid
amides; in affective disorder, glucose levels of both CSF and serum cluster with
the metabolic network.

5.2 Towards Personalized Network Medicine

Networks are an intuitive concept of visualizing disease related information. Sim-
ilar to social networks, relationships of any nature between individuals can be
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coded in a network. Networks can reflect familiar relationships, physical contacts
or other interactions that may explain the spreading of a disease. Similarly, re-
lationships between disorders can be illustrated in a network. Several lines of
evidence point to the fact that many disorders have partially overlapping bio-
chemical underpinnings. On the lowest level, interactions between molecules can
be shown as networks which is already common practice. This concept of en-
coding relationships between individuals, diseases or molecules into networks is
called network medicine [45]. Here, we extended this concept towards an in-
tegrated representation of complex disorders encoding all relevant and robust
information simultaneously. This especially refers to clinical information about
the disease state including important meta-data such as presence or absence of
certain symptoms, rating scales, standard laboratory tests as well as molecular
information such as a patient’s genotype or molecular readouts from body fluids
or tissues. Graph theoretical approaches are suited to capture the complexity of
human diseases and provide a theoretical framework to easily incorporate molec-
ular readouts and patient information to give a comprehensive description of a
disease state. So far, these two types of data have been used as isolated pieces
of information in clinical practice. Here, we describe an approach to generate
networks combining molecular and clinical data and to detect robust patterns in
these networks. The concept allows a fundamental extension of the connectivity
between clinical and molecular data and facilitates the joint interpretation of
the most relevant patterns.

Using a graph theoretical approach, the similarity of patients can be readily
determined from the integrated patient information enabling the assessment of
disease similarity and possibly, the subclassification of patients. This would be
particularly desirable for psychiatric disorders for which the highly heteroge-
neous symptoms may result from different etiologies and possibly contribute to
the low efficacy of current drug regimes. Extending the concept of subclassifying
patient cohorts to the single patient level leads to a conceptual framework often
referred to as personalized medicine. Patient specific information can be incorpo-
rated into the network approach and may allow for an individualized assessment
of a given patient’s disease state. Besides facilitating more efficient treatment
approaches, a system of robust yet patient specific hallmarks of a complex dis-
order would be invaluable in the design of clinical trials, the development of
new drug candidates or the identification of novel drug targets. In the context
of psychiatric disorders, a personalized diagnosis and treatment approach would
be of particular value as patients’ responsiveness to treatment can currently not
be predicted, impeding appropriate and successful therapy. The methodology
presented here is centred around finding robust patterns of disease related in-
formation. Especially in complex disorders where patient and disease relevant
information originates from many disparate sources, the integration into patterns
of disease relevant abnormalities may advance the understanding of the diseases.
Once these patterns are determined, they could be automatically recognized as
soon as the relevant information is gathered from patients. Our perspective is
that the approach may result in an automated classification of diseases based
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on the recognized pattern, speed up and improve the diagnostic process in an
unprecedented way.
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Abstract. Cardiovascular disease is set to become the number one cause
of deaths worldwide. It is therefore important to understand the etio-
logic mechanisms for hypertension, in order to identify new routes to
improved treatment. Human hypertension arises from a combination of
genetic factors and lifestyle influences. Here we study hypertension re-
lated proteins from the perspective of protein-protein interaction (PPI)
networks, pathways, Gene Ontology (GO) categories and sequence prop-
erties. We find that hypertension related proteins are not generally asso-
ciated with network hubs and do not exhibit high clustering coefficients.
Despite this, they tend to be closer and better connected to other hy-
pertension proteins on the interaction network than we would expect,
with 23% directly interacting. We find that molecular function category
‘oxidoreductase’ and biological process categories ‘response to stimulus’
and ‘electron transport’ are overrepresented. We also find that functional
similarity does not correlate strongly with PPI distance separating hy-
pertension related protein pairs and known hypertension related proteins
are spread across 36 KEGG pathways. Finally, weighted Bagged PART
classifiers were used to build predictive models that combined amino acid
sequence with PPI network and GO properties.

1 Introduction

OMIM (Online Medelian Inheritance in Man) is a resource for studying disease
genes [16]. It provides a set of positive examples for machine learning approaches
to build classifiers for prediction of disease genes. Early work using decision tree
based classifiers showed disease genes tend to be longer and more conserved than
non-disease genes [21]. Subsequent work included additional sequence based at-
tributes that were also used to construct classifiers [2]. Other annotation related
attributes such as co-expression and similarity of Gene Ontology (GO) [4] terms
and text mining approaches have also been used for selection of disease gene
candidates [3] [26] [22]. More recently attributes based on protein-protein inter-
actions (PPI) have been used in classification approaches [30] [14]. PPI interac-
tion data has shown that disease genes are likely to interact with other disease
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genes or to share interaction neighbours. Barabassi et al. have shown that ‘essen-
tial’ disease genes, in which mutations are lethal, form hubs (highly connected
nodes) whereas ‘non-essential’ disease genes do not display this tendency [15].
A k-nearest neighbours classifier using network features achieved a prediction
accuracy of 0.76 [30]. Many of the studies on classification of disease genes have
not distinguished features of specific disease conditions, although PPI network
properties for Alzheimers related proteins have been studied by Chen etc al [9]
who found that these proteins form a highly connected subnetwork.

Hypertension is a complex disease, it has proved difficult to define the ge-
netic architecture of this phenotype [20]. Human hypertension affects over one
billion people worldwide and it contributes to approximately 50% of all cardio-
vascular disease [12]. The study of simpler Mendelian forms of hypertension has
highlighted several causative genes, which alter sodium regulation [20]. How-
ever, there have been few clear reproduceable essential hypertension candidate
loci identified [1]. Recent genome-wide studies have identified important genes in
other complex traits such as type 2 diabetes and obesity [1] [24]. The approach of
George et al. [14] which exploits PPI and pathway data together with sequence
similarity, had limited success in correctly identifying any of the five known hy-
pertension genes included in the dataset. There is therefore value in attempting
to develop a classifier to predict genes that may be likely to be implicated in hy-
pertension. In this exploratory study we examine properties of 65 proteins from
OMIM which are listed as being associated with a hypertension phenotype and
we report the performance of a classifier which includes PPI network, sequence
and GO attributes for the detection of hypertension related proteins.

2 Computational Method

2.1 Dataset

Each record in the OMIM database is associated with a unique identifier which
relates to a disease, the observed symptoms and the associated genes. The symp-
toms field of the OMIM entries were parsed for the term ‘hypertension’ and the
results were manually filtered. The genes associated with OMIM entries dis-
playing hypertension as a symptom were then mapped onto their SWISSPROT
protein identifiers [5].

2.2 Protein-Protein Interaction Network Properties

Protein-protein interactions form networks which can be explored using graph
theoretic approaches. The networks can be thought of as undirected cyclic graphs
where the proteins are nodes and the interactions are edges. If proteins A
and B directly interact then there exists an edge connecting nodes A and B.
Protein-protein interactions involving the identified hypertension related SWIS-
SPROT identifiers were extracted from the OPHID database [7]. OPHID is an
on-line database of human protein-protein interactions built by mapping high-
throughput model organism data to human proteins. It also integrates data from
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yeast two-hybrid based, literature-based interaction and orthology-based inter-
action sources. The hypertension related SWISSPROT proteins (nodes) present
in OPHID are referred to as HTd (hypertension dataset). One thousand datasets,
each containing the same number of proteins as HTd (65), were then generated
by randomly selecting proteins (nodes) from OPHID. We refer to this group of
datasets as Rd1..1000.

In order to investigate the PPI properties relating to hypertension, a 2 step
approach was taken. Firstly, the ‘general topology’ of each HTd protein was
investigated whereby PPI properties of each HTd protein were investigated in
relation to all surrounding proteins. Secondly, network properties were investi-
gated specifically in relation to other HTd proteins (‘dataset topology’). Com-
parisons were made with the Rd1..1000 datasets. The aim of this analysis was to
identify whether HTd proteins were better connected than random and whether
any differences could be explained by their general background connectivity. For
example, can short distances between HTd proteins be explained through HTd
proteins being interaction hubs?

General topology. Degree of nodes: The mean degree (total number of edges
associated with protein (p)) was calculated for OPHID as a whole, for HTd and
Rd1..1000. This measure was then extended to identify the number of proteins
within a radius of 3 interaction steps from p (figure 1). Clustering coefficient:
The clustering coefficient (C) for protein p is the number of links between the
proteins that directly interact with p divided by the number of links that could
possibly exist between them (if the directly interacting proteins were a clique).
This measure originates from Watts and Strogatz [28] who used it to determine
whether a network was ‘small-world’. The clustering coefficient was calculated
for each HTd and each Rd1..1000 protein.

Dataset topology. Degree of nodes: The mean degree was recalculated for each
dataset (HTd, Rd1..1000) where only interactions with proteins from the same
dataset were considered. This measure was then extended to identify the number
of proteins from the same dataset within a radius of 3 interaction steps (green
nodes in figure 1). Geodesic distance: The length of the shortest connecting path
between each pair of HTd proteins (HTd protein A to HTd protein B), and
each pair of random proteins (Rdx protein A to Rdx protein B)was calculated
using Dijkstra’s algorithm [10]. Interaction subnetworks: We derived expanded
subnetworks for each of the datasets, using the approach of Chen et al. [9],
whereby all the proteins and their directly interacting partners were selected.
The proportion of all proteins from each of these expanded subnetwork datasets
that were contained within the largest connected component were calculated. A
connected component is a set of proteins whereby each protein can be reached
from any other protein via a combination of interaction steps.

2.3 Hypertension Pathways and Protein Function

To investigate pathway properties of hypertension related proteins, proteins from
HTd were mapped to identifiers from the KEGG database [18]. We excluded the
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Fig. 1. Figure to show the number of proteins within a chosen radius of a selected
hypertension related protein (red node). This figure displays a radius of 2 as an example
(greyed area). The blue and green nodes are proteins falling within this radius. The
blue node indicates that the protein is not hypertension related whereas the green node
indicates a hypertension related protein.

following KEGG identifiers that related to types of interactions as opposed to
pathways, although we are aware there is some subjectivity in this selection:
ABC transporters, phosphotransferase system (PTS), two-component system,
neuroactive ligand-receptor interaction, cytokine-cytokine receptor interaction,
ECM-receptor interaction, cell adhesion molecules (CAMs), aminoacyl-tRNA
biosynthesis, type II secretion system, type III secretion system, type IV se-
cretion system, SNARE interactions in vesicular transport, ubiquitin mediated
proteolysis, proteasome, cell cycle - yeast. The distribution of HTd proteins in
the remaining pathways was investigated and compared to Rd1..1000.

The semantic similarity of Gene Ontology (GO) terms from each aspect (bi-
ological function, molecular process and cellular location) was obtained for the
HTd proteins using the program G-Sesame [27]. The correlation between the
semantic similarity of GO terms and geodesic distance apart in the PPI network
was then measured for pairs of HTd proteins.

GO slims are cut-down versions of the GO categories containing a subset of
the terms in the whole GO. They give a broad overview of the ontology content
without the detail of the specific fine grained terms. The distribution of GO slim
[4] molecular functions and biological processes were studied in order to iden-
tify categories that were overrepresented or underrepresented in hypertension
proteins compared to the Rd1..1000.

2.4 Classification

A machine learning classifier was built to identify hypertension proteins using a
combination of attributes from the PPI and GO analysis, combined with physic-
ochemical properties of the protein sequences. The training dataset comprised



Combining PPI Network and Sequence Attributes 381

the proteins contained within Rd1..30 (1950 instances) and the HTd dataset (65
instances).

Because there was a large imbalance in the training dataset (many more
random proteins than hypertension proteins), a CostSensitive classifier [29] was
used as a wrapper around a Bagged PART classifier [13][6]. A cost could then be
applied for an incorrect HTd protein classification during ten fold cross validation
in an attempt to address the imbalance. This weighted approach has been shown
to be a succesful method for coping with class imbalance [8] using a similar type
of classifier and has an advantage over undersampling in that there is no loss of
information. Choosing a cost depends on priorities. For example, a researcher
may be prepared to accept a high false positive rate (FPR) in order to obtain a
high rate of recall for hypertension related proteins. The classifier was run 400
times with a range of cost matrices that applied varying penalties for incorrectly
predicting a HTd protein.

Physicochemical properties for each protein sequence were calculated
using the Protparam program at Expasy (www.expasy.org). A bioperl
(www.bioperl.org) module (Bio::Tools::Protparam) was created specifically for
this purpose. Sequence properties used in the classifier were: amino acid length;
number of negative amino acids; number of positive amino acids; molecular
weight; theoretical pI; number of carbon atoms; number of hydrogen atoms;
number of nitrogen atoms; number of oxygen atoms; number of sulphur atoms ;
half life; instability Index; stability class; aliphatic index; GRAVY; amino acid
composition; The GRAVY (Grand Average of Hydropathy) value for a peptide
or protein was calculated as the sum of hydropathy values of all the amino acids,
divided by the number of residues in the sequence [19]. In addition, attributes
were selected based on the properties of the PPI networks. The attributes calcu-
lated for each protein were: the length of the shortest path to the closest known
HTd protein; the average and standard deviation of distances from each HTd
protein; the number of direct interactions; the number of direct interactions with
HTd proteins; the number of proteins up to 2 interactions away (up to one in-
termediary); the number of HTd proteins up to 2 interactions away; the number
of proteins up to 3 interactions away (up to two intermediaries); the number of
HTd proteins up to 3 interactions away;

Attributes relating to molecular function and biological process were selected
from GO slim categories that were found to be either over or underrepresented
within the hypertension dataset, namely, ‘response to stimulus’ (GO:0050896),
‘electron transport’ (GO:0006118) and ‘oxidoreductase activity’ (GO:0016491.

3 Results

We isolated 96 hypertension related genes from OMIM, 90 of which could be
mapped to SWISSPROT identifiers. Where an OMIM id had multiple associated
proteins, we made the assumption that all were associated with hypertension
and included them in the dataset as there was insufficient evidence to assume
otherwise. Of the 90 ids, 65 were present within OPHID. These 65 proteins

www.expasy.org
www.bioperl.org


382 R.J.B. Dobson et al.

were associated with 47 diseases (distinct OMIM ids) where hypertension was
recorded as a symptom. The average number of proteins per OMIM id was
1.5. We refer to this dataset as HTd. The OPHID database used in this study
contained 48,222 interactions.

3.1 Network Properties

General topology. Degree of nodes: The average degree (number of direct
interactions associated with a protein) for the whole of OPHID was 9.04. The
HTd proteins had an average degree of 10.0615. The average degree for OMIM
genes (that are present in OPHID) was 12.91. The number of proteins within
radii of 1 (degree), 2 and 3 interactions from each protein is shown in the top
row of quantile-quantile plots in figure 2. The difference in distributions between
HTd and Rd1..1000 was only marginally significant for direct interactions and
was not significant for interactions within radii of 2 and 3 interactions when
using the Wilcoxon rank sum test (p-values = 0.03, 0.09, 0.08 respectively).
Clustering coefficient: Figure 3 shows the quantile-quantile plot of clustering
coefficients (C) for HTd and Rd1..1000. If they come from similar distributions,
the distributions should align. Wilcoxon rank sum test with continuity correction
shows that they come from the same distribution (p-value = 0.1085). However
the Bartlett’s K-squared test shows there is heterogeneity of variance (p-value
= 0.001368) with the random genes having a wider variance of C. In terms of
interacting partners that are involved in no further interactions (C=0), there
was no significant difference between the 2 sets, 52.3% HTd proteins and 39%
of Rd1..1000 proteins (Chi-squared = 1.857 p-value = 0.1730). There was no
significant difference in the proportion of HTd and Rd1..1000 proteins that only
have a single interacting partner with 18 HTd proteins and an average of 18.86
across the Rd1..1000 datasets.

Dataset topology. Degree of nodes: The second row of quantile-quantile plots
in figure 2 show the subset of interactions within radii of 1 (degree), 2, 3 inter-
actions that belonged to the same dataset as the protein p under study. These
plots can be compared with the first 3 plots displaying all interactions within
similar radii. The difference in distributions between HTd and Rd1..1000 for
these subsets of interactions up to a radius of 3 interactions is significant when
using the Wilcoxon rank sum test (p-value = 2.49e-11, 3.842e-06, 0.0003 respec-
tively). Geodesic distance: Figure 4 shows the geodesic distance between each
pair of HTd proteins and each pair of proteins from Rd1..100. We limited to the
first 100 random datasets due to the computationally expensive process involved
in calculating the distance. The difference in the distribution of distances was
significant (Wilcoxon rank sum p=0.004). Fifteen out of 65 (23%) HTd proteins
are directly connected. In comparison, on average, only 3 out of every 65 (6%)
Rd1..100 proteins are directly connected. Interaction subnetworks : There were
623 proteins (646 interactions) in the dataset comprising the HTd proteins and
their direct interaction partners. The average number of proteins and directly
interacting partners for the Rd1..1000 datasets was 583 (std 109). The largest
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Fig. 2. Quantile-quantile plots for the number of proteins up to a distance of 3 in-
teractions away from HTd and Rd1..1000 proteins. The first three plots relate to all
interactions and the second three plots limit to interactions with proteins belonging to
the same dataset as the protein being studied. Axis definitions: rand 1 all, rand 2 all,
rand 3 all - number of proteins within radii of 1, 2, 3 interactions of each Rdx protein
(x=1 to 1000); ht 1 all, ht 2 all, ht 3 all - number of proteins within radii of 1, 2, 3
interactions of each HTd protein; rand 1 rand, rand 2 rand, rand 3 rand - number of
Rdx proteins within radii of 1, 2, 3 interactions of each Rdx protein; ht 1 ht, ht 2 ht,
ht 3 ht - number of HTd proteins within radii of 1, 2, 3 interactions of each HTd
protein. The top 3 plots show that both RD1..1000 and HTd proteins have similar
distributions in terms of the total number of proteins up to a distance of 3 interaction
steps away (Wilcoxon rank sum test p-values = 0.03, 0.09, 0.08 respectively), although
there are outiers in the Rd1..1000 proteins acting as hubs. The bottom 3 plots show
that there are larger numbers of HTd proteins surrounding any given HTd protein than
there are Rdx proteins surrounding Rdx proteins (within the radii up to 3 interactions)
(Wilcoxon rank sum test p-values = 2.49e-11, 3.842e-06, 0.0003 respectively).
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Fig. 3. Quantile-quantile plot of clustering coefficients (C) for the HTd and Rd1..1000
proteins. Wilcoxon rank sum test with continuity correction shows that they come from
the same distribution (p-value = 0.1085). However the Bartlett’s K-squared test shows
there is heterogeneity of variance (p-value = 0.001368) with the Rd1.1000 proteins
having a wider variance of C.

connected component in the expanded subnetwork involving the HTd proteins
and their direct partners contained 550 of the 623 proteins (88%). The size of
this subnet is in the upper 5% of the distribution over Rd1..1000 (figure 5).

3.2 Hypertension Pathways and Protein Function

The HTd proteins are spread across 36 KEGG pathways. Three (8%) of these
pathways contain 3 HTd proteins, 10 (28%) contain 2 HTd proteins and the
remaining pathways (64%) contain single HTd proteins. Table 1 shows the path-
ways that contain multiple HTd proteins. By comparison, for the subset of 22
Rd1..1000 datasets that map to the same number of pathways (36), only 3%



Combining PPI Network and Sequence Attributes 385

1 2 3 4 5 6 7 8 9 infinite
0

100

200

300

400

500

600

700

800

900

HTd

Rd1..100 avg

geodesic distance

fr
e

q
u

e
n

c
y

Fig. 4. Figure to show the geodesic distances between HTd protein pairs and Rdx
protein pairs. Infinite relates to protein pairs that are unconnected, both directly and
indirectly.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

0

20

40

60

80

100

120

140

160

proportion of proteins in each random dataset

fr
eq

u
en

cy

ht

Fig. 5. The proportion of proteins in the largest connected component for HTd and
each Rd1..1000 expanded subnetworks. In the HTd expanded subnetwork, the largest
connected component contains 88% of the proteins.

of the pathways contain 3 proteins, 15% contain 2 proteins and 82% contain
1 protein. The clustering of HTd proteins in KEGG pathways is significantly
different to the pattern observed in the subset of Rd1..1000 datasets that map
to 36 pathways (Wilcoxon rank sum test p=0.02).

We wanted to investigate the origin of the observed high level of connectiv-
ity in ‘dataset topological’ properties of the HTd dataset. HTd proteins that
clustered in pathways were investigated to see whether they originated from the
same OMIM record. For those that did we noted the geodesic distance separating
them. This might help identify any potential biases in the HTd dataset. Of the
3 pathways that each contain 3 HTd proteins, 2 pathways contain HTd proteins
that map to the same hypertension related OMIM id. The first of these path-
ways is the human cell communication pathway (path:dhsa01430). An OMIM
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Table 1. Table to show the KEGG Homo sapiens pathways that contain multiple HTd
proteins

Pathway ID Description No. of HTd
proteins

path:dhsa00500 Starch and sucrose metabolism 3
path:dhsa01430 Cell Communication 3
path:dhsa04610 Complement and coagulation cascades 3
path:dhsa00052 Galactose metabolism 2
path:dhsa00140 C21-Steroid hormone metabolism 2
path:dhsa00561 Glycerolipid metabolism 2
path:dhsa00600 Sphingolipid metabolism 2
path:dhsa03320 PPAR signaling pathway 2
path:dhsa04350 TGF-beta signaling pathway 2
path:dhsa04630 Jak-STAT signaling pathway 2
path:dhsa04640 Hematopoietic cell lineage 2
path:dhsa04742 Taste transduction 2
path:dhsa05216 Thyroid cancer 2

id (215600 Cirrhosis, familial) is shared between 2 of the 3 HTd proteins in this
pathway. The respective proteins are: K1C18 HUMAN [P05783] (Keratin, type
I cytoskeletal 18 (Cytokeratin-18) and K2C8 HUMAN [P05787] (Keratin, type
II cytoskeletal 8 (Cytokeratin-8). These proteins are separated by a geodesic dis-
tance of 4. The second pathway containing 3 HTd proteins is the complement and
coagulation cascades pathway (path:dhsa04610). Again, one OMIM id (235400
hemolytic uremic syndrome) is shared between 2 of the 3 HTd proteins in this
pathway. The proteins are: CFAH HUMAN [P08603] (Complement factor H pre-
cursor (H factor 1)) and MCP HUMAN [P15529] (Membrane cofactor protein
precursor (Trophoblast leukocyte common antigen)). The geodesic distance be-
tween these proteins is 2. Only 1 of the 10 pathways that contain 2 HTd proteins
have proteins that map to the same hypertension related OMIM id. This path-
way is the taste transduction pathway (path:dhsa04742). The shared OMIM id is
177200 (Liddle syndrome). The 2 proteins in this pathway that share this OMIM
id are: SCNNB HUMAN [P51168] (Amiloride-sensitive sodium channel subunit
beta (Epithelial Na(+) channel subunit beta)) and SCNNG HUMAN [P51170]
(Amiloride-sensitive sodium channel subunit gamma (Epithelial Na(+) channel
subunit gamma)). These proteins directly interact in the PPI network.

There was not a strong correlation between GO semantic similarity and
geodesic distance for HTd protein pairs. Correlations were calculated for each
aspect of GO (molecular function, biological process and cellular component).

Most of the hypertension related proteins fall into GO slim categories of bind-
ing (GO:0005488), protein binding (GO:0005515) and catalytic activity
(GO:0003824). The difference in the overall distribution of GO slim biological
process categories between hypertension and Rd1..1000 proteins is significant
(p-value = 0.01554) whereas the distribution of molecular function GO slim
categories is not (p-value = 0.5369). In terms of biological processes, specific
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GO slim categories ‘response to stimulus’ (GO:0050896) and ‘electron trans-
port’ (GO:0006118) are overrepresented within the hypertension dataset with p
= 0.005277 and p = 0.0009852 repectively. In terms of molecular functions, ‘ox-
idoreductase activity’ (GO:0016491) is overrepresented within the hypertension
dataset (p-value = 0.01219). These categories are still significantly overrepre-
sented following the removal of 3 homologs in HTd.

3.3 Classification

When benchmarking the classifier we wished to identify any sequence simi-
lar proteins as some of our attributes are sequence based. BLASTClust (at a
level of 25% identity) [11] showed that the HTd dataset was not heavily pop-
ulated with sequence homologs. Only 2 pairs of proteins were found to share
more than 25% identity. The first protein pair was: SCNNB HUMAN [P51168]
(Amiloride sensitive sodium channel subunit beta) and SCNNG HUMAN
[P51170] (Amiloride sensitive sodium channel subunit gamma). These pro-
teins shared 34% sequence identity (E=3e-102). The second protein pair was:
C11B1 HUMAN [P15538] (Cytochrome P450 11B1, mitochondrial precursor)
and C11B2 HUMAN [P19099] (Cytochrome P450 11B2, mitochondrial precur-
sor). These proteins shared 85% sequence identity (E=0.0). All proteins were
included in the machine learning classification.

Various feature selection methods were tested using the WEKA workbench
[29] to remove redundancy and identify key attributes. The CfsSubsetEval eval-
uator used with the BestFirst search method identified seven key attributes:
percentage amino acid composition of G; percentage amino acid composition
of K; the geodesic distance to the closest HTd protein; the standard deviation
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Fig. 6. Figure to show the true positive rate [TPR] against false positive rate [FPR])
when predicting hypertension proteins using a weighted Bagged PART classifer. The
penalty for an incorrect prediction was varied by using a CostSensitive classifier.
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of the geodesic distances to each HTd protein; whether the protein belonged to
GO slim categories ‘response to stimulus’ (GO:0050896) and ‘electron transport’
(GO:0006118); the number of direct connections with HTd proteins. A weighted
Bagged PART classifier was run 400 times over a range of penalties (using a cost
matrix) for incorrectly predicting a HTd protein using the 7 key attributes. The
runs were repeated using the simple majority-rule approach but the TPR never
exceeded the FPR. Figure 6 shows the true positive rate (TPR) plotted against
the false postive rate (FPR) when predicting hypertension proteins.

4 Discussion

We find that there is little difference in the general background topology of
protein-protein interaction networks between HTd proteins and Rd1..1000 pro-
teins. We find that HTd proteins do not form large hubs and they do not dis-
play high cluster coeffecient (C) scores. Previous studies [23] [25] [17] [30] have
suggested that disease genes were likely to form hubs. However, Barabassi [15]
suggested recently that these studies included ‘essential’ genes in which any mu-
tations are lethal. Once these genes had been excluded it was shown that the
remaining ‘non-essential’ disease genes did not tend to form hubs. HTd are likely
to be ‘non-essential’ genes and our findings are consistent with [15]. OMIM has
a average degree of 13 which is higher than the hypertension proteins (10) and
OPHID (9) possibly because it includes these ‘essential’ disease genes.

Despite the insignificant differences in background network topology, we find
that HTd proteins display greater connectivity in relation to each other than we
might expect. HTd protein pairs exhibit shorter geodesic distances than random
and the largest expanded subnet size lies within the top 5% of the distribution
for the random datasets. This means that 88% of the proteins are connected
(directly or indirectly) when a network is created using HTd proteins and their
direct partners. It is similar to previously observed distributions in Alzheimers
disease proteins where the largest subnet contained 83% of the proteins [9]. There
is also a significant difference from random in the number of HTd proteins within
a radius of 3 interactions from any other HTd protein.

The HTd proteins are spread over 36 KEGG pathways, reflecting the com-
plex, locus rich nature of hypertension related proteins. We might have expected
to see HTd proteins that cluster in the same pathway to have originated from
the same OMIM id and be close in the PPI network. We found that this was
not always the case. The proteins were usually associated with different diseases
where hypertension was a symptom. Where proteins sharing a pathway origi-
nated from the same OMIM id, only 1 of the 3 HTd protein pairs were directly
connected.

We expected to see a negative correlation between distance separating two
HTd proteins in the PPI network and GO semantic similarity. However, we were
unable to show this correlation in our dataset. The difference in the distribution
of GO slim biological process categories between HTd proteins and the Rd1.1000
was significant. There were a number of notable molecular function and biological



Combining PPI Network and Sequence Attributes 389

process categories that were overrepresented in the hypertension dataset, namely
‘response to stimulus’ (GO:0050896), ‘oxidoreductase activity’ (GO:0016491),
‘nucleic acid binding’ (GO:0003676).

There are caveats with the OMIM hypertension dataset, however at present
the OMIM database is the most complete repository of diseases and their as-
sociated genes. There was concern that the increased connectivity of the HTd
proteins may be due to biases in the PPI resource. We might expect the hyper-
tension related proteins to have been studied more than the randomly selected
proteins and therefore to see a larger number of documented interactions. How-
ever, if this were the case, we would have expected more of them to be hubs.
Potential interaction biases could be further investigated by considering inter-
actions, such as those from high throughput experiments, separately. Because
the sources of OPHID interactions vary in their reliability, we created a second
weighted network, retaining the same proteins and interactions but assigning
a weight (or distance) to each interaction in a similar manner to [9]. In this
weighted network, proteins were separated by a distance relating to annotation
confidence. Interactions with high quality annotation retained their default dis-
tance of 1, medium quality interactions were separated by a distance of 1.5 and
low quality interactions a distance of 2. We then repeated relevant analyses. Our
results did not show significant trend differences to the unweighted analyses with
respect to GO semantic similarity and geodesic distance correlations.

The methods described here could easily be applied to other disease datasets
in OMIM. The hypertension dataset itself would be improved with the addition
of further hypertension related proteins. However, the model constructed shows
that there are patterns within PPI networks, shared function and sequence based
properties that can be used to aid prioritisation of candidate gene lists identified
through experiments such as genome wide association studies. We anticipate
that machine learning analyses that combine such attributes will be useful in
helping to characterise disease related genes in future studies.
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Abstract. A 9.5Kb nucleotide sequence of an endogenous retrovirus was ob-
tained during an attempt to screen a reverse transcriptase-like element in the ze-
brafish genome project database. The element termed here as ZFERV-2 has the 
typical genomic organization of a retrovirus in which the LTR flanks the viral 
genes in this way: LTR-gag-pol-env-LTR. ZFERV-2, resembles a zebrafish en-
dogenous retrovirus, ZFERV discovered previously by Shen and Steiner (2004) 
and has all the major conserved motifs of the viral genes. In addition, ZFERV-2 
has several characteristics possessed by a retrovirus. Firstly, ZFERV-2 shows a 
replication defective retrovirus because of huge deletion at the protease gene 
proximal to gag gene is observed. Secondly, an intact genome structure of 
ZFERV-2 together with 99% sequence similarity on both ends of the LTRs  
indicate a recent integration into the zebrafish genome. Thirdly, a long leader 
sequence at 1.5Kb upstream of the viral genes and a large genome size are 
characteristics shared by retroviruses isolated from lower vertebrates.  

Keywords: endogenous retrovirus, genome, reverse transcriptase, piscine. 

1   Introduction 

Endogenous retroviruses are transmitted vertically through the host germ cells in most 
identified vertebrate genomes (Herniou et al., 1998). Although defective in nature due 
to extensive mutation in their genomes, some apparently possessed intact genome and 
proved infectious in the past. For example, an endogenous retrovirus isolated from 
mouse genome, Mouse Mammary Tumor Virus (MMTV) functions as a complemen-
tary or helper virus for the exogenous counterpart and hence induces the tumour cells 
to grow (Muhlbock and Bentvelzen, 1968). Another example from several groups of 
Human Endogenous Retroviruses (HERVs) displayed their pathogenic characteristics 
(Muir et al., 2004, Johnson et al., 1990, Herbs et al., 1996, Wang-Johannig et al., 
2001, Portis, 2002, Ponferrada et al., 2003).  

The genomic structure of the endogenous retrovirus is not very much different from 
the exogenous form. For example, both Murine Leukaemia Virus (MuLV) and 
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MMTV have closely related genomic structure to their exogenous counterpart and 
may suggest potential infectious characteristics for many years. Feline Endogenous 
Virus (FeLV), also has similar structure and sequence to the exogenous form. The 
only difference is in the U3 region of the LTR of endogenous and exogenous FeLV. 

Despite being widely investigated from murine and human hosts, little attentions 
have been given to the study of endogenous retrovirus from lower vertebrate hosts.    
Nevertheless, one full-length sequence was found in both reptilian (Crocodylian En-
dogenous Retrovirus, CnEV) and amphibian hosts (Xenopus laevis Endogenous Ret-
rovirus, Xen1). Similarly, one full-length sequence was also found in a piscine host, 
namely the Zebrafish Endogenous Retrovirus (ZFERV). Ironically, all the full-length 
sequences of endogenous retroviruses detected from lower vertebrates to date shared 
non-infectious characteristics and yet had an intact genomic structure (Martin et al., 
2002, Kambol et al., 2003, Shen and Steiner, 2004). Both CnEV and Xen1 were de-
tected by screening a genomic library of Crocodylus niloticus and African Clawed 
Toad, Xenopus laevis. ZFERV, on the other hand, was found when searching for 
unknown genes required for lymphocyte development in zebrafish. It was proved that 
ZFERV is expressed by thymus in both larval and adult fish (Shen and Steiner, 2004). 
All of these viruses have unique features of genomic organization when compared to 
the retroviruses present within murine and human hosts.    

Here we report the characterisation of the second full-length sequence of endoge-
nous retrovirus from Zebrafish, known as Zebrafish Endogenous Retrovirus-2 (ZFERV-
2) from the screening of the Zebrafish genome project database. ZFREV-2 has similar 
features and genomic organisation to ZFERV, despite having a huge deletion at the 
protease gene that may indicate its non-infectious nature in zebrafish genome.  

2   Materials and Methods 

Probe development 
Six probes in the amino acid form were obtained from the reverse transcriptase gene 
fragments isolated from various piscine hosts during the previous screening method in 
the lab using PCR screening method (Kambol, 2003). Briefly, the probes were iso-
lated from the following fish: ZFERV, Fugu rubripes, Leptobarbus hovenii, Ambly-
ceps sp. and Pufferfish. The probes targeted the protease and domain 1 to 5 of the 
reverse transcriptase gene. The length of probes varied according to the type of fish 
ranging from 103 to163 amino acids.    

 

Genome characterisation and BLAST searching 
The amino acid probes were subjected to BLAST searches using BLAST webpage at 
www.ncbi.nlm.nih.gov/BLAST. A database from the Zebrafish Genome Project data-
base was used to screen out possible retroviral fragments from the database of Zebraf-
ish Genome Project located at www.sanger.ac.uk/Projects/D_rerio/.  Series of BLAST 
program were investigated to search for a significant match between query and sub-
ject sequences. This involved the application of tBLASTn program and non-
redundant database and then a combination of BLASTp and the protein database 
(pdb) were used throughout the searching. A significant match which was at a high 
percentage of identity (more than 60%), high score bit (more than 100) and low E 
value was taken into consideration for further analysis. Further analysis included 
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protein family determination and LTR identification. For protein family determination 
at the pol gene, Pfam searches were used to confirm the reverse transcriptase, 
RNAseH and integrase family member from the protein family database. Pfam search 
was carried out at www.pfam.com. For LTR identification, BLAST2 Sequences were 
used at the following webpage www.ncbi.nlm.nih.gov/BLAST2Sequences. Subse-
quent determination for other viral protein from gag and env genes was carried out 
manually by investigating the conserved motif in each gene. Conserved motif for gag 
gene was identified by the presence of major homology region (MHR) with the fol-
lowing motif: Φ-X-Q-G-X2-E-X4-F-Φ-X-R-L-X3-Φ where Φ was a hydrophobic 
residue and X can be any amino acid (Wills and Craven, 1991, Patarca and Heseltine, 
1983).  Conserved motif for immunosuppressive motif in the env gene has the follow-
ing motif, QNRRLA/LD (Cianciolo et al., 1985, Sonigo et al.,1986).  

Initially, BLAST searching was performed at the reverse transcriptase gene region. 
Then, BLAST searching was expanded to other regions of the full-length sequence of 
ZFREV-2. After obtaining the reverse transcriptase gene, a probe walking method 
was performed in which the resultant sequence from the reverse transcriptase gene 
was then used to read the remaining sequence in both upstream and downstream di-
rections. Basically, 3 to 5 KB nucleotide sequences were cut and investigated further 
for translation purposes. Then the step (reading and translation on both directions) 
was repeated until all the viral genes and LTR flanking the viral genes were deter-
mined. In this study the element was found at the accession no.     CR 792423.5 from 
clone CH211-190H10 of the Zebrafish genome project database.  

 

DNA translation and sequence analysis 
DNA translation was performed using DNAsis software and Open Reading Frame 
determination was carried out at www.ncbi.nlm.nih.gov/ORFinder. Only a very long 
Open reading frame was investigated and analysed further.     

3   Results 

        LTR 
1    TGAGGGAATTATATTTTTGAGGGAATCATATTTTTTAATGTTTTATGCATGTTCAGAATTGAT 

64   TTAAGTTTTTCATATTTTTGATGTTTTATGTTTGATATTGATATTAAGTTTTACTATTTTCTT 

127  TACTGATGAAATGCTTTGTTTGAAATATGAGCCTATTGCTTTGTTTGAAATGTGAGCCTATCG  

190  CTTAAGCTTCGCTTCTAGAGAAACGGGGTTTTTCCACAGAAGTAAGACGAGAGATCTGAGCTC 

253  ATGGACAGCTGTGCTTTGGTACAGGATGTGGTTTAACACCTGCAAGGAATCAGCCGTATCTCA 

316  GTCTGTGTAGGGGTGCATGTGTGTTTTGTGTGTGTGTGTGTTTGCAGGCTACTGGCAGATTCT 

379  AACTGGTTGAGATGAGATCTGATGATGGGAAGGCGAATAATGGATTGGAGGCTCATCGAGAGT                        

442  GGGGAGGAGACAACCAAGAATAAAAACTGTTGTTTTATGAATTGTACGGCAATACTGGAGCGC 

505  CCAGTTTGCCTTTTCATGGTGTCTCTTCAGTATTCCTGGGCTCAGCATTGTTGATCTGATCCT 

568  TCGTTTATTAAACTTTGATTTCTCGATAAAGCTAAGTTTCCTGCGTCTACTTTCAAGCGAATC 

       LTR  
631 CTGAAATCGGGGAGGGAAAAACCATTTTCCTACAA   
         PBS 
666  ATTTGGAGGGGGCACCCGGATTCGCTCAGACGCTTCGTCGAGTTGGAGGAC        
       F  G  G  G  T  R  I  R  S  D  A  S  S  S  W  R  T       
717  GATCTCAAATCAACCTCTGCGCAGAACTTCTAATAAGGTAAGCAGTCACCT     
       I  S  N  Q  P  L  R  R  T  S  N  K  V  S  S  H  L       
768  TTTTGATAAAAGTACTGCAAGATTGGAATTACCAAATTTAAGGTTGATTGG   

TATA 
box 



 Genome Structure and Characterisation of an Endogenous Retrovirus 395 

       F  D  K  S  T  A  R  L  E  L  P  N  L  R  L  I  G  
819  GGATTGAATACCAACATAATCCATAAATAATTTGAATTAGATCAACAATGG        
       D  *  I  P  T  *  S  I  N  N  L  N  *  I  N  N  G  
870  CAATTAAAATGAGTTGACCCGGCGTGGTTACAAGGTTTAAAAACTCATACT       
       N  *  N  E  L  T  R  R  G  Y  K  V  *  K  L  I  L  
921  ATTAATTGATTATTAACGAGTCGACCCGGCGTGGTTAAACAAATTTATAAA repeat 1       
       L  I  D  Y  *  R  V  D  P  A  W  L  N  K  F  I  K  
972  GACTCAGAATTGGTTTATTATTGAGTTGACCCGGCGTGGTTAAACAAATTT repeat 2      
       T  Q  N  W  F  I  I  E  L  T  R  R  G  *  T  N  L  
1023 ATAAAAACTCAGAGTTGACCCGGCGTGGTTAACAATTGGTTATTAAAGGAG       
       K  N  S  E  L  T  R  R  G  *  Q  L  V  I  K  G  V 
1074 TTGACCCGGCGTGGTTAAACAAATTTATAAAAACTCCGAATTGGTATATTA repeat 3      
       D  P  A  W  L  N  K  F  I  K  T  P  N  W  Y  I  K 
1125 AACGAGTCGACCCGGCGTGGTTAAACAAATTTATAAAGACTCAGAATTGGT repeat 4      
       R  V  D  P  A  W  L  N  K  F  I  K  T  Q  N  W  L 
1176 TATATTATAGAGTTGACCCGGCGTGGTTAAGCAAATTTATAAAAACTCTGA repeat 5      
       Y  Y  R  V  D  P  A  W  L  S  K  F  I  K  T  L  N 
1227 ATTGGTTATTAAAGGAGTTGACCCGGCGCGGTTAAGAAAACTTATAAAAAC       
       W  L  L  K  E  L  T  R  R  G  *  E  N  L  *  K  L 
1278 TCCGAATTGGTAATTAAACGAGTTGACCCGGCGTGGTTAAGAAATATTATA       
     S  E  L  V  I  K  R  V  D  P  A  W  L  R  N  I  I   
1329 AAAACTCGTATCGTGTTTTCCTGGCATGGTTGAGAATTGAAGTTTACCCGG       
       N  S  Y  R  V  F  L  A  W  L  R  I  E  V  Y  P  A 
1380 CGAGGTTAACTCACTCGTAAAAACACATAAAAGAGAGTAAAAGGCAAAACG       
       R  L  T  H  S  *  K  H  I  K  E  S  K  R  Q  N  V 
1431 TTAAAGGGTGTAAAATTGTGTTAAAGTGTCAATTGTGTGCGGATTCCTGAA       
       K  G  C  K  I  V  L  K  C  Q  L  C  A  D  S  *  M 
1482 TGAGCATGTGTGTGAGTGAATAACTCCGTATTTGGGAGGTCAGAGTGCTGC       
       S  M  C  V  S  E  *  L  R  I  W  E  V  R  V  L  R 
1533 GCACCTTCTCTGGACCGTCGCTTAAGTGTGACCCGGTAGGAACGGACGCAG       
       T  F  S  G  P  S  L  K  C  D  P  V  G  T  D  A  A 
1584 CATTCTGGGAGCTCAGAGAGGAGGGTGTGATTGATGAGCCCTATATTCATA       
       F  W  E  L  R  E  E  G  V  I  D  E  P  Y  I  H  R 
1635 GGGACTGAGAGCATGTAAATAAAACATCGAGTGAATGAAGGAATCATAATT       
     G  T  E  S  M  *  I  K  H  R  V  N  E  G  I  I  I   
1686 AGATGCTAAAGTGTTATATTACAAACCAAGAAAGGTGAAAAATATTCCTAA       
      D  A  K  V  L  Y  Y  K  P  R  K  V  K  N  I  P  K  
1737 GTGGTGGGTGTGTAGATTATTAGGACATAAGGAAGATTGTGAAGTGTGTGA       
      W  W  V  C  R  L  L  G  H  K  E  D  C  E  V  C  D  
1788 CCCCAATAGGGAGACAAAACCATTATTAAAATGACAACATATAAAGAGACG       
     P  Q  *  G  D  K  T  I  I  K  M  T  T  Y  K  E  T   
1839 TGGGATGGTATCTGTAAGCAGATAATACATCACACCGAACCAAAAGACAGA       
     W  D  G  I  C  K  Q  I  I  H  H  T  E  P  K  D  R      
1890 AAGAAAATAAGTAAAACATTAGAAAGTCAGTGGACATATCTCTCAGGTCTA       
     K  K  I  S  K  T  L  E  S  Q  W  T  Y  L  S  G  L   
1941 AATGGCTGGACAGAGACAACTAAAAATCAGGGAAAGTTACTGAACATACTT       
     N  G  W  T  E  T  T  K  N  Q  G  K  L  L  N  I  L   
1992 TTGACAGAGGAGAAAAGGGCAGATACAGATTTGGTACTGGCCAGACAAAAT      
     L  T  E  E  K  R  A  D  T  D  L  V  L  A  R  Q  N   
2043 AGGGACAAAACTGGGGTTTGGAAGAAGGGAGCAGCAAACAGAGAAATAGAA       
     R  D  K  T  G  V  W  K  K  G  A  A  N  R  E  I  E   
2094 AAAGCAGAAGATAGACTGAGACAATGGAGCAGGGTAGCTGCAGCCATGGTT       
     K  A  E  D  R  L  R  Q  W  S  R  V  A  A  A  M  V   
2145 ACCAAAGTAAAAAGTGCTGTGTGGGCAGATCAAAGGGACTCACCAGAGAGG       
     T  K  V  K  S  A  V  W  A  D  Q  R  D  S  P  E  R   
2196 CCCCCACCCTATAGTAGTGCAGAAGAAAAAACCAAAACCCCCTCAGCACCA       
     P  P  P  Y  S  S  A  E  E  K  T  K  T  P  S  A  P   
2247 ATGCAGATGCCAGTAATGATAGTAAAAGGGGGAGAAATAGAAACTACTACT       
     M  Q  M  P  V  M  I  V  K  G  G  E  I  E  T  T  T   
2298 AAACAAGCTAACAAAGATTTCAAGTTCATGATAAAACAGGGCGCTATAGAG      
     K  Q  A  N  K  D  F  K  F  M  I  K  Q  G  A  I  E       
2349 GTCGAAGAAACAGAGGAAGATAAAAAACAAAGACAGTTGAAAACGGCCCTA       
     V  E  E  T  E  E  D  K  K  Q  R  Q  L  K  T  A  L    
2400 AAAGAAGTTCAGACTAAGATAGAAATAGAGGAAGCAGTAAAACAGGAAATA       
     K  E  V  Q  T  K  I  E  I  E  E  A  V  K  Q  E  I   
2451 GCAAAGCAGTTTACCGCAAACATTCAACTCGCAAGAGACAGTGTAAACCAA       
     A  K  Q  F  T  A  N  I  Q  L  A  R  D  S  V  N  Q   
2502 ACAATGTCGAGGGTAGCAGAAATGGAGGAAGAGCTGAAGAGAAACCTCAAC      
     T  M  S  R  V  A  E  M  E  E  E  L  K  R  N  L  N   
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2553 GAAGAAGAGGGAAGTGTAAGATCTGAAGGGACCACATCAGTAGGGGGTACC       
     E  E  E  G  S  V  R  S  E  G  T  T  S  V  G  G  T   
2604 TGTGAGGACAGAAACAAGATAATAGTATCAGGGTATCAATTGGATGTAGAC       
     C  E  D  R  N  K  I  I  V  S  G  Y  Q  L  D  V  D   
2655 TGGGGAAGAGAGGCTGCATTACAAAGAGAGCACAGAGCACAAGGTCCCGAG       
     W  G  R  E  A  A  L  Q  R  E  H  R  A  Q  G  P  E   
2706 CTAGATAGCTTGTCAGACAGAACTAAAAGATGGGTGCATGCAGAGGAGAAT       
     L  D  S  L  S  D  R  T  K  R  W  V  H  A  E  E  N   
2757 AGGGAACAACAAATGCCCTTGTTTATGAAAAACTTACACAGCACCCCAAAA       
     R  E  Q  Q  M  P  L  F  M  K  N  L  H  S  T  P  K   
2808 TTAGTGATGCCACTAATCAGGGCAGCTACAGGAAGGAAGGAATACAAACCC       
     L  V  M  P  L  I  R  A  A  T  G  R  K  E  Y  K  P   
2859 TGGGGACATACAGATATGAATGCTGTGCTAAGTAAATTACCAGAAATTACT       
     W  G  H  T  D  M  N  A  V  L  S  K  L  P  E  I  T   
2910 AAGGGAGGTCAGAGGTGGTTCACTAAACTGTTGACCCTGACCCATGGGACA       
     K  G  G  Q  R  W  F  T  K  L  L  T  L  T  H  G  T   
2961 GACCTAGCACTGGGAGATGTTAGAGCATTATGGGGAAGCATACTAACTAGA      
     D  L  A  L  G  D  V  R  A  L  W  G  S  I  L  T  R   
3012 ACACAGGTAGAACTGATAGAAAGGGAAGCTAACACGACCACAGAAGAAAAT      
     T  Q  V  E  L  I  E  R  E  A  N  T  T  T  E  E  N   
3063 GAAGAACCTTTAAACAGGTTCAGTACTGAAGTGGGAAGCGCCATGAGGCGA       
     E  E  P  L  N  R  F  S  T  E  V  G  S  A  M  R  R   
3114 ATTTACCCCACCCCAAAATTGACTTATCAAAGCATAAAGTTCAAAATAATG       
     I  Y  P  T  P  K  L  T  Y  Q  S  I  K  F  K  I  M   
3165 ACTGGAGAATCTGCATCAGCATATCTGCACAGGTGTGAGGCTGAGTGGGAA       
     T  G  E  S  A  S  A  Y  L  H  R  C  E  A  E  W  E   
3216 GATAGGACAGGGGAAAATCCAGACTCCTCTGACATATGTAAAGAATTTTTC       
     D  R  T  G  E  N  P  D  S  S  D  I  C  K  E  F  F   
3267 AGACAGGCTGTGATTAAGGGTGTTCCTGCGAGCGCTGTAGCCGCCATAGAA       
     R  Q  A  V  I  K  G  V  P  A  S  A  V  A  A  I  E   
3318 AATAGTCCAGACATGCAGGGGGGAGAAGGGGAGGTGTGGACTCGCCATTTC       
     N  S  P  D  M  Q  G  G  E  G  E  V  W  T  R  H  F   
3369 ATCCACCACGTAGAACCAGTATTATTTCAGATAGACAGAACAGAAATAGTA       
     I  H  H  V  E  P  V  L  F  Q  I  D  R  T  E  I  V   
3420 AACGTCCGACAGTATAAACTTCGACCAGAAGCTGTGGAGGGAATAGGGGAA       
     N  V  R  Q  Y  K  L  R  P  E  A  V  E  G  I  G  E   
3471 ACCATAGAAGAGTTAGAGGCTGCTGAGGTCCTACGCAGAACAGTGTCTGAC       
     T  I  E  E  L  E  A  A  E  V  L  R  R  T  V  S  D   
3522 TGGAACACCCCAATCCTTCCTGTTTTGAAAAAGACAACTGGAAAATACAGA       
     W  N  T  P  I  L  P  V  L  K  K  T  T  G  K  Y  R   
3573 ATGGTGCATGATTTAAGGCTAATCAATGAGAAAGTATTGACTGCTACCTTA       
     M  V  H  D  L  R  L  I  N  E  K  V  L  T  A  T  L   
3624 CCCACCCCCAACCCCTATACCATCATGTCTAAATTGACACCAAAACATTCT       
     P  T  P  N  P  Y  T  I  M  S  K  L  T  P  K  H  S   
3675 CATTTTACGTGCATAGACTTGGCTAATGCATTTTTCTGCATGCCCCTGGCA       
     H  F  T  C  I  D  L  A  N  A  F  F  C  M  P  L  A   
3726 GAACAATGTCAAGACATTTTTGCTTTTAGCTATCAGGGAGCGCAATATACT       
     E  Q  C  Q  D  I  F  A  F  S  Y  Q  G  A  Q  Y  T   
3777 TACAACAGACTACCACAAGGGTTTATTTTAAGCCCAGGTCTGTTCAACCAA       
     Y  N  R  L  P  Q  G  F  I  L  S  P  G  L  F  N  Q   
3828 GCATTAAGGGAGCTGTTGGACAGCTGTACTTTGCATGAAGGTACCATTGTT       
     A  L  R  E  L  L  D  S  C  T  L  H  E  G  T  I  V   
3879 ATCCAGTATGTTGATGACTTGTTATTGGCAGCACACTCCAACGAGGTCTGC       
     I  Q  Y  V  D  D  L  L  L  A  A  H  S  N  E  V  C   
3930 CTGCAGGACACACGAAAAGTACTAACATTACTAAGTACTGCAGGGTTAAAG       
     L  Q  D  T  R  K  V  L  T  L  L  S  T  A  G  L  K   
3981 GTGAGCAAAGAAAAAATACAAATCAGCAGGGCAACAGTGCACTTCCTTGGA       
     V  S  K  E  K  I  Q  I  S  R  A  T  V  H  F  L  G   
4032 AGAATAATTGGACAAACAGGCACGGCCCTATCTGATGACACCAAACAAACT       
     R  I  I  G  Q  T  G  T  A  L  S  D  D  T  K  Q  T   
4083 GTGTTGTCACACCCAAAGCCACTAGTAGTAAAAGACATGATGTCATTTCTG       
     V  L  S  H  P  K  P  L  V  V  K  D  M  M  S  F  L   
4134 GGGTTGATAGGGTATAGCAGACAATATGTACCAAATTACTCAGAAAGAACT       
     G  L  I  G  Y  S  R  Q  Y  V  P  N  Y  S  E  R  T   
4185 GCAACATTGAGGGCATTGGCAAAAGAAGTTGGGATGAAAAACAGTAGAGCA       
     A  T  L  R  A  L  A  K  E  V  G  M  K  N  S  R  A   
4236 CGACTAAACTGGACACAAGAGGCTGAAGCTGTTTTCTGTGGGCTTAAGGCT       
     R  L  N  W  T  Q  E  A  E  A  V  F  C  G  L  K  A   
4287 GATTTAGCCACTGCAGCAGCCTTGCAGACTCCAAATTATGAATTGCCTTTC       
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     D  L  A  T  A  A  A  L  Q  T  P  N  Y  E  L  P  F   
4338 TTTCTGGACGTTAGCACCACGGCCTCCACCACAAATGGAGTGTTGTATCAA       
     F  L  D  V  S  T  T  A  S  T  T  N  G  V  L  Y  Q   
4389 AAACAACACCAGCAAAGGAGGGTTTTGCATTATTTGAGTGCACCCCTAGAT       
     K  Q  H  Q  Q  R  R  V  L  H  Y  L  S  A  P  L  D   
4440 AAGATAGAGCAAAAACAGCCCACTTGTGCTAGGTATGCTGCTGGCCTGGCT       
     K  I  E  Q  K  Q  P  T  C  A  R  Y  A  A  G  L  A   
4491 AAATTGATAGAAAAATCTGAGCACATAGTCATGGGACATCCATTACATGTA       
     K  L  I  E  K  S  E  H  I  V  M  G  H  P  L  H  V   
4542 CTGACGTCACACTCTGTTATATCATTCATCACTTCATCTGCATTCACTTTT       
     L  T  S  H  S  V  I  S  F  I  T  S  S  A  F  T  F   
4593 TCTGCACAGAGACAGAACAAGCTATTGACCGCCCCACACATCATATATGAA       
     S  A  Q  R  Q  N  K  L  L  T  A  P  H  I  I  Y  E   
4644 CACCAAGGGGTAAACATGGCTCATGCAGGAGAGGGTGAACCACATGAATGC       
     H  Q  G  V  N  M  A  H  A  G  E  G  E  P  H  E  C   
4695 ATCCCCAGGGCAGAGGCAGAGGAACAGATCAGACCAGGTTTAAGTAGCATT       
     I  P  R  A  E  A  E  E  Q  I  R  P  G  L  S  S  I   
4746 CCATTAACTAAACCACAGCTAACTCTGTTCTGTGATGGTTGCTGTTTTAAA      
     P  L  T  K  P  Q  L  T  L  F  C  D  G  C  C  F  K   
4797 ACTGATTCAGGCAAACTTGTAGCCAGTTACGCCATCGTGGAACAGACTGAC      
     T  D  S  G  K  L  V  A  S  Y  A  I  V  E  Q  T  D   
4848 GACGGGTATACAATAAGGGAACAGCAGGTGTTGCAAGATAGACCATCAGCA       
     D  G  Y  T  I  R  E  Q  Q  V  L  Q  D  R  P  S  A   
4899 CAGCGAGCTGAGTTATTGGCCCTTGTGAGAGCCTTGCACATGGCCAAAGAT       
     Q  R  A  E  L  L  A  L  V  R  A  L  H  M  A  K  D   
4950 AAGACTGTAAATATTTATTCAGACTCAGCATATGCAGTAGGGGCAGCTACA       
     K  T  V  N  I  Y  S  D  S  A  Y  A  V  G  A  A  T   
5001 TCTGAACTGACTGGTTGGGCAAGAGTGGGGTTTGTAACATCCTCTGGGAAG       
     S  E  L  T  G  W  A  R  V  G  F  V  T  S  S  G  K   
5052 CCTATAAAGCACGCACAAGAAGCCTCTGATTTGTTAGAATCAATTATGTTG       
     P  I  K  H  A  Q  E  A  S  D  L  L  E  S  I  M  L   
5103 CCACAAGAGGTAGCAATAATTAAATGTGCAGCACACACCAAAGGAAAAGAT       
     P  Q  E  V  A  I  I  K  C  A  A  H  T  K  G  K  D   
5154 CCTGTTTCATTAGGAAACGAGGCAGCAGACGCCGCTGCTAAAACAGTGGCA       
     P  V  S  L  G  N  E  A  A  D  A  A  A  K  T  V  A   
5205 GGGTACAAACCATTGCAAATGACTGTGACTGCAGTTGACGAGCTGCATCAA       
     G  Y  K  P  L  Q  M  T  V  T  A  V  D  E  L  H  Q   
5256 ATTGACGAACATCTAACTACAAGTTTTCTATCTAAAGAACAAAGTTTGGCT       
     I  D  E  H  L  T  T  S  F  L  S  K  E  Q  S  L  A   
5307 GCAGCTGAGGAAATTTCAGTATGGTTAGAAAAGGGAGGAAGAAAAGATTCC       
     A  A  E  E  I  S  V  W  L  E  K  G  G  R  K  D  S   
5358 CAGACAGGACTATGGGTCGGTCCTACAGGTAGACCAATTATGCCTGCAAAT        
     Q  T  G  L  W  V  G  P  T  G  R  P  I  M  P  A  N   
5409 TTAGCAGGGAAAGTCCTGACAGAGGCCCACTCTCTGGCTCACAGCAGCGAG      
     L  A  G  K  V  L  T  E  A  H  S  L  A  H  S  S  E   
5460 AAGGATATGACTAAACGAGTGTCTCAATGGTGGCACCCTTTCATGCCACAC       
     K  D  M  T  K  R  V  S  Q  W  W  H  P  F  M  P  H   
5511 ATGATAAGTGGAGTAATAGCCTCTTGTCAAACATGTGCAGAGTTCAATGTC       
     M  I  S  G  V  I  A  S  C  Q  T  C  A  E  F  N  V   
5562 AAGCCAACCTCCAAACCCACTGCAGGGCATTTCCCCACAGATAGGGGTCCA       
     K  P  T  S  K  P  T  A  G  H  F  P  T  D  R  G  P   
5613 GGGTGTACAGTAGTCATGGACTTTACTGACATGATCACAAGAGTAAACGGA       
     G  C  T  V  V  M  D  F  T  D  M  I  T  R  V  N  G   
5664 AAAAGGTATCTGCTGGTCCTAGTAGACCAATTCACTGGTTGGCCAGAAGCT       
     K  R  Y  L  L  V  L  V  D  Q  F  T  G  W  P  E  A   
5715 TTCCCATGCGCTAGGGAAGATGCAGTTTCTGTGGTAAAATGTTTGATCAAC       
     F  P  C  A  R  E  D  A  V  S  V  V  K  C  L  I  N   
5766 CAATACATTCCAAGGCATGGGTTCCCTCGTATAATCAGGTCAGACAATGGC       
     Q  Y  I  P  R  H  G  F  P  R  I  I  R  S  D  N  G   
5817 ACTCATTTCAAAAATGAACATCTGGCGGATGTAGAAAAATTGTTAGGTCTA       
     T  H  F  K  N  E  H  L  A  D  V  E  K  L  L  G  L   
5868 AAACACCGGTATGGAGCTGTATACCACCCACAAAGTCAGGGAAAAGTGGAG       
     K  H  R  Y  G  A  V  Y  H  P  Q  S  Q  G  K  V  E   
5919 CGCCTCAATCTAACGCTAAAAAACAAACTGGCAAAAATTTGTCACAGGTCC       
     R  L  N  L  T  L  K  N  K  L  A  K  I  C  H  R  S   
5970 AAATTGAATTGGGTAGATGCACTTCCCATTGCACTAATGTCAGTACGCTGT       
     K  L  N  W  V  D  A  L  P  I  A  L  M  S  V  R  C   
6021 TCTATTAATCGAACTACAGGTTTTACTCCATTTGAATTGGCTACAGGAAGA       
     S  I  N  R  T  T  G  F  T  P  F  E  L  A  T  G  R   

RNAse H 

integrase 
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6072 CAATTCCCGGGCCCATGGGCCCCCTTGCATGCTGGAGACACTGACTCACCG       
     Q  F  P  G  P  W  A  P  L  H  A  G  D  T  D  S  P   
6123 CAAATGTATCATGATAAAGTATGTGCTGTGATTAACATGTTTTCTCCGCAG       
     Q  M  Y  H  D  K  V  C  A  V  I  N  M  F  S  P  Q   
6174 AAAAATTGGCCAACAGAGAGTGAAGCATCTAGACCTGCAGAAAACACAACA       
     K  N  W  P  T  E  S  E  A  S  R  P  A  E  N  T  T   
6225 CTGTGGGTGAGATTGAAACAGCACAAACGAAAATGGTCTAGCCCAAGGTGG       
     L  W  V  R  L  K  Q  H  K  R  K  W  S  S  P  R  W   
6276 TCTGAACCGTTAAGAGTCACGGCTAGGACATCCCATTGTGTGCAATTAGCA       
     S  E  P  L  R  V  T  A  R  T  S  H  C  V  Q  L  A   
6327 GGTAAAGGCACAACATGGTATCATTTGTCTGCTTGTATGTTCTGTCCTTCT       
     G  K  G  T  T  W  Y  H  L  S  A  C  M  F  C  P  S   
6378 CCAGACAGGTCTTTGGCGGATGTCAGAGTTGACCTCAGGAGAGGTCAAAGA      
     P  D  R  S  L  A  D  V  R  V  D  L  R  R  G  Q  R   
6429 GAGGGAGAAGGAGAAGGAGACACTGAGGAGCCAGAAAGAGAGGGAGAAGGC       
     E  G  E  G  E  G  D  T  E  E  P  E  R  E  G  E  G   
6480 GGGGAAAGAAGCGGACAAACAGAAGCAGCCCCAGCCCCCAGAACACAGCTA       
     G  E  R  S  G  Q  T  E  A  A  P  A  P  R  T  Q  L   
6531 AGCGCAACCCCTGTATTTAAAATCTTGCAACGAACTGGAGACTTGCTTCAG       
     S  A  T  P  V  F  K  I  L  Q  R  T  G  D  L  L  Q   
6582 ACACCAGAACACATTCCCATTGCACATTGTATAAGTGCTGATTATGCACTA       
     T  P  E  H  I  P  I  A  H  C  I  S  A  D  Y  A  L   
6633 GGAGCTGGGGTAGCTAAACAAATTAGAGACAAATACGGTGTAGAAGAATTG       
     G  A  G  V  A  K  Q  I  R  D  K  Y  G  V  E  E  L   
6684 AACACTTCAGTCGCCCAACCAGGGGATTGTATCAAAACTACACACGGTCCA       
     N  T  S  V  A  Q  P  G  D  C  I  K  T  T  H  G  P   
6735 CGACAAATTTACCATTTGGTGACCAAATGGTGGTGTAGGGACCTACCCACC       
     R  Q  I  Y  H  L  V  T  K  W  W  C  R  D  L  P  T   
6786 TACGAGCATCTCGAGGCTAGTCTGATAAAATTGTGTTACCAGTGTAAGAAA       
     Y  E  H  L  E  A  S  L  I  K  L  C  Y  Q  C  K  K   
6837 GATAAAAATAAAATATTAGCTATACCAAAATTAGGGTGTGGATTAGACAAA       
     D  K  N  K  I  L  A  I  P  K  L  G  C  G  L  D  K   
6888 TTAGACTACACCAAAGTAAAAGAAATAATTGAGAAAGTATTCAAAGAGGGC       
     L  D  Y  T  K  V  K  E  I  I  E  K  V  F  K  E  G                                                        
6939 CACATTCAGGTAATTCTCCTAACAAAATGAATAAAATAAACAAATTGGTGG       
       H  S  G  N  S  P  N  K  M  N  K  I  N  K  L  V  V 
6990 TGGCATGGGGAATAATGTTGGTGGTAATCCTATGGATAATCTGCCATATGG       
       A  W  G  I  M  L  V  V  I  L  W  I  I  C  H  M  E 
7041 AATTCGGAGGGGCAACAAAGGAAAAACGGAGTGTAAAAGAAGGGGGGGGAA       
       F  G  G  A  T  K  E  K  R  S  V  K  E  G  G  G  T 
7092 CAGGGGTGCGTATTACCTTAGAAAGGGAAGAGGGAAAGGATGGGATGTGGC       
       G  V  R  I  T  L  E  R  E  E  G  K  D  G  M  W  Q 
7143 AGTTTGATCTTTGTCAAGTGATAGATTGTGGGAAGGACCAAGTGGCATGGA       
       F  D  L  C  Q  V  I  D  C  G  K  D  Q  V  A  W  R 
7194 GAAGATATGATGTGTATGGGTGTTTGTGGCCATCTACCACCACGCTTCCGA       
       R  Y  D  V  Y  G  C  L  W  P  S  T  T  T  L  P  N 
7245 ATGGTCCCCATTGTCATACCTGGCATGATGTAAATTGGAAAACAGTTCCAT       
       G  P  H  C  H  T  W  H  D  V  N  W  K  T  V  P  F 
7296 TCACTAAAAAGATGTTGAAAAATAGTCCTTTGGCCAAAGCAGACAGCATCC       
       T  K  K  M  L  K  N  S  P  L  A  K  A  D  S  I  Q 
7347 AAAATCGACTTAGGTTGTCTAGGGGATACCAACATAGTTGGGGAGGCTGGA       
       N  R  L  R  L  S  R  G  Y  Q  H  S  W  G  G  W  K 
7398 AAAACACGTTGATTATATCACTAAAAAATGGCAATGATGAAACTGACACGT       
      N  T  L  I  I  S  L  K  N  G  N  D  E  T  D  T  Y 
7449 ACATCACTCTAGGGGTAGATGTAGAAGGAAAAGACCCACTGGGGTTGATAA       
       I  T  L  G  V  D  V  E  G  K  D  P  L  G  L  I  K 
7500 AAATCTCCATAAAAAAGCCTAAACCCACAGGGGCGCCAATAATCACAGACC      
       I  S  I  K  K  P  K  P  T  G  A  P  I  I  T  D  L 
7551 TAACCAAAAACAAAAAGAAAGTAATACAGAGCACTGACTATAGCAATCTGA       
       T  K  N  K  K  K  V  I  Q  S  T  D  Y  S  N  L  T 
7602 CCCCACTAGATCTGATGACGCTGGAGACAGGCTATCACGAAACAAATTTAT       
       P  L  D  L  M  T  L  E  T  G  Y  H  E  T  N  L  W 
7653 GGTTAGAATGGGTGACAAACGCAGCCGAAGAATTAGGATTTGAGGGGTGCC       
       L  E  W  V  T  N  A  A  E  E  L  G  F  E  G  C  L 
7704 TAGCTTGTGCAGCAGGAAGGCCACAATTAAATACTGAACCCGCTCCATTAC       
       A  C  A  A  G  R  P  Q  L  N  T  E  P  A  P  L  H 
7755 ATGATTATGATAGTTGGGGGTACAAATGTATGTTAAAACTAACAAAGGAAA       
       D  Y  D  S  W  G  Y  K  C  M  L  K  L  T  K  E  K 
7806 AAAGTCCCAAAAACTGCACTGCACTCAGTAATCTATACCCACCAGCTGGAA       

Env 
6966-8899bp bp 
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       S  P  K  N  C  T  A  L  S  N  L  Y  P  P  A  G  N 
7857 ATAAGTCATCAATGGGAGTTGCATTAAAAAGAAGAAAGGGTAACTATACCT       
       K  S  S  M  G  V  A  L  K  R  R  K  G  N  Y  T  C 
7908 GTTTCAATTTAACTACCTCCAGTGCATCCAAAATATTAGTGGGAGCGTTTA       
       F  N  L  T  T  S  S  A  S  K  I  L  V  G  A  F  K 
7959 AAAGGGAATGGTGTGGACAGATGATTCAGGAAGGTCATGACAAACTAGGGG       
       R  E  W  C  G  Q  M  I  Q  E  G  H  D  K  L  G  G 
8010 GATGGGGCAGAGTGGGTTTGTATTACGCGTGTGGAGAAAAGGTGGTATTGG       
       W  G  R  V  G  L  Y  Y  A  C  G  E  K  V  V  L  A 
8061 CTAGAATAGAACCCACCATGGAAGGAGTATGTGCTATGATAAGAGTCGCTG       
       R  I  E  P  T  M  E  G  V  C  A  M  I  R  V  A  V 
8112 TTCCTATGGTCGTGATAGGAAATAGGGCTATAAATGGGCATAAAAACAGGC       
       P  M  V  V  I  G  N  R  A  I  N  G  H  K  N  R  R 
8163 GAAAAAGGTCAGTAAATAGTGATTTCGATTTAACACGCAATAGCCCCACCT       
       K  R  S  V  N  S  D  F  D  L  T  R  N  S  P  T  Y 
8214 ACATAGACGCAATAGGCATCCCCAGGGGAGTTCCAGATGAATATAAATTGG       
       I  D  A  I  G  I  P  R  G  V  P  D  E  Y  K  L  A   
8265 CTGACCAAGTAGCAGCAGGGTTCGAAAATATACCTGTAATAGCAGCATTAT       
       D  Q  V  A  A  G  F  E  N  I  P  V  I  A  A  L  F 
8316 TCCCCGTGACCCCAAATAAAAATGTAGACAGAATAAATTACATACATTACA       
       P  V  T  P  N  K  N  V  D  R  I  N  Y  I  H  Y  N 
8367 ACGTACAAAGGCTGTCAAATCTCACTAGAGATGCTGTGTCTGGATTAAAAG       
       V  Q  R  L  S  N  L  T  R  D  A  V  S  G  L  K  E 
8418 AACAATTGGCTGCTACCTCTCTGATGACTATTCAAAATCGGCTAGCTTTAG      
       Q  L  A  A  T  S  L  M  T  I  Q  N  R  L  A  L  D 
8469 ACATGTTACTATCAGAAAGGGGCGGGGTTTGTTCTATGTTTAAAGACACGT       
       M  L  L  S  E  R  G  G  V  C  S  M  F  K  D  T  C 
8520 GTTGCACCGTCATACCAAACAACACTGCCCCTGATGGTTCCGTATCCAGGG       
       C  T  V  I  P  N  N  T  A  P  D  G  S  V  S  R  A 
8571 CTCTGGAGGGACTAAAAGAATTGTCAAATGAACTGAAAGCTAGCTCAGGGA       
       L  E  G  L  K  E  L  S  N  E  L  K  A  S  S  G  I 
8622 TAGAAAATGCTGTGTCTAAATGGATGTCTGATATGTTTGGGGAATGGAAAG       
       E  N  A  V  S  K  W  M  S  D  M  F  G  E  W  K  G 
8673 GGGTGATTATTGCTATGTTAACATCAATGGGTATTTTCCTAGGAATTTTGG       
       V  I  I  A  M  L  T  S  M  G  I  F  L  G  I  L  V 
8724 TGACATGTGGGTGTTGCTGTATTCCCTGTATCAGAAGTTTGATAAATAGGC       
       T  C  G  C  C  C  I  P  C  I  R  S  L  I  N  R  L 
8775 TGATAATAACTGCAATTGAAAAGAAGGAAAACCCACCTCCTTATCAGATGC       
       I  I  T  A  I  E  K  K  E  N  P  P  P  Y  Q  M  P 
8826 CCCTCCTTGCTGCAGCGGAGGGGGATGACGTGATGGAGGAAGTGGAGGAAC       
       L  L  A  A  A  E  G  D  D  V  M  E  E  V  E  E  L 
8877 TATTGGATATAGTGTGATCTCTTTCGAGATCAAGAGAGGGAAT PPT           
      I  G  Y  S  V  I  S  F  E  I  K  R  G  N  

    LTR 
8920 ATTGAGGGAATTATATTTTTGAGGGAATCATATTTTTTAATGTTTTATGCATGTTCAGAATTG 

8983 ATATTAAGTTTTTCATATTTTTGATGTTTTATGTTTGATATTGATATTAAGTTTTACTATTTT 

9046 CTTTACTGATGAAATGCTTTGTTTGAAATATGAGCCTATTGCTTTGTTTGAAATGTGAGCCTA 

9109 ATCGCTTAAGCTTCGCTTCTAGAGAAACGGGGTTTTTCCACAGAAGTAAGACGAGAGATCTGA 

9172 GCTCATGGACAGCTGTGCTTTGGTACAGGATGTGGTTTAACACCTGCAAGGAATCAGCCGTAT 

9235 CTCAGTCTGTGTAGGGGTGCATGTGTGTTTTGTGTGTGTGTGTGTTTGCAGGCTACTGGCAGA 

9298 TCTAACTGGTTGAGATGAGATCTGATGATGGGAAGGCGAATAATGGATTGGAGGCTCATCGAG 

9361 AGTGGGGAGGAGACAACCAAGAATAAAAACTGTTGTTTTATGAATTGTACGGCAATACTGGAG      

9424 CCGCCCAGTTTGCCTTTTCATGGTGTCTCTTCAGTATTCCTGGGCTCAGCATTGTTGATCTGA 

9487 TCCTTCGTTTATTAAACTTTGATTTCTCGATAAAGCTAAGTTTCCTGCGTCTACTTTCAAGCG 

9550 AATCCTGAAATCGGGGAGGGAAAAACCATTTTCCTACA 9587    

                LTR  

Fig. 1. Complete nucleotide and translated amino acid of Zebrafish Endogenous Retrovirus 2 
(ZFERV-2). Some common amino acid motifs found in retroviruses are indicated by bold type. 
Abbreviations are shown as follows: PBS = Primer binding site,  LP = Leader peptide, LTR = 
Long terminal repeat, PPT = Polypurine tract. 
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Fig 2. Genomic structure of ZFERV-2. Panel l shows 5’LTR,  Leader Peptide region, tRNA 
primer binding site and gag gene. Panel ll shows 3’LTR, polypurine tract and env gene. Panel 
lll shows a complete genomic organization of ZFERV-2, 5’LTR-gag-pol-env-LTR 3’. 

4   Discussion and Conclusion 

The ZFERV-2 genome consists of 9587bp and contains ORFs for gag, pol and env 
genes and two flanking LTRs. The 5’LTR and 3’LTR are 666bp and 665bp respec-
tively and are 99% identical (Fig 2 panel I and III). This may indicate a recent integra-
tion of ZFERV-2 into the Zebrafish genome (Tristem, 2000). 

ZFERV-2 has a long leader peptide sequence (LP) with the size of 1,151 bp. Inside 
the LP, five repeat sequences of 39bp each have been identified (Fig 1 and Fig 2 panel 
I). The characteristics of long leader peptide sequence and many repeat sequences 
within the leader peptide are shared by most retroviruses isolated from lower verte-
brates such as Xenopus Endogenous Retrovirus 1 (XEN1), Walleye Dermal Sarcoma 
Virus (WDSV), Zebrafish Endogenous Retrovirus (ZFERV) and Salmon Swim  
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Bladder Sarcomas (SSSV). It is possible that a large leader peptide size with several 
repeats may therefore be a typical feature of lower vertebrate retroviruses (Lapierre et 
al., 1999, Holzschu et al., 1985, Shen and Steiner, 2004, Paul et al., 2006)  

The gag and pol genes reside in the same reading frame, whereas the env is in a 
different reading frame (Fig 2 panel lll). The genomic organization of ZFERV-2 pro-
virus appears to be similar to that of ZFERV, MuLV and WDSV.   

The size of gag gene is 1,702bp which includes motif for Major Homology Region 
(MHR), KQGAIEVEETEEDKKQRQL in Capsid region (Wills and Craven, 1991). 
However, motifs for Matrix and Nucleocapsid were not found during several BLAST 
searches of Protein Databases (Fig 1).  

 
ZFERV GESASAYLHRCEAEWEDRTGENPDSSDICKEFFRQAVIKGVPASAVVAIENSPDMQGG

ZFERV-2 GESASAYLHRCEAEWEDRTGENPDSSDICKEFFRQAVIKGVPASAVAAIENSPDMQGG

ZFERV EGVVWTRHFIHHVDKAVERQGKEETEVEKLKTQLLKMQIEAEKEKGKKKKENLQLPVL

ZFERV-2 EGEVWTRHFIHHV?????????????????????????????????????????????

ZFERV TGPGVEGARSPVHNIHPISGHINSPHGIPDSYPYGPSPNWPPSGNQNQNPVMQGCFGC

ZFERV-2 ??????????????????????????????????????????????????????????

ZFERV GAQDHWKRECPYGGQRGQPPARGRAPGRGGPQGGRGRGAPRNVSWYSNQQVPRQSPVW

ZFERV-2 ??????????????????????????????????????????????????????????

ZFERV GPLDHADYXRGPQRTSEGALAEPLLTILVDNQPVQALVDTGATFSTIQRQMMEKDSLS

ZFERV-2 ??????????????????????????????????????????????????????????

ZFERV TQSEEVRGFSGETEKWPLTKPLRVQVAGQTLLHSFLCSANVPSALLGRDLLVKLGVKI

ZFERV-2 ??????????????????????????????????????????????????????????

ZFERV LCHPEGLIIIFPNGLTTNCSTPVTTTVRGQWVLQADKTVKARCYWLKLTDKTKLQEVI

ZFERV-2 ??????????????????????????????????????????????????????????

ZFERV TKWEPWLNTLHKFQTPTDPWHCTLLYDISEDEEYEQNFSEVLGRSTSIKCTKLFVARE

ZFERV-2 ??????????????????????????????????????????????????????????

ZFERV GVAAEIILTEEQEGYFEMTETSTPHVTIFMNEGHEAKALGPMVKRMQKVGDWGKTDNE

ZFERV-2 ??????????????????????????????????????????????????????????

ZFERV WEYSQALDGYRLTIDIAEEVIYQMVEVRRIVTTQEGDGEGAERLLQEMPESLWSKAAG

ZFERV-2 ????????????????????????????????????????????????????????

ZFERV DVGKWSIEPVLFQIDRTEIVNVRQYKLRPEAVEGIGETIKELEAAEVLRRTVSGWNTP

ZFERV-2 ???????EPVLFQIDRTEIVNVRQYKLRPEAVEGIGETIEELEAAEVLRRTVSDWNTP

ZFERV ILPVLKKTTGKYRMVHDLRLINEKVLTATLPTPNPYTIMSKLTPKHSHFTCIDLANAF

ZFERV-2 ILPVLKKTTGKYRMVHDLRLINEKVLTATLPTPNPYTIMSKLTPKHSHFTCIDLANAF

ZFERV FCMPLAEQCQGIFAFSYQGAQYTYNRLPQGFILSPGLFNQALRELLDSCTLHEGTIVI

ZFERV-2 FCMPLAEQCQDIFAFSYQGAQYTYNRLPQGFILSPGLFNQALRELLDSCTLHEGTIVI

ZFERV QYVDDLLLAAHSNEVCLQDTRKVLTLLSTAGLKVSKEKIQISRATVHFLGRIIGQTGT

ZFERV-2 QYVDDLLLAAHSNEVCLQDTRKVLTLLSTAGLKVSKEKIQISRATVHFLGRIIGQTGT  

Fig 3. Comparison of protease and reverse transcriptase genes between  ZFERV and ZFERV-
2. Note that the missing 516 amino acids of the protease gene were deleted and marked by the 
question mark symbol (?). 
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The size of pol gene is 3,443bp, which includes noticeable motif for Reverse Tran-
scriptase, RNAseH and Integrase genes. Despite having all the necessary protein for 
polymerase, ZFERV-2 lacks motif for protease which could be observed in a huge 
deletion comprising 516 amino acids that are symbolized as question marks (Fig. 2). 
This is the only apparent difference between ZFERV and ZFERV-2.  

The size of env gene is 1,934bp which includes motifs for Surface Protein and 
Transmembrane. Interestingly, within the Transmembrane protein, an immunosup-
pressive motif (QNRLALDMLLSERGGVCSMFK) which is observed mainly in 
lymphotrophic viruses such as betaretrovirus, deltavirus, lentivirus and certain MLV-
related (gammaretrovirus) has been found in ZFERV-2(Fig 1).    (Cianciolo et al., 
1985, Sonigo et al., 1986)  

The genomic organisation and characterisation of ZFERV-2 indicate a typical ret-
rovirus endogenous from the lower vertebrates especially from the piscine host. In 
addition, the gag and pol genes resemble viruses from other genera of retroviruses. 
However, the presence of immunosuppressive motif in env gene may indicate the 
probability that ZFERV-2 was infectious in the past. Further investigation on the 
phylogenetic analyses of the viral genes needs to be carried out to establish the rela-
tionship of ZFERV-2 with other genera of retroviruses.  
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Abstract. Grid computing defines the combination of computers or
clusters of computers across networks, like the internet, to form a dis-
tributed supercomputer. This infrastructure allows scientists to process
complex and time consuming computations in parallel on demand. Phy-
logenetic inference for large data sets of DNA/protein sequences is known
to be computationally intensive and could greatly benefit from this paral-
lel supercomputing approach. Bayesian algorithms allows the estimation
of important parameters on species divergence modus and time but at
the price of running repetitive long series of MonteCarlo simulations.
As part of the BioinfoGrid project, we ported parallel MrBayes to the
EGEE (Enabling Grids for E-sciencE) grid infrastructure. As case study
we investigate both a challenging dataset of arthropod phylogeny and
the most appropriate model of amino acid replacement for that data set.
Our aim is to resolve the position of basal hexapod lineages with respect
to Insecta and Crustacea. In this effort, a new matrix of protein change
was derived from the dataset itself, and its performance compared with
other currently used models.

1 Introduction

Due to large data sets and accompanied large number of parameters being
produced by high throughput techniques, it became necessary to develop high
performance computers based on clustering technologies and high performance
distributed platforms. Grid infrastructures are based on a distributed computing
model where easy access to large geographical computing and data management
resources is provided to large multi disciplinary VOs (Virtual Organizations). A
VO comprises of a sampling Grid users sharing similar requirements and inter-
ests who are able to share resources and/or work collaboratively with the other
members within the same grouping. In order to submit jobs to the Grid, all users
are required to be a member of a VO, this helps to ensure the integrity of the data
stored on the grid network. The distributed HPC (high performance computer) is
considered as the way to realize the concept of virtual places where scientists and
researchers work together to solve complex problems in Bioinformatics, despite
their geographic and organizational boundaries. BioinfoGRID (Bioinformatics
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c© Springer-Verlag Berlin Heidelberg 2008



Bayesian Phylogeny on Grid 405

Grid Application for life science) is a project funded by the European Union
within the Sixth Framework Programme for Research and Technological De-
velopment(FP6). The BioinfoGRID project is associated with the Biomedical
VO, which consists of a large number of biomedical scientists working in several
different fields and countries under one banner.

DNA and amino acid sequences contain both the information of the phylo-
genetic relationships among species and of the evolutionary processes that have
caused the sequences to diverge [1,2,33,34,35,36]. The statistical and computa-
tional methods try to detect this information to determine how and why DNA
and protein molecules work the way they do. Arthropoda (insects, crustaceans
and their kins) account for more than 80% of described animal species, and dis-
play an extraordinary diversity in terms of morphology and lifestyle adaptations.
This diversity, as well as the age of the major taxa, have considerably compli-
cated our possibility to reconstruct their phylogenetic relationships, which are
still debated either among and within major lineages [20]. Molecular phylogeny
has recently contributed extensively to this issue, and large data sets of mito-
chondrial sequences are now available for analysis. The mitochondrial genome
is a closed circular molecule, inherited via the maternal line. The organization
of the genome is quite simple, and its gene content is highly conserved across
multicellular animals [27]: 13 protein coding genes (PCGs), 22 transfer RNA
(tRNA) genes, and 2 ribosomal RNA (rRNA) genes. Mitochondrial sequences
are commonly used as a standard benchmark for testing evolutionary models
and systematic methodology (see for instance [6,21,22,3]). Several authors have
found differences in phylogenies that result from different data sets on the same
species ( [5,4,7,8,23]). Because of these problems in reconstructing phylogenies,
it is important to develop appropriate evolutionary models and investigate the
performances of different existing models for specific phylogenetic problems.

Here we investigate the Grid setting as infrastructure for biomedical applica-
tions. In specific the utilisation of parallel MrBayes to resolve the phylogeny of
Pancrustacea whilst testing different models of evolution. The article’s frame-
work comprises of three main sections starting with the Methodology Section
which constitutes of the following: models of evolution, Bayesian phylogeny and
Grid computing. Statistics of different models of evolution and visualization of
the posterior probabilities of phylogenetic trees are reported as main results
under the Results and Discussion Section. Lastly we summarise our findings to-
wards Grid performance and future expectations in the Conclusion Section. For
a comprehensive presentation of the underlying biological problem and a more
general discussion of the biological relevance of the results obtained, we refer to
the accompanying paper [3].

2 Methodology

2.1 Generating Models of Evolution

The process of phylogeny reconstruction requires 4 steps. The first step com-
prises sequence selection and alignment to determine site-by-site DNA or amino
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acid differences. This was done by using the data set described in [3]. The thir-
teen PCGs (protein coding genes) of one-hundred species of Pancrustacea for
which the complete mitochondrial genome sequence is available were aligned
and concatenated. After removal of taxa whose mt-sequences possess molecular
features known to negatively affect phylogenetic reconstruction, such as extreme
compositional bias, accelerated rates of nucleotide substitutions, and gene order
rearrangements that involve a change in the strand where one or more PCGs
are encoded [28,29,3], a data set with 81 pancrustacean sequences (ingroup) and
5 non-pancrustacean arthropod species (outgroup) was retained and analysed.
The second step is to build a mathematical model describing the evolution in
time of the sequences. Usually theory is based on continuous time models. We
need to derive the instantaneous probabilities of the transition from one amino
acid to another. The probabilities of a model can be generated empirically using
properties calculated through comparisons of observed sequences or parameter-
ically using chemical and biological properties of DNA and amino acids. Such
models permit estimation of the genetic distance between two homologous se-
quences, measured by the expected number of nucleotide substitutions per site
that have occurred on the evolutionary lineages between them and their most
recent common ancestor. Such distances may be represented as branch lengths
in a phylogenetic tree; the extant sequences form the tips of the tree, while
the ancestral sequences form the internal nodes and are generally not known.
The third step involves applying an appropriate statistical method to find the
tree topology and branch lengths that best describe the phylogenetic relation-
ships of the sequences. One of the most important methods is that of maximum
likelihood (ML) which is also a necessary ingredient of the Bayesian approach
[36,33,34,35]. The likelihood (LH) of a hypothesis (H) is equal to the probabil-
ity of observing the data if that hypothesis were correct. The observed data is
again usually taken to be the alignment, although it would of course be more
reasonable to say that the sequences are what have been observed and the align-
ment should then be inferred along with the phylogeny. The statistical method
of ML chooses amongst hypotheses by selecting the one which maximizes the
likelihood; that is, which renders the data the most plausible. In the context
of molecular phylogenetics, a model of nucleotide or amino acid replacement
permits the calculation of the likelihood for any possible combination of tree
topology and branch lengths [1,30,32]. The topology and branch lengths that
maximize this likelihood (or, equivalently, its natural logarithm, lnL

H
, which

is almost invariably used to give a more manageable number) are the ML esti-
mates. Any parameters with values not explicitly specified by the replacement
model can be simultaneously estimated, again by selecting the values that max-
imize the likelihood. The fourth step consists of the interpretation of results.
When properties shared by a set of sequences are too subtle or hidden to be
analytically represented (or there are too many degrees of freedom), amino acid
replacement models should be obtained through an empirical approach. MtPan,
a new model of amino acid replacement in Pancrustacea, was constructed using
relative rates of estimated amino acid replacement from pairwise comparisons of
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Fig. 1. MtPan, a new model of amino acid replacement in Pancrustacea

sequences in the Pancrustacea dataset, maintained by us, that are 85% or more
identical, see Figure 1.

The estimates of the relative rates of amino acid replacement was computed
by examining the database and recording the number of times that amino acid
type i is observed in one sequence and type j is observed at the corresponding
site in a closely related sequence. Interestingly the new model of evolution shows
high probability values for transition G-A, V-A, I-V, F-I, T-I with respect all
the other possible transitions in mtPan and in the other two models of evolution.
These differences reflect the particular environment of and evolutionary trend of
mitochondrial proteins in the species we have considered.

2.2 Bayesian Phylogeny

In Bayesian statistics the goal is to obtain a full probability distribution over
all possible parameter values. This so-called posterior probability distribution
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requires the combining of likelihood with the prior probability distribution
[9,10,11]. The prior probability distribution shows your beliefs about the pa-
rameters before seeing any data. Often, prior information about an unknown
parameter may not be available. In such cases, standard non-informative prior
distributions, i.e., probability distributions which contain little or no informa-
tion about the parameters are used, resulting in posterior distributions that
are dominated by the likelihood. In phylogeny it is very common that biolo-
gists have some strong beliefs about the relationships of some deep branches. In
other cases there are theories from shared organs/apparatus or developmental
pathways which may suggest alteration of the prior. In Bayesian phylogeny the
parameters are of the same kind as in maximum likelihood phylogeny where
typical parameters include tree topology, branch lengths, nucleotide frequencies
and substitution model parameters [12,13,14,15,16]. The main objective in max-
imum likelihood however, is to determine the best point estimates of parameter
values while Bayesian phylogeny aims to calculate a full probability distribution
over all possible parameter values.

If a target distribution has multiple peaks, separated by low valleys, a Markov
chain may have difficulty in moving from one peak to another. As a result, the
chain might get stuck on one peak and the resulting samples will not approx-
imate the posterior density correctly. This is a serious practical concern for
phylogeny reconstruction as multiple local peaks are known to exist in the tree
space during heuristic tree search under maximum parsimony, maximum likeli-
hood and minimum evolution criteria. The same can be expected for stochastic
tree search using MCMC. Many strategies have been proposed to improve mix-
ing of Markov chains in presence of multiple local peaks in the posterior den-
sity. One of the most successful algorithms is the Metropolis-coupled MCMC;
[11,31]. Parallel MrBayes the program implements this variant of MCMC called
“Metropolis-Coupled Markov Chain Monte Carlo”(MCMCMC)[17]. In this algo-
rithm, m chains are run in parallel, on as many or less processors with different
stationary distributions where all but one of them are heated. Heating increases
the state acceptance probability of chains resulting in the more eager cross-
ing of valleys in a landscape of probability trees. State swapping is attempted
among randomly appointed chains which provides better integration and if such
swapping is successful it results in the exploration of other peaks and limits the
seclusion to local maximums.

2.3 State of Art, Potentialities of Grid Computing for Phylogeny

The European Commission-funded “Enabling Grids for E-sciencE” (EGEE)[19]
project brings together scientists and engineers from more than 240 institutions
in 45 countries world-wide to provide a seamless international Grid infrastruc-
ture for e-Science that is available to scientists 24 hours-a-day. Here we give some
details in order to favour the usage of this important resource. The EGEE Grid
consists of 41,000 CPUs in addition to about 5 PB disk (5 million Gigabytes)
+ tape MSS of storage, and maintains 100,000 concurrent jobs. Having such
resources available changes the way scientific research can take place, and could
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significantly increase our possibility to analyse complex datasets using method-
ologically more correct, though computationally more intense, methodologies.
Middleware is a key component to any grid computing effort for it serves as
the communication layer enabling interaction across hardware and network en-
vironments. Early in the project the LCG(Large Hadron Collider Computing
Project) middleware stack was used on the EGEE infrastructure. Most of this
stack was later developed and re-engineered into the current middleware solution,
gLite. The gLite Grid services follow a Service Oriented Architecture facilitating
compliance with upcoming Grid standards and is currently widely deployed on
hundreds of sites as part of the EGEE project, enabling global science in a great
number of disciplines [26].

WMProxy is a new component, implemented as a Web service, to access
the gLite Workload Management System (WMS) and efficiently handles large
number of job submission requests and controls.

Job submission requires a description of the job to be executed and a descrip-
tion of the needed resources. These descriptions are provided with a high-level
language called JDL. The Job Description Language (JDL) is based on Condor
classified advertisements (classads) for describing jobs and aggregates of jobs
such as MPICH which is a high-performance and widely portable implementa-
tion of MPI(Message Passing Interface).

Actual job submission is done by calling in sequence the two service opera-
tions jobRegister and jobStart. When a jobRegister request arrives at the WM-
Proxy, if the client has the rights to proceed, a set of specific attributes needed
by the WMS for handling the request appropriately together with a generated
unnique Job identifier are inserted in to the job description. The requesting
user is then mapped to a local user by means of LCMAP, which provides au-
thorization functionalities based on VOMS (Virtual Organization Membership
Services),resulting in the job, local directories and files being created with ap-
propriate ownership and permissions. When all the aforementioned steps have
been successfully completed, the job with the generated job identifier and the
enriched JDL description is registered to the RB(Resource Broker). From that
point on the job is uniquely identified and can be monitored throughout the
system and the various job states with its identifier [25].

Bioinformatics usually entails the execution of very complex workflow anal-
ysis. Some applications can perform and scale very well in a Grid environment
while others are instead better suited for a dedicated cluster especially when
bound to certain license agreements or when specialized supporting software is
required. Current results suggests the grid also better suited for more computa-
tionally expensive jobs as job submission times often exceeds execution times of
small jobs.

An obvious disadvantage of the MCMCMC algorithm is that m chains are
run and only one chain is used for inference. For this reason, MCMCMC is
ideally suited for implementation on parallel machines, since each chain will in
general require the same amount of computation per iteration. The EGEE grid
infrastructure with its uncontested parallel capacity provides a very favorable
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environment for Bayesian MCMCMC analysis allowing a user to combine several
simultaneous simulations varying crucial variables such as models of evolution,
number of generations and amount of chains. We embedded Parallel MrBayes
into the BioMed virtual organisation of the EGEE grid infrastructure as part of
the BioinfoGrid project [18].

We utilised this framework to infer phylogenetic analysis on the Pancrustacea
dataset by submitting numerous jobs testing three different models of evolution.
Firstly the general matrix available for mitochondrial genomes, but based on
vertebrate taxa, MtRev [24] secondly MtArt [23] and lastly our specifically de-
veloped matrix, MtPan. One million generations were run, varying between 8
or 4 MC-chains, while trees were sampled every 100 generations. Three nexus
files was constructed for the batch processing of MrBayes, two stating the GTR
model as the rate matrix and setting the prior for the substitution rates in accor-
dance with the MtArt and MtPan matrices and the third, by setting the amino
acid model prior variable to MtRev.

Many BioMed VO Grid WNs(worker nodes) are not currently correctly config-
ured to execute MPI(parallel) jobs successfully even though the jdl requirements
variable specifies the desired prerequisites to which the selected CEs (Computing
Elements) should adhear. This is due to the fact that the Grid infrastructure and
maintanance of contributed resources are still evolving. We randomly submitted
12 similar parallel MrBayes jobs (not to specific CEs) and disappointingly 9 of
these jobs failed. For our main analysis we submitted only to selected CEs, which
consists of hundreds of WNs, proven to have very good MPICH success rates.

3 Results and Discussion

As mentioned, we submitted only to a handful of CEs which has proven to be able
to successfully execute MPICH job types. The Resource Broker algorithmically
selects among this list for the most suited CE. Of our 45 MtArt 8-chain jobs
submitted, 15 failed to reach the running state. The running state refers to the
status of a job which has passed successfully through the queueing system to
being actually processed by the amount of worker nodes specified.

After several concurrent submissions we achieved a total of 30 8-chain jobs
and 20 4-chain jobs for each of the three evolutionary models MtArt, MtRev
and MtPan. The average mrbayes execution time was around 29 hours while
the average submission time (the time it takes the job to successfully reach the
actual running state from the moment the jobs was submitted to the Resource
Broker) was around 17 hours. This resulted in total average execution times
of around 45 hours for one 8-chain analysis. Thirty 8-chain and twenty 4-chain
jobs for each of the three models were run in parallel. This amounts to a total of
960 worker nodes being occupied, in parallel, for an average period of two days.
One 4-chain sequential execution, with the same parameters as used in the main
analysis, failed to complete within the 7 day grid proxy validity period. This
implies that sequentially done, taking the average running time of one chain as
45 hours, this analysis would have taken up to 960*2 days. See Figure 2 for a



Bayesian Phylogeny on Grid 411

Fig. 2. Grid job submission and execution times for MtArt 8-chain
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Fig. 3. Box-and-whisker plot of the posterior probabilities obtained using the three
different models

depicted summary of the execution and submission times for the 30 successful
Mtart 8-chain jobs.

In the analysis of our Pancrustacean mitochondrial data set, plots of likelihood
versus generations, together with the value of the likelihood towards which each
run converges, were used to assess the efficiency of the analysis to explore the
likelihood space and reach the best maximum, and the relative performance of
the three amino acid substitution matrices.

Most of the runs, regardless of the matrix used, converged to slightly different
maxima. This indicates, on one hand, that the resulting topology for each run is
highly dependent on the performance of the algorithm to explore the likelihood
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surface and the starting point of the search, thus suggesting prudence when
interpreting the results. On the other hand, this underlines the importance of
conducting different parallel runs and comparing the results in order to have a
global outlook on these aspects of the analysis.

Furthermore, comparing the actual topologies to which each run converges,
it becomes evident that while most of the shallow nodes are common to most
resulting trees, the deepest nodes tend to vary, and the difference in likelihood
observed across runs, little as they are, depend on rearrangements at the deepest
nodes. This behaviour is most likely due to the intrinsic signal of the data,
rather than to limitations of the analysis. It also has a detrimental effect on
the biological interpretation of the results, as the most interesting nodes are in
fact the ones that connect the major lineages of the Pancrustacea, and these
are in turn the less stable. Nevertheless, the tree with the highest posterior
probabilities selected (Figure 5) is largely congruent with that obtained in a
previous analysis [3], and has a precise taxonomic meaning. It shows, in fact,
that two hexapod lineages, Collembola and Diplura, do not cluster with the
remaining insects, whose closest relatives appear to be in certain lineages of
crustaceans (Stomatopoda, Decapoda, Cephalocarida).

The only difference between this tree and the tree obtained in [3] is the relative
position of a cluster of four taxa (Pachypsilla, Trialeurodes, Xenos, Armillifer)
which was embedded in the clade of Insecta in [3], while is here joined with the
basalmost lineages of the whole tree, and clustered with the Remipedia and the
Maxillopoda. This cluster indeed joins species from distant taxonomic lineages:
Homoptera (insects), Strepsiptera (insects) and Pentastomida. Their association
must therefore be considered an artifact of the analysis, possibly related with an
accelerated rate of evolution of these sequences.
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Fig. 4. Box-and-whisker plot of the posterior probabilities obtained using the three dif-
ferent models, showing the two MCMCMC implementations of each model separately.
The 4 chain versions tended to slightly outperform the 8 chain versions.
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Fig. 5. The tree with the highest posterior probability of all the simulations
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The highest posterior probabilities from the 1 million runs (excluding burn-in)
of each job was analysed separately for each matrix. From this multiple analysis
it was possible to show (Figure 3 and 4) that the MtPan matrix generally con-
verge to higher likelihood values than MtRev and MtArt. This does not come
unexpected, as this matrix was directly derived from a collection of pancrus-
tacean mitochondrial genes, and is likely to describe the mechanism of sequence
evolution in these groups better than matrices developed for different taxonomic
groups [23]. From Figure 4 it can be seen that the tree with the highest overall
posterior was found during an MtPan 4-chain run. The consensus tree as pro-
duced by MrBayes for this run is shown in Figure 5 and is considered as our
best estimate of phylogenetic relationships among Pancrustacea based on the
data set analysed.

4 Conclusion

Here we present a new model of evolution for pancrustacean mitochondrial PCGs
which is performing in average better than currently available models. From a
biological standpoint, this analysis has confirmed that mitochondrial genome
sequences unambiguously indicate the reciprocal paraphyly of the formal taxa
Hexapoda and Crustacea, as traditionally defined [6,21,22,3], therefore implying
a new interpretation of the evolution of the most successful lineage of Metazoa.
We found that inching towards better models of evolution may require inten-
sive computation. Models may be improved by adding more taxa from which
parameters are estimated, and methods of phylogenetic reconstruction may be
improved by taking into account the inevitable presence of different rates of evo-
lution in different lineages of the same phylogenetic tree. The Grid is becoming
“the” resource for solving large-scale computing applications in Bioinformatics,
system biology and computational medicine. The distributed high performance
computer (HPC) and GRID are “de facto” considered as the way to realize the
concept of virtual places where scientists and researchers work together to solve
complex scientific problems, despite their geographic and organizational bound-
aries. In phylogenetic inference the grid will become a computational laboratory
to test models of evolution and phylogenetic hypothesis on large trees which may
provide an effective boost in our investigation of the evolutionary process.
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Abstract. Exact matching of single patterns in DNA and amino acid
sequences is studied. We performed an extensive experimental compari-
son of algorithms presented in the literature. In addition, we introduce
new variations of earlier algorithms. The results of the comparison show
that the new algorithms are efficient in practice.

1 Introduction

String matching is used for locating nucleotide or amino acid sequence patterns
in the biological sequence databases. Nucleotide or DNA sequences have an al-
phabet of four characters, and amino acid sequences have an alphabet of 20
characters, respectively. Because the total number of sequences is rapidly in-
creasing, efficient methods are needed. Recently three novel algorithms, namely
Lecroq’s ‘New’ [13], SSABS [16], and TVSBS [19], were proposed for searching
single exact pattern in DNA and amino acid sequences. This motivated us to
compare these algorithms with older methods known to be efficient. Another rea-
son is advances in the processor and memory technology and in compilers. Old
algorithms do not necessarily behave with new processors and compilers in the
same way they did ten years ago in our extensive comparison [18]. Besides the
comparison in the DNA and amino acid alphabets, we developed new variations
of our earlier algorithm [18].

It turned out that SSABS and TVSBS were poor for DNA sequences. The
new variations of our algorithm were slightly faster than Lecroq’s algorithm in
most cases in the both alphabets. The clear winner for amino acid patterns of
moderate length was SBNDM2 [6], which has not been specifically designed for
biological alphabets.

In terms of computer science, a biological sequence is a string, and therefore we
use both terms. The aim of string matching is to report all exact occurrences of a
pattern string in a longer text string. We use the following notations throughout
the paper. The length of the pattern and the text are m and n, respectively. The
size of the alphabet is σ.
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The rest of the paper is organized as follows. We review earlier solutions in Sec-
tion 2 and introduce the new variations of our algorithm in Section 3. Section 4
reports the results of our experiments before the conclusion in Section 5.

2 Known Solutions for DNA Sequences

Most of the efficient string matching algorithms in the DNA alphabet are modifi-
cations of the Boyer–Moore algorithm [3]. Most often only the occurrence heuris-
tic (also called the bad character heuristic) is applied for shifting. Algorithms of
this type are greedy in the sense that the pattern is moved forward after the first
character mismatch of an alignment is observed. Shifts may then be unnecessar-
ily short for the nucleotide alphabet if shifting is based on a single character.
Therefore it is advantageous to apply q-grams, strings of q characters, instead
of single characters. This technique was already mentioned in the original paper
of Boyer and Moore [3, p. 772], and Knuth [12, p. 341] analyzed theoretically
its gain. Zhu and Takaoka [21] presented the first algorithm utilizing the idea.
Their algorithm uses two characters for indexing a two dimensional array. They
gave also another version based on hashing. The size of the hash table was two
times the pattern length.

Baeza-Yates [1] introduced an extension to the Boyer–Moore–Horspool algo-
rithm [7] where the shift array is indexed with an integer formed from a q-gram
with shift and add instructions. For this kind of approach the practical upper
limit with 8 bit characters is two characters.

For the DNA alphabet Kim and Shawe-Taylor [10] introduced a convenient
alphabet compression by masking the three lowest bits of ASCII characters. In
addition to the a, c, g, and t one gets distinguishable codes also for n and u.
Even important control code \n=LF has distinct value, but \r=CR gets the
same code as u. With this method they were able to use q-grams of up to six
characters. Indexing of the shift array was similar to Baeza-Yates’ algorithm.

With a small alphabet the probability of an arbitrary q-gram appearing in long
pattern is high. This restricts the average shift length. Kim and Shawe-Taylor
[10] introduced also an interesting variation for the cases where the q-gram in
the text occurs in the pattern. Then two additional characters are checked one
by one to achieve a longer shift.

In most cases the q-gram that is taken from the text does not match with the
suffix of the pattern, and the pattern can be shifted forward. For efficiency one
should use a ufast skip loop [8], where the pattern is moved forward until the
last q-gram of the pattern matches with a q-gram in the text. The easiest way
to implement this idea is to artificially define the shift of the last q-gram of the
pattern to be zero. We must also add to the end of the text a copy of the pattern
as a stopper. After the skip loop the pattern is compared with the corresponding
text positions. An advantage of skip loop is that we use text characters both for
preliminary comparison and for computing the shift. So we fetch the characters
only once.
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Our earlier algorithm [18] applies a skip loop. The key feature of this algorithm
is efficient handling of q-grams. The details are presented in Section 3.1. Recently
Lecroq [13] presented a related algorithm. Its implementation is based on the
Wu–Manber algorithm [20] for multiple string matching, but as suggested above,
the idea is older [3,21].

SSABS [16] and TVSBS [19] were developed for biological sequences. SSABS
is a Boyer–Moore type algorithm. In the search phase the algorithm verifies that
the first and last character of the pattern matches with the current alignment
before checking the rest of the alignment (a.k.a. guard tests). TVSBS uses a
2-gram for calculating the shift, adopted from the Berry–Ravindran algo-
rithm [2], which is a cross of the Zhu–Takaoka algorithm and Sunday’s QS
algorithm [17]. Instead of the two-dimensional shift table of Berry–Ravindran,
TVSBS uses a hash function to compute an index to a one-dimensional table.

In Section 4, we will present an experimental comparison of several algo-
rithms. Experimental results on some earlier algorithms for DNA sequences can
be found in [18]. We have included three efficient algorithms, namely FAOSO
[4], SBNDM [14,15], and SBNDM2 [6] in the comparison, although they have
not been designed for biological sequences.

Recently Kim et al. [11] presented an algorithm for packed DNA. We excluded
it from the comparison, because there is no fair way to compare other algorithms
with it.

3 Variations of Our Algorithm

3.1 Our Earlier Algorithm

Our algorithm [18] is a modification of the Boyer–Moore–Horspool algorithm [7]
for the DNA alphabet. Instead of inspecting a single character at each alignment
of the pattern, the algorithm reads a q-gram and computes an integer called
fingerprint from it. This idea of applying q-grams was already present in the
earlier algorithms [1,10,21], but we introduced an efficient way to handle q-grams.

The ASCII codes of a, c, g, and t are 97, 99, 103, and 116, respectively. The
ASCII codes are mapped to the range of 4: 0 ≤ r[x] ≤ 3, where r[x] is the
new code of x, such that characters a, c, g, and t get different codes and other
possible characters get e.g. code 0. In this way the computation is limited to
the effective alphabet of four characters. The fingerprint is simply a reversed
number of base 4. A separate transformation table hi is used for each position i
of a q-gram and multiplications are incorporated during preprocessing into the
tables: hi[x] = r[x] · 4i. For q = 4, the fingerprint of x0· · ·x3 is

∑3
i=0 r[xi] · 4i

which is then computed as

h0[x0] + h1[x1] + h2[x2] + h3[x3].

The algorithm is given below as BMHq. It corresponds to Algorithm 4 in
[18] without unrolling. In the algorithm, T = t1· · · tn denotes the text and P =
p1· · · pm the pattern. At each alignment of the pattern the last q-gram of the
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pattern is compared with the corresponding q-gram in the text by testing the
equality of their fingerprints. If the fingerprints match, a potential occurrence
has been found, which has to be checked. We need to check only the first m− q
characters of the pattern because our fingerprint method does not cause hash
collisions, assuming that the searched text contains only DNA characters. The
algorithm applies a variation of a skip loop called “unrolled fast” (=ufast) by
Hume and Sunday [8].

Algorithm 1. BMHq(P = p1p2· · · pm, T = t1t2· · · tn)
1: Initialize D[∗]
2: tn+1· · · tn+m ← P /* adding stopper */
3: p ← f(P, m, q)
4: r ← D[p]; D[p] ← 0; k ← m
5: s ← D[f(T, k, q)]
6: loop
7: while s > 0 do
8: k ← k + s
9: s ← D[f(T, k, q)]

10: if j = 0 then exit
11: Check the potential occurrence
12: s ← r

In the algorithm, f(T, k, q)1 denotes the fingerprint of tk−q+1· · · tk. For com-
putation of the shift table D see [18]. The pattern needs to be copied to the end
of the text, so that the ufast skip loop will end when the search is complete.

Lecroq’s ‘New’ algorithm [13] is closely related to BMHq. However, Lecroq ap-
plies a different method based on hashing for computing fingerprints of q-grams.
Moreover, the maximal shift of his algorithm is m − q + 1, while that of BMHq
is m, because BMHq is able to handle all prefixes of the first q-gram of the pattern.

3.2 Variations for DNA

We tested several ways to compute the fingerprint in order to make our al-
gorithm BMH4 faster. When considering 4-grams, they fit into a 32-bit word
in 8-bit characters. Some CPU architectures, notably the x86, allow unaligned
memory reads of several bytes. This inspired us to try reading several bytes in
one instruction, instead of four separate character reads. Reading several bytes
at a time is by no means a new technique. Many researchers have used it [5,9].
But we have not seen any comparison with standard bytewise reading. One may
argue that it is not fair to apply multiple reading, because all CPU architectures
do not support it. But the x86 architecture is nowadays so dominant that it is
reasonable to tune algorithms for it.

We will present two variations of BMH4. BMH4b reads a 32-bit word, and
BMH4c reads two consecutive halfwords. Because in BMH4b we have access to
1 This is f2 in [18].
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an integer consisting of four characters, it would be inefficient to use the old
character-based fingerprint method. The fingerprint calculation arrays of BMH4
are replaced with hashing expression, where the input is a whole 4-gram as a
4-character long integer. ASCII codes for a, c, g and t are distinguishable by
the last three bits. The following expression packs the unique bits of the four
characters together in a few instructions, to form an integer in the range of
2313...16191 = 00100100001001...11111100111111.

FP(x) = ((x >> 13) & 0x3838) | (x & 0x0707)

Preprocessing of BMH4b is similar to the earlier algorithm, we just calculate
the fingerprints of the 4-grams in the pattern with the new hash function. So
the main difference between BMH4b and BMH4 is in the computing of f . In
BMH4b this is done with masking, shifting, and bitwise OR. Hashing receives
the current text location pointer as an argument, and reads the 32-bit integer
from that address with FP(*(k-3)). D[x] contains the preprocessed shift values
for each hashed q-gram of the pattern.

Based on our tests, unaligned memory reads on x86 processors incur a speed
penalty of up to 70% when compared with aligned reads. This unfortunately
reduces the speed of BMH4b, because 75% of the reads are unaligned on the
average. So we made another variation BMH4c, which reads two consecutive
halfwords. In the case of BMH4c, only 25% of the reads are unaligned ones
getting the speed penalty (while crossing the border of 4 bytes). In BMH4c, the
value of a fingerprint is got as a1[x1] + a2[x2] where xi is a halfword and ai a
preprocessed transformation table, for i = 1, 2.

3.3 Variations for Amino Acids

The q-gram approach is valid also for larger alphabets, although with a larger
alphabet the optimal value of q is smaller. A larger alphabet size required only
minor changes to the algorithm. A new variation BMH2 was created based on
BMHq. The range of the ASCII code mapping r[x] was increased from 4 to 20,
to cover the amino acid alphabet “ACDEF GHIKL MNPQR STVWY” instead
of the DNA alphabet. Otherwise the algorithm is the same as BMHq.

We made also BMH2c, which reads a 2-gram as a 16-bit halfword. The shift
array is indexed directly with halfwords.

These algorithms can be used with any text, e.g. English text. For this kind
of data we mapped each character to a smaller range with a modulo function in
preprocessing. The best results for English text were obtained with modulo 25.
Because the mapping tables are created in the preprocessing phase, the modulo
operation does not affect the search time directly.

4 Experimental Results

Algorithms. Among tested algorithms were SSABS [16], TVSBS [19], BMH4,
BMH4b, BMH4c, BMH2, and BMH2c. KS by Kim and Shawe-Taylor [10] uses
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a trie of reversed q-grams of the pattern. The Fast Average Optimal Shift-Or
(FAOSO) [4] was tested with different values of the step size and the unrolling
factor. The given run times of FAOSO are based on the best possible parameter
combination for each pattern length.

SBNDM [15] is based on the BNDM [14] algorithm, with simplified shift cal-
culations. SBNDM2 [6] is a modification of SBNDM. One of the key points of
SBNDM2 is loop unrolling, i.e. handling of a 2-gram before entering to the inner
loop.

We also tested LEC, which is the ‘New’ algorithm of Lecroq [13], and which
uses q-grams and hashing. The run times of LEC are given based on the best
possible q for each pattern length.

SSABS and TVSBS were implemented as described in the articles [16] and
[19]. Because TVSBS is based on Berry–Ravindran algorithm [2], we also im-
plemented two versions of the latter, BR and BRX. In BRX we have modified
the algorithm to calculate shifts based on the last character of the current text
alignment ts and the next character ts+1, instead of ts+1 and ts+2 as in BR
which corresponds to the original Berry–Ravindran. The probability of a shift
of the pattern by one position is approximately 1/σ for BR and 1/σ2 for BRX.
Thus BRX produces with small alphabets longer shifts than BR on the average.
This is due to the inherent weakness of Sunday’s QS algorithm [17]: if the last
character of the pattern is common, then the probability of a shift of one is high.
In such a case, ts+2 is often useless in the computation of shift in BR. Our test
results show that this weakness of BR is noticeable even with amino acids.

All algorithms were implemented in C. The codes of KS, SBNDM2, FAOSO,
and LEC were got from the original authors. Other codes were implemented by us.

Test Setting. The tests were run on a 2.8GHz Pentium D (dual core) CPU with
1 GB of memory. Both cores have 16 KB L1 data cache and 1024 KB L2 cache.
The computer was running Fedora 8 Linux.

All the algorithms were tested in a testing framework of Hume and Sunday [8].
All programs were compiled with Intel’s C compiler icc 10.0 producing x86
“32-bit” code and using the optimization level -O3.

The test patterns were generated based on the text files so that roughly half
of the patterns have matches in the text. These longer patterns were then cut
to shorter patterns. Every pattern set contains 200 patterns for DNA and 100
for amino acids of the same length. For DNA, the test data was taken from
the genome of the fruit fly. The amino acid text is the peptide sequences of
Arabidopsis thaliana. All text files consisted of about 2 ·106 characters. Test runs
were executed on otherwise unloaded computer. To achieve accurate timings the
search for each pattern was repeated 20 times (with DNA and 50 times with
amino acids). Reported results are medians for five successive test runs using
corresponding pattern set. The change of the process from one processor core
to another empties cache memories with various degree. This would slow down
reads from memory and induce annoying variation to the timing of test runs. To
avoid it we have used Linux function sched setaffinity to bind the process to
only one processor or core.
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Table 1. Search times in milliseconds for DNA sequences (σ = 4)

m bmh4 bmh4c ssabs tvsbs ks br brx sbndm sbndm2 faoso lec3−5

4 1004 806 1991 1559 - 1545 1294 1754 1152 601 1390

6 678 540 1750 1260 1126 1250 984 1246 885 558 762

8 534 429 1612 1073 592 1063 811 984 743 357 551

10 447 355 1570 945 411 936 696 806 657 306 450

12 391 305 1586 866 324 860 624 692 582 276 379

14 351 270 1556 802 281 795 573 603 515 278 327

16 317 250 1551 755 241 747 538 538 462 228 295

18 286 236 1526 716 212 710 506 482 417 235 272

20 257 224 1516 683 196 672 477 440 381 203 256

22 240 210 1536 663 179 654 462 406 349 205 244

24 232 199 1519 645 170 633 442 375 321 227 231

26 220 191 1491 620 162 612 431 348 299 244 220

28 209 182 1526 602 154 593 417 327 280 228 209

30 201 178 1529 589 149 580 407 308 263 242 198

40 173 156 1492 545 126 536 377 - - - 168

50 156 144 1481 521 113 511 361 - - - 150

60 146 135 1432 501 106 491 346 - - - 139

70 135 126 1495 498 105 489 343 - - - 129

80 125 112 1551 498 102 489 334 - - - 121

90 117 110 1588 494 102 483 334 - - - 114

100 111 108 1569 502 107 491 335 - - - 108

DNA sequences. The search times for DNA sequences are listed in Table 1. The
reported times do not include preprocessing. For most of the tested algorithms
the preprocessing times were less than 1% of search times. The preprocessing
time was slightly more for the BMH2c, BMH4b, BMH4c, TVSBS, KS, BR,
and BRX algorithms, because they have large memory structures, which are
initialized during preprocessing.

FAOSO, KS, and BMH4c were winners of the DNA test. FAOSO was the
fastest for m ≤ 16 excluding m = 6 and m = 14 where BMH4c was the best. KS
was the fastest for 18 ≤ m ≤ 100.

Multiple reading is advantageous, because BMH4c was approximately 20%
faster than BMH4 for short patterns. The times of BMH4b (not shown) were
between those of BMH4 and BMH4c for patterns longer than 25 nucleotides; for
shorter patterns is was a little slower than BMH4. Even BMH2c (not shown)
was among the best for patterns shorter than 10.

TVSBS proves to be an improvement on SSABS for long patterns, but its
performance still falls in line with the other algorithms of the comparison.
However, the test results show that SSABS and TVSBS are not appropriate
for DNA sequences. The original Berry–Ravindran algorithm was slightly faster
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Table 2. Search times in milliseconds for amino acid sequences (σ = 20)

m bmh2 bmh2c ssabs tvsbs br brx sbndm sbndm2 faoso lec3−4

4 320 277 326 336 316 288 346 241 164 622

6 225 195 252 260 246 214 294 138 123 340

8 280 156 207 213 206 172 250 104 101 245

10 152 133 186 187 177 149 219 84 91 201

12 131 118 173 170 161 133 196 74 79 166

14 119 106 155 148 142 119 175 67 79 142

16 112 98 145 137 132 109 157 62 75 128

18 107 91 137 128 121 101 141 59 69 118

20 101 85 132 120 115 96 127 55 70 112

22 94 81 127 116 109 90 116 53 70 105

24 90 77 122 107 103 85 106 51 68 99

26 86 74 118 102 98 82 97 50 69 93

28 83 71 115 98 93 79 90 49 69 89

30 80 69 114 96 93 77 84 48 68 86

40 72 62 103 81 79 67 - - - 74

50 67 58 98 74 71 61 - - - 67

60 63 55 95 69 67 58 - - - 62

70 58 51 92 63 61 54 - - - 59

80 53 48 92 58 57 51 - - - 55

90 51 48 91 56 53 50 - - - 52

100 51 49 91 54 52 49 - - - 50

than TVSBS. The results show that the shift modification in BRX is a clear
improvement on BR for DNA sequences.

Amino acid sequences. The search times in the amino acid alphabet in Ta-
ble 2 are more even. BMH2c works efficiently for all tested pattern lengths, but
SBNDM2 is the overall winner of this test. Because the bitvectors were 32 bits
long, BMH2c and BRX dominate when m > 32. Performance of BMH2 is close
to BR and BRX for all tested pattern lengths.

Additional notes. Further optimizations might improve the search times of
TVSBS, especially the same one we used in BRX. With 64-bit bitvectors FAOSO,
SBNDM, and SBNDM2 can handle longer patterns than in these tests. On sep-
arate test with “64-bit code”, SBDNM2 was the fastest also for pattern lengths
up to 64. Currently we have only 32-bit version of FAOSO, so its performance
with longer bitvectors remained unknown.

It was a surprise that KS was the winner for long patterns, because it was
slower in our earlier test [18] and also in the preliminary test with an older
compiler for this paper. The improvement of KS is due to new compilers. With
gcc 4.1 the performance is nearly the same as in Table 1, but when compiled
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with gcc 4.0.1, 3.4.4, or 3.3.5 the search times are at least 12% longer on
several computers tested, and even 100% on the set of the shortest patterns.

We repeated the same tests on another computer having two 2.0GHz AMD
Opteron DP 246 processors each having 6KB L1 cache and 1MB L2 cache.
Size of main memory is 6GB (400MHz DDR PC3200). Unfortunately there is
a unusually large variation in timings on that computer so that it was difficult
to get reliable results. On tests with the DNA data, BMH4 was good for short
patterns. KS was good for patterns longer than 15. BMH4c was the fastest for
m ≤ 22. On amino acids BMH2c was superior for all tried pattern sets. For most
algorithms, the relative speed improvement was clearly smaller than in the tests
reported above, when patterns got longer.

Although FAOSO was fast for short patterns, it is rather unpractical. Namely
it has two constant parameters and it is a tedious process to find out the best
combination of them for each type of input. Without varying both of them, one
will likely get slower run times.

5 Conclusion

We demonstrated that it is possible to speed up q-gram calculation by read-
ing several characters at the same time. According to the comparison, the new
variations BMH4c and BMH2c were among the fastest ones for DNA and amino
acid data, respectively. Our intention is to continue working on multiple reading.
We expect that multiple reading would speed up also other algorithms handling
continuous q-grams, like BR, LEC, and SBNDM2. KS is promising for searching
of long DNA patterns on modern processors while using an up-to-date compiler.

We showed how to fix the inefficiency of the Berry–Ravindran algorithm in
the case of DNA data. This modification is advantageous also for amino acid
data.

We noticed that the results depend more on the processor and compiler than
we expected. Algorithm A may be faster than algorithm B on computer C and
the other way around on computer D. For more profound practical evaluation
of algorithms, several environments should be tried.
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Abstract. In this paper, we present a new approximation Minimum Fragment 
Removal (MFR) algorithm based on a new Optimization Vertex Bipartization 
(OVB) one. Our approximation MFR algorithm is of complexity O(n2) in com-
puting time, where n is the number of the vertices of the conflict graph. Then, we 
present the results obtained after running the program corresponding to our algo-
rithm on random graphs and on graphs from Computational Molecular Biology. 

Keywords: Graphs, haplotype assembly, minimum fragment removal, vertex 
bipartization, algorithms, complexities. 

1   Introduction 

A DesoxyriboNucleic Acid (DNA) macromolecule is a double-stranded one. Each 
strand is a sequence of molecules, called nucleotides. There are four types of nucleo-
tides : Adenine, Cytosine, Guanine and Thymine coded, respectively, by A, C, G and 
T. Each DNA macromolecule is packed separately in a chromosome. In diploid or-
ganisms such as human, there are two almost identical copies of each chromosome in 
an individual : one copy inherited from the individual's father, called paternal chro-
mosome and one copy inherited from the individual’s mother, called maternal  
chromosome. And consequently, in diploid organisms, there are two almost identical 
copies of each DNA macromolecule. Each copy of a DNA macromolecule has re-
gions which are variable from one individual to another. These variations are called 
genetic polymorphisms. Thus, a Single Nucleotide Polymorphism (SNP) is a variation 
of a single nucleotide in a DNA macromolecule. A haplotype is a list of SNPs in a 
copy of a DNA macromolecule. The pairing between the paternal haplotype and the 
maternal one represents the genotype of an individual. 

The Haplotype Assembly Problem (HAP), also called single individual haplotyping 
problem, is defined as follows: Given a set of strings F={f1, f2, … , fn} coding overlap-
ping fragments coming from two copies of a DNA macromolecule and S={1, 2, … } a 
set of integers representing the numbers of SNPs appearing in strings of F, find the 
errors existing in F and remove/correct these errors such that the obtained strings can be 
partitioned in two classes, H1 and H2, where the elements of each class are not in con-
flict among them selves, i.e., for any couple of strings (fi,fj) of H1 × H1 or of H2 × H2, 
there does not exist SNPs indexed in S whose value in fi is different from the one in fj. 



428 H. Tahri and M. Elloumi 

      SNP             SNP              SNP 

Paternel chromosome  C C GAGTA  …  T A C A T G A  …  G G C T A 
Maternel chromosome  C G G AGTA  … T A C T T G A  …  G G C T A 

Paternel haplotype      C                                  A                           C
Maternel haplotype      G                                  T                           C

Genotype                 (C, G)            (A, T)            (C, C)  

Fig. 1. Haplotypes and Genotype of an individual 

When some strings represent errors because they code bad fragments, the HAP 
boils down to the Minimum Fragment Removal (MFR) problem [1], [2], [3], [4], [5], 
[6], [7], [8], [9]:  

Find the minimum number of strings of F to remove, so that, the remaining strings 
can be partitioned in two classes, H1 and H2, where the elements of each class are not 
in conflict among them selves. 

The MFR problem is polynomial when the SNP matrix is gapless [6], it is NP-hard 
when each row (fragment) of the SNP matrix has, at most, one gap [1] and it is APX-
hard in the general case [6], i.e., there does not exist good approximation algorithms 
for this problem. Among the algorithms that deal with the MFR problem, we mention 
[6], [7], [10]. The algorithm described in [6] is a dynamic programming one [16], 
[17], it is of complexity O(22km2n+23kn3) in computing time, where m and n are re-
spectively the number of rows and the number of columns of the SNP matrix, and k is 
the upper bound of the sum of the gaps lengths in a row in this matrix. Thus, when 
k=0, i.e., the rows of the SNP matrix are gapless, the algorithm becomes of complex-
ity O(m2n+n3) in computing time. The algorithm described in [7] is a fast approxima-
tion one. Finally, the algorithm described in [10] is a Branch and Bound (BB) one 
[18], it is exponential in computing time.  

In this paper, we present a new approximation MFR algorithm based on a new Op-
timization Vertex Bipartization (OVB) one. Indeed, the MFR problem boils down to 
the OVB one [13], [14], [15]. In fact, if G=(V,E) is the undirected graph where V is F 
and E is the set of pairs {fi,fj}, such that {fi,fj}∈F×F and fi is in conflict with fj, then 
finding the minimum number of strings of F to remove so that the remaining strings 
can be partitioned in two classes, H1 and H2, where the elements of each class are not 
in conflict among them selves boils down to finding the minimum number of vertices 
in G to remove in order to obtain a graph G’=(V’,E’), V’⊆V et E’⊆E’, such that G’ is 
bipartite, i.e., we can partition the set of  vertices of V’ in two disjoint classes V’1 and 
V’2 such that E’ contains neither edges connecting vertices in V’1 nor edges connect-
ing vertices in V’2.  

Our approximation MFR algorithm is of complexity O(n2) in computing time, 
where n is the number of vertices of the conflict graph G associated with the set of 
strings F={f1, f2, … , fn} and the set of integers S={1, 2, … }. 
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The rest of this paper is organized as follows: In the second section, we give some 
definitions and notations. In the third section, we propose and prove the theorems on 
which our approximation MFR algorithm is based. In the fourth section, we describe 
approximation MFR algorithm. In the fifth section, we present the experimental re-
sults obtained after running the corresponding program on graphs from Computa-
tional Molecular Biology and random graphs. Finally, in the last section, we present 
our conclusion. 

2   Definitions and Notations 

Let fi and fj be two strings coding overlapping fragments coming from two copies of a 
DNA macromolecule, we say that fi and fj are in conflict if and only if there exists a 
SNP indexed in S whose value in fi is different from the one in fj. 

An undirected graph G is a couple (V,E) made-up by two sets V and E where the 
elements of V are called vertices and those of E are pairs of elements of V called 
edges. If ui={xi,yi}∈E then xi and yi are called endpoints of ui and vertices xi and yi 
are adjacent. In this case, the degree of a vertex xi is the number of the vertices which 
are adjacent to it. An isolated vertex in G is a vertex with a null degree. The set of 
isolated vertices of G will be denoted by ζ(G). A graph G’=(V’,E’) is a subgraph of a 
graph G=(V,E), if and only if, we have V’⊆V and E’⊆E. We denote by G\V’ the sub-
graph of G obtained by removing from G the vertices of V’ and the edges that have 
endpoints in V’. A graph G=(V,E) is bipartite, if and only if, we can partition the set 
of vertices V in two disjoints classes V1 and V2 such that E contains neither edges 
connecting vertices in V1 nor edges connecting vertices in V2. The classes V1 and V2 
are called partitions of the bipartite graph. A stable set associated with a graph 
G=(V,E) is a subset of V, whose elements are pairwise nonadjacent. 

Let F={f1, f2, … , fn} be a set of strings coding overlapping fragments coming from 

two copies of a DNA macromolecule and S={1, 2, … } a set of integers representing the 
numbers of SNPs appearing in strings of F the conflict graph G=(V,E) associated with F 
and S is an undirected graph where a vertex i, 1≤i≤n, of V represents a fragment fi of F 
and an edge {i, j}, 1≤i, j≤n, expresses the fact that fi is in conflict with fj. 

In the following section, we propose and prove the theorems on which our ap-
proximation MFR algorithm is based. 

3   Fundamental Aspects 

Our approximation MFR algorithm is based on the following theorems. 
 

Theorem 1: Let G=(V,E) be an undirected graph and: 
(i) V1 = ζ(G). 
(ii) V2 be a stable set of G\V1. 
(iii) V3 = ζ(G\(V1∪V2)) 
(iv) And V4 = V\(V1∪V2∪V3) 

for any couple (i,j), 1≤i,j≤ 4, we have Vi∩Vj = ∅ and we have V = V1∪V2∪V3∪V4. 
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Proof: 
(i) Let us prove first that for any couple (i,j), 1≤i,j≤ 4, we have Vi ∩ Vj = ∅: 

(i.i) Let’s suppose that there exists a vertex v ∈ V4. Then, v ∈ V\(V1∪V2∪V3), 
hence v∉V1∪V2∪V3. Therefore, for any i, 1≤ i ≤ 3, we have Vi∩V4=∅. 

(i.ii) Let’s suppose that there exists a vertex v ∈ V3. Then, v∈ζ(G\(V1∪V2)), 
hence v∉V1∪V2 and therefore, for any i, 1≤ i ≤ 2, we have Vi∩V3=∅. 

(i.iii) Finally; let’s suppose that there exists a vertex v∈V2. Then, v is a vertex 
in G\V1, hence v∉V1 and therefore, we have V1∩V2=∅. 

Hence, for any couple (i,j), 1≤i,j≤ 4, we have Vi∩Vj=∅.  
(ii) According to the definitions of V1, V2, V3 and V4, it is trivial that we have 

V=V1∪V2∪V3∪V4                                                                                                                                                                     • 
 

Corollary 1: Let G=(V,E) be an undirected graph and V1, V2 and V3 be the subsets of 
V verifying properties (i), (ii) and (iii) defined in Theorem 1, If V2 = ∅ then V3 = ∅. 

 

Proof: Indeed, let’s suppose that V2 = ∅ and V3 ≠ ∅. According to the definition of 
V1, the graph G\V1 is without isolated vertices. Thus, if V2 is a stable set of G\V1 and 
V3=ζ(G\(V1∪V2)), then for any vertex u∈V3, there exists at least a vertex v∈V2, such 
that (u,v)∈E. Hence V2≠∅, this contradicts the hypothesis.                                      • 

 
Theorem 2: Let G=(V,E) be an undirected graph, U = V1∪V2 and F be a subset of E 
such that F={(ui,v3,j) such that (ui,v3,j)∈(U×V3)}, where V1, V2 and V3 are the subsets 
of V verifying properties (i), (ii) and (iii) defined in Theorem 1, with V2≠∅ and V3≠∅. 
The graph G1=(U∪V3,F) is bipartite. 

 

Proof: We have F={(ui v3,j) such that (ui,v3,j)∈(U×V3)}, U=V1∪V2, V2≠∅ and V3≠∅}. 
We have also, for any vertex v3,i of V3 there exists at least one vertex v of V such that 
(v3,i,v)∈E and v∈V2, i.e., V3 is the subset of vertices of V that are adjacent only to the 
vertices of V2. Indeed, since V2 and V3 are the subsets of V verifying properties (ii) and 
(iii) defined in Theorem 1 then according to Theorem 1 we have V2∩V3 = ∅. Hence 
G1=(U∪V3,F) is bipartite.                                                                                              • 

 
Theorem 3: Let G=(V,E) be an undirected graph and V1, V2 and V3 be the subsets of V 
verifying properties (i), (ii) and (iii) defined in Theorem 1. The graph G’=(V1∪V2 

∪V3∪σ(G\(V1∪V2∪V3)),E’) such that E’={(u,v) such that (u,v)∈((V1∪V2)×(V3∪σ 
(G\(V1∪V2∪V3)))), V2≠∅ and V3∪σ(G\(V1∪V2∪V3))≠∅}, where σ(G\(V1∪V2∪V3)) is 
a stable set of G\(V1∪V2∪V3), is a bipartite one. 

 

Proof: Indeed, by feeding the subset V3 by vertices of the subset σ(G\(V1∪V2∪V3)), 
the subset V3 remains stable since V3 is the subset of vertices of V that are adjacent 
only to vertices of V2. Therefore the graph G’=(V1∪V2∪V3∪σ(G\(V1∪V2∪V3)),E’) 
such that E’={(u,v) such that (u,v)∈((V1∪V2)×(V3∪σ(G\(V1∪V2∪V3)))), V2≠∅, 
V3∪σ(G\(V1∪V2∪V3))≠∅} is a bipartite one.                                                                • 

 
Corollary 2: Let G=(V,E) be an undirected graph and V4 be the subset of V verifying 
property (iv) defined in Theorem 1. The minimum number of vertices to be removed 
to bipartize G is at most equal to |V4|. 
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Proof: Indeed, according to theorem 3, to bipartize an undirected graph G=(V,E) it 
suffices to remove vertices from the subset V4. In the worst case, we remove all the 
vertices of  V4.                                                                                                                 • 

 

In the next section, we present our approximation MFR algorithm. 

4   Algorithm 

Let F={f1, f2, … , fn} be a set of strings coding overlapping fragments coming from 

two copies of a DNA macromolecule and S={1, 2, … } be a set of integers represent-
ing the numbers of SNPs appearing in strings of F, by adopting our approximation 
MFR algorithm, ApproxMFR, we operate as follows :  

During the first step, we construct the conflict graph G =(V,E) associated with F 
and S. 

During the second step, we construct V1, the subset of isolated vertices of the con-
flict graph G. 

During the third step, we construct V2, a stable set of the graph G\V1.  
During the fourth step, we construct V3, the subset of isolated vertices of the graph 

G\V1∪V2. 
During the fifth step, we construct V4 = V\(V1∪V2∪V3).  
Finally, during the last step, we add to the subset V3 the elements of a stable set of 

G\(V1∪V2∪V3), i.e. the subgraph made up by the vertices of V4. The partitions V1∪V2 
and V3 thus obtained are considered to be a solution to the MFR problem. 

In the next subparagraphs, we present our algorithms of construction of the subsets 
V1, V2, V3 and V4. 

4.1   Construction of V1, V2, V3 and V4 

The subset V1 is the subset of isolated vertices of G. Thus, to construct it suffices to 
visit all the vertices of G. 

The subset V2 is a stable set of G\V1. The construction of V2 can be done via a sim-
ple algorithm, that we call Stable_Set, described in a number of papers [11], [12]: let 
G=(V,E) be an undirected graph, by using Stable_Set, we operate as fellows: 

First, we set V2=∅ and sort the vertices according to their decreasing degrees by 
using QuickSort algorithm [19]. Then, during each iteration, we choose a vertex v of 
minimum degree in G, we add v to V2 and delete v and all of its neighbours from G. 
We repeat this process until no vertices remain in G. 

Once the subset V2 has been constructed, the constructions of the subsets V3 and V4  
are trivial. Indeed, the subset V3 is the subset of isolated vertices of G\(V1∪V2) and 
V4=V\(V1∪V2∪V3). 

4.2   Construction of a Bipartite Graph 

Our approximation MFR algorithm, ApproxMFR, takes as input F={f1, f2, … , fn} a 

set of strings coding overlapping fragments coming from two copies of a DNA  
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macromolecule and S={1, 2, … } a set of integers representing the numbers of SNPs  
appearing in strings of F and gives as output a subgraph Gb=(V1∪V2∪V3,Eb) of G, 
where Eb is the set of edges that remain after removing V\(V1∪V2∪V3), that is bipartite. 

 

Algorithm. ApproxMFR (input : F={f1, f2, … , fn}, S={1, 2, … }, output : 

Gb=(V1∪V2∪V3,Eb)) 
(i)  Construct the conflict graph G = (V,E) associated with F and S  
(ii)  V1 := ζ(G)  //  Construction of the set of isolated vertices of G 
(iii)  V2 := Stable_Set (G\V1) //  Construction of a stable set of G\V1 
(iv)  V3 := ζ(G\V1∪V2) //  Construction of the set of isolated vertices of  

G\V1∪V2 
(v)  V4 := V\(V1∪V2∪V3)   //  Construction of V4 
(vi)  U := Stable_Set (G\(V1∪V2∪V3)) // Construction of a stable set of 

G\(V1∪V2∪V3). 
       V3 := V3 ∪ U // Feeding V3 by the vertices of a 

stable set of G\(V1∪V2∪V3) 
 

Proposition 1: Let F={f1, f2, … , fn} be a set of strings coding overlapping fragments 

coming from two copies of a DNA macromolecule and S={1, 2, … } be a set of inte-
gers representing the numbers of SNPs appearing in strings of F, algorithm Ap-
proxMFR constructs a subgraph Gb=( V1∪V2∪V3,Eb) of G that is bipartite. 

 

Proof: Indeed: 
During step (i), we construct the conflict graph G = (V,E) associated with F and S.  

During steps (ii), (iii), (iv) and (v), we construct respectively the subsets V1, V2, V3 
and V4 of V verifying properties (i), (ii), (iii) and (iv) defined in Theorem 1. And dur-
ing step (vi), we construct a stable set U of the graph G\(V1∪V2∪V3). Hence, accord-
ing to theorem 3, the graph G(V1∪V2∪V3∪U,E’) such that E’={(u,v) such that 
(u,v)∈((V1∪V2)×(V3∪U)), V2≠∅, V3∪U≠∅}) is bipartite.                                             • 

 

Proposition 2: Algorithm ApproxMFR is of complexity O(n2) in computing time, 
where n is the number of vertices of the graph G. 

 

Proof: Steps (i) and (ii) are respectively of complexities O(n2) and O(n). 
Step (iii) is of complexity O(n log n). Indeed, since QuickSort is O(n log n) in 

computing time, the first step of Stable_Set [11], [12] is also of complexity O(n log 
n) in computing time. The second step is O(n). Hence, step (iii) is of complexity 
O(n log n). Finally steps (iv), (v) and (vi) are respectively of complexities O(n), 
O(1) and O(n log n). 

Hence, algorithm ApproxMFR is of complexity O(n2) in computing time.         • 

5   Experimental Results 

The program corresponding to our approximation MFR algorithm, ApproxMFR, is 
coded in Microsoft Visual Basic 6.0 and implemented on a 3 Ghz Pentium-4 machine, 
running Microsoft Windows XP professional with 2 Gb of RAM.  

We have used a rate θ  in order to compare the number of the removed vertices nρ 
to the total number of the vertices n. This rate is defined by: 
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In the histogram and the curves below the density d’ of the graph is defined by:  
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where Δ(G) is the maximum degree of a vertex in the graph G. 
The curves of figure Fig. 2 represent the results obtained for random graphs with 

parameters n ranging from 10 to 500 and d’ ranging from 10 to 50%. 
The histogram of figure Fig. 3 represents the results obtained for graphs from 

Computational Molecular Biology. These graphs were generated using a model of 
Panconesi and Sozio [7], with the length of a haplotype is equal to 100, the value of 
the rate between the Hamming distance between H1 and H2 and the size of H1 (=H2) is 
equal to 0.2, the number of fragments per haplotype is equal to 20, each bit of every 
fragment is flipped with a probability equal to 0.02 and the coverage, i.e. the number 
of the fragments that cover the same position of the haplotype, varying from 5 to 10. 
That is, by using Panconesi and Sozio [7] notation, with parameters n=100, d=0.2, 
k=20, p=0.02 and c varying from 5 to 10.  

All the presented results have been obtained through computing an average on 50 
draws. 

According to figure Fig. 2, we notice that for random graphs, when the density d’ 
increases the rate θ increases too. We can explain this as follows : When the density 
d’ increases the maximum degree Δ(G) of a vertex increases too. And hence, the 
maximum size of a stable set of the graph decreases. This implies that the number of 
the vertices to be removed increases. 

 

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100 150 200 300 400 500

|V |

θ

d'=10%

d'=20%

d'=30%

d'=40%

d'=50%

 
Fig. 2. Variation of θ for random graphs with d’ varying from 10 to 50% 
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Fig. 3. Variation of θ for graphs from Computational Molecular Biology 

According to figure Fig. 3, we notice that for graphs from Computational Molecu-
lar Biology, when the coverage c increases the rate θ increases too. We can explain 
this as follows : When the coverage c increases the number n of the vertices increases 
too. On the other hand, according to figure Fig. 2, when the number n of the vertices 
increases the rate θ increases too. 

6   Conclusion 

In this paper, we have presented a new approximation Minimum Fragment Removal 
(MFR) algorithm based on a new Optimization Vertex Bipartization (OVB) one. Our 
approximation MFR algorithm is of complexity O(n2) in computing time, where n is 
the number of the vertices of the conflict graph. We have run the program corre-
sponding to our approximation MFR algorithm on random graphs and on graphs from  
Computational Molecular Biology. We have noticed that the obtained results are 
interesting. But, we can improve much more these results by improving the last step 
of our algorithm, to add more vertices to the constructed partitions.  
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Abstract. In this paper, we present the Truncated Generalized Suffix
Automaton (TGSA) and present an efficient on-line algorithm for its con-
struction. TGSA is a novel type of finite automaton suitable for indexing
DNA and RNA sequences, where the text is degenerate i.e. contains sets
of characters. TGSA indexes the so called k-factors, the factors of the
degenerate text with length not exceeding a given constant k. The pre-
sented algorithm works in O(n2) time, where n is the length of the input
DNA/RNA sequence. The resulting TGSA has at most linear number of
states with respect to the length of the text. TGSA enables us to find
the list occ(u) of all occurrences of a given pattern u in degenerate text
x̃ in time |u| + |occ (u)|.

1 Introduction

Degenerate strings are special strings having a set of symbols instead of one at
any particular position, e.g. x̃ = [a][c, g][g][a, c, t][a, c]. A normal (non-degenerate)
string can be seen as a special kind of degenerate string with singleton set at each
position. Degenerate strings are extensively used in molecular biology to express
polymorphisms in DNA/RNA sequences, e.g. the polymorphism of protein cod-
ing regions caused by redundancy of the genetic code or polymorphism in binding
site sequences of a family of genes. Indexing of short factors is a widely used and
useful technique in stringology and bioinformatics. Use of k-factors (factors of
length k) can be seen in solving diverse text algorithmic problems ranging from
different string matching tasks [6] to motif finding [7] and alignment problems
[8]. One can further mention the use of k-factors in FASTA and BLAST. In order
to efficiently use the k-factors we need an efficient data structure to index them.
� On leave from the Department of CSE, BUET, Dhaka-1000, Bangladesh.
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It may be noted here that, in the literature, there exists several recent works on
indexing different kinds of k-factors [10,9].

An index over a fixed text x̃ can be defined as an abstract data type based on
the set of all factors of x̃, denoted by Fact(x̃). Such data type is equipped with
some operations that allow it to answer the following 2 queries. Firstly, given
an arbitrary string u, an index can answer the question whether u ∈ Fact(x̃)
(the existence query). Secondly, if u ∈ Fact(x̃), then it can find the list of all
occurrences of u in x̃. In the case of exact string matching in normal string, there
exist classical data structures for indexing, such as suffix trees, suffix arrays,
DAWGs.

In [1], the Generalized Factor Automaton (GFA) was presented, which, to the
best of our knowledge, is the first data structure serving as a full index of a given
degenerate string. The precise number of states of GFA is not yet known, but,
experiments showed that it tends to grow super-quadratically with respect to the
length of the degenerate string [1]. As a result, it is not suitable for indexing very
long texts. Later, in [3], the Truncated Generalized Factor Automaton (TGFA)
was presented along with an algorithm for its construction based on the so-
called “partial determinization”. Essentially, TGFA is a modification of GFA
that indexes only factors with length not exceeding a given constant k and it
has at most linear number of states. The algorithm in [3] is based on the classical
subset construction technique [5] and it inherits its space and time complexity.
The space complexity is a bottleneck of this algorithm when indexing very long
text since we need to determinize the corresponding large NFA. As a result,
we loose the advantage of the much reduced size of TGFA due to its indirect
construction from GFA using the partial determinization process and thereby
limiting its applicability only for texts not exceeding KBs in length in practice.

In this paper, we present an on-line algorithm to construct Truncated Gen-
eralized Suffix Automaton (TGSA)1. This algorithm is space and time efficient,
and, therefore, it enables us to construct TGSA for degenerate strings of length
of tens of MBs. Notably, in [2], algorithms based on GSA1 for searching reg-
ularities in degenerate strings were presented. These algorithms can be easily
adapted for TGSA [4].

The rest of the paper is organized as follows. In Section 2, we present the
notations and definitions. In Section 3, we present our main results. In particular,
we present the algorithms for the construction of GSA and TGSA. Finally, we
briefly conclude in Section 4.

2 Preliminaries

An alphabet Σ is a nonempty finite set of symbols. A string over a given alphabet
is a finite sequence of symbols. The empty string is denoted by ε. The set of all
strings over an alphabet Σ (including empty string ε) is denoted by Σ∗. A string
x̃ = x̃1x̃2 . . . x̃n is said to be degenerate, if it is built over the potential 2|Σ| − 1
1 Note that TGFA and TGSA resp. (GFA and GSA ) has the same transition diagram

(i.e. number of states) and they differ only in sets of the final states.
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non-empty sets of letters belonging to Σ. We say that x̃i ∈ {P(Σ)\∅} = P+(Σ)
and |x̃i| denotes the cardinality of x̃i. In what follows, the set containing the
letters a and c will be denoted by [a, c] and the singleton [c] will be simply
denoted by c for the ease of reading. Also, we use the following convention: we
use normal letters like x to denote normal strings. The same letter may be used
to denote a degenerate string if used in the following way: x̃. The Language
represented by degenerate string x̃ is the set L(x̃) = { u | u = u1u2 . . . un, uj ∈
x̃j , 1 ≤ j ≤ n, u ∈ Σ∗ }. A string u is said to be an element of degenerate string
x̃, denoted u ∈ x̃, if it is an element of language represented by x̃. A string u is a
factor (resp. suffix) of a degenerate string x̃ if x̃ = ũṽw̃ and u ∈ ṽ (resp. u ∈ w̃)
and the set of all factors (resp. suffixes) of x̃ is denoted Fact(x̃) (resp. Suff(x̃)).
A string u is a k-factor of x̃ if u ∈ Fact(x̃) and |v| = k and the set of all k-factors
of x̃ is denoted Factk(x̃). A string v is a at-most-k-factor of x̃ if v ∈ Fact(x̃) and
|v| ≤ k and the set of all at-most-k-factors of x̃ is denoted Fact−k (x̃). Similarly,
we define k-suffix, at-most-k-suffix, Factk(x̃) and Fact−k (x̃). A (normal) string
u = u1 . . . u� of length � is said to occur in a degenerate string x̃ = x̃1x̃2 . . . x̃n

at position i, 1 ≤ i ≤ n if and only if uj ∈ x̃i−�+j for all 1 ≤ j ≤ �. The list of
all occurrences of u in x̃ is denoted by occx̃(u).

Since our algorithms are based on a finite automata approach, we give brief de-
finitions to related concepts below. A nondeterministic finite automaton M is a
quintuple (Q, Σ, δ, q0, F ), where: Q is a finite set of states, Σ is an input alpha-
bet, δ is a mapping δ : Q× (Σ ∪ {ε}) �→ P(Q) called a state transition function,
q0 ∈ Q is the initial state, and F ⊆ Q is a set of final states. A deterministic
finite automaton M is a special case of nondeterministic finite automaton such
that transition mapping is a function δ : Q×Σ �→ Q and there is only one initial
state q0 ∈ Q. The number of states (resp. transitions) of M we denote by |M |Q
(resp. |M |δ). The left language of state q of finite automaton M , denoted

←−LM (q),
is a set of strings for which there exists a sequence of transitions from the initial
state to state q. The left language of finite automaton M , denoted

←−LM , is a union
of left languages of all its states. Language accepted by finite automaton M , de-
noted L(M), is a set of words for which there exists sequence of transitions from
the initial state to some of the final states. The depth of state q of acyclic finite
automaton M is the length of the shortest path from the initial state to q. d-subset
D of a state p of DFA M from NFA M ′ is the set of states of M ′ such that for each
q ∈ D it holds

←−LM ′(q) =
←−LM (p). A trie TrieS constructed for set of string S is

deterministic finite automaton accepting S having the transition diagram in the
form of a rooted |Σ|-ary tree. Note that a trie for S has maximum possible number
of states among all deterministic finite automata accepting S.

3 Truncated Generalized Factor Automaton

In this section, we first introduce the concept of the TGSA. Next, we present an
on-line algorithm for the construction of GSA followed by an on-line algorithm
for the construction of TGSA. Notably, the TGSA construction algorithm is an
extension of the GSA construction algorithm.
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3.1 Generalized Suffix Automaton

Definition 1 (Generalized Suffix Automaton). Given a degenerate string
x̃, Generalized Suffix Automaton GSA(x̃) is a minimal deterministic finite au-
tomaton accepting the set Suff(x̃).

GSA can be constructed easily by constructing a nondeterministic GSA and
then determinizing it [1]. The nondeterministic GSA of x̃ = x̃1x̃2 . . . x̃n, has
n + 1 states, q0, q1, . . . , qn. For each symbol s ∈ x̃i, 1 ≤ i ≤ n, there exists one
transition each from q0 and qi−1 to the state qi. The only final state is qn.

If we use natural labelling of the states (a number of a state corresponds to
a position in the text) then elements of a d-subset of a state corresponds to
end-postions of factors from the left language of that state. Thus, GSA can be
used as a full index of a degenerate string. If, during the determinization of
nondeterministic GSA, we stop the expansion of states in depth equal to a given
constant k (partial determinization, [3]), then we obtain automaton accepting at
least the set of all at-most-k suffixes. The resulting automaton is TGSA. More
formally, TGSA can be defined as follows:

Definition 2 (Truncated Generalized Suffix Automaton). Suppose we
are given a degenerate string x̃ and a positive integer k. Assume that GSA(x̃) =
M = (Q, Σ, δ, q0, F ). Then, the Truncated Generalized Suffix Automaton for x̃
and k is a deterministic finite automaton TGSAk(x̃) = MT = (QT , ΣT , δ, q0,
FT ), where QT ⊆ Q, FT ⊆ F and δT ⊆ δ, such that it holds:

1. Fact−k (x̃) ⊆←−L (MT ) ⊆ Fact(x̃),
2. Suff−

k (x̃) ⊆ L(MT ) ⊆ Suff(x̃),
3. |MT |Q ≤ |Trie(Fact−k (x̃))|Q,
4. for MT , the value |←−L (MT ) \ Fact−k (x̃)| is minimal among all automata sat-

isfying Conditions 1–3.

Remark 1. The number of states of Trie(Fact−k (x̃)) is given by the size of set
Fact−k (x̃). The maximum number of all strings over an alphabet Σ of length

at most k is limited by value of |Σ|k+1−1
|Σ|−1 . This implies that the number of

states of Trie(Fact−k (x̃)) and hence the size of TGSAk(x̃) never exceeds this
value regardless the size of x̃. Next, the number of not-unique factors of length
at most k grows in linear manner with respect to length of x̃ and hence the
number of unique factors and hence the size of TGSAk(x̃) cannot grow faster
till it reaches the mentioned value |Σ|k+1−1

|Σ|−1 .

Since the construction of TGSA using partial determinization is costly, we, in
this paper, develope a new space and time efficient online algorithm to construct
TGSA directly. The algorithm is presented in the following sections.

3.2 On-Line Construction of Generalized Suffix Automaton

In this section we present the online construction algorithm for GSA. In the
subsequent section, we show how to extend this algorithm to construct TGSA.
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procedure: Construct

begin1

Q ← ∅ ; F ← New-List() ; q0 ← New-State({0}) ; Q ← Q
S

{q0} ;2

Add(F, q0)
for i ← 1 to n do3

p′ ← New-State({i}) ; F ← Update()4

Q ← Q
S

{p′} ; Mi ← (Q,Σ, δ, q0, F )5

end6

Algorithm 1. On-line construction of a deterministic suffix automaton accepting a
degenerate string x̃ = x̃1x̃2 . . . x̃n

The algorithm reads the degenerate string from left to right, one symbol-set
at a time. After processing each symbol set x̃i (1 ≤ i ≤ n), a suffix automaton
Mi = (Q, Σ, δ, q0, F ) accepting the set Suff(x̃[1, i]), is constructed.

procedure: Update

begin1

Add(F ′, p′)2

while not Empty(F ) do3

p ← Dequeue(F ) traverse all final states4

for each x ∈ x̃i do5

if ∃ δ(p, x) then Extend()6

else δ(p, x) ← p′
7

Add(F ′, q0)8

end9

Algorithm 2. Procedure update traverses the states in the suffix path and updates
their transitions

Each suffix u ∈ Suff(x̃[1, i + 1]) \ {ε} can be written in the form u = vx
where v ∈ Suff(x̃[1, i]) and x ∈ x̃i+1. This means that the construction of suffix
automaton Mi+1 = (Q′, Σ, δ, q0, F

′), accepting the set Suff(x̃)[1, i + 1], resides
on traversing the set of final states F of suffix automaton Mi. Since the language←−LMi(p), accepted by states p ∈ F , is the set Suff(x̃[1, i]), we can construct suffix
automaton Mi+1, accepting the set Suff(x̃)[1, i + 1], by creating new transitions
δ(p, x) = p′, where p′ is a newly created state (p′ /∈ Q ∧ p′ ∈ F ′) and x ∈ x̃i+1.
All newly created transitions lead to the same state p′ which has a d -subset
{i + 1} (it indicates the position in the text where the given suffix ends).

In case a transition δ(p, x) = w already exists, it means that the automaton
Mi already has a transition δi(q0, u) = w, for some u ∈ Suff(x̃[1, i + 1]) and
w ∈ Q. In other words, u was already indexed in Mi as a factor of degenerate
string x̃[1, i]. In this case, it is necessary to check whether all v ∈←−LMi(w) belong
to the set Suff(x̃[1, i + 1]). Considering that v = ux, where x ∈ x̃i+1, if all u are
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procedure: Extend

begin1

w ← δ(p, x)2

in ← Incoming(w) number of incoming transitions of w3

out ← Outgoing-SP(w) transitions from states in F leading to w4

if in = out then5

w ← w
S

{i} if equal extend the d-subset6

Add(F ′, w) add w to final states of Mi+17

else8

s ← New-State(w
S

{i}) if not equal, split the state9

for each q ∈ F and δ(q, x) = w do δ(q, x) ← s10

for each a ∈ Σ do δ(s, a) ← δ(w, a)11

Add(F ′, s) add s to final states of Mi+112

end13

Algorithm 3. Procedure extend adds states to the new suffix path by extending the
d -subsets of existing states or creating new ones

part of the set Suff(x̃[1, i]), then all v are part of the set Suff(x̃[1, i + 1]) and
thus, it is only needed to extend the d -subset of w with the element {i + 1},
which denotes the new found position in the text.

In order to check whether all u are part of Suff(x̃[1, i]), it is necessary to
traverse all final states of Mi, which actually represent the set Suff(x̃[1, i]) and
count the x-transitions leading to state w. If the counted number is equal to the
number of incoming transitions of state w, then all v are part of Suff(x̃[1, i+ 1]).
If there exists at least one u /∈ Suff(x̃[1, i]) (in other words, there exists one
incoming transition of state w, which does not originate from a final state of Mi),
then the language

←−LMi(w) is formed by factors (not only suffixes) of x̃[1, i + 1].
Thus, it is required to “split” the state in two states, one representing the factors
which are not suffixes and one representing the suffixes.

This is carried out by “cloning” state w (we will denote the new state as
clone(w)) and changing all transitions δ(p, x) = w, where p ∈ F , to δ(p, x) =
clone(w). By the term “cloning” of state w, we mean the creation of a new
state clone (w) having the same d -subset as w and the creation of transitions
δ(clone(w), a) = δ(w, a) for all a ∈ Σ. The complete procedure is formally
presented in Algorithms 1-3.

In Algorithm 4, we present a simpler version of Algorithm 3. In this case,
instead of counting x-transitions and then deciding whether to split state w,
the split is performed always. While traversing the rest of the final states, if a
transition is found to lead to w, it is redirected to clone (w). In case w is left
with no incoming transitions, it is removed. Notably, usage of Algorithm 3 or 4
does not change the asymptotic time complexity of the algorithm.

Lemma 1. Given a degenerate string x̃ = x̃1x̃2 . . . x̃n, Algorithm 1 correctly
constructs GSA(x̃) in time O(n2σϕ), where ϕ is the number of states of the
resulting automaton and σ is the size of used alphabet.
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procedure: Extend-2

begin1

w ← δ(p, x)2

if � clone(w) or clone(w)
T

{i} = ∅ then3

clone(w) ← New-State(w
S

{i})4

for each a ∈ Σ do δ(clone(w), a) ← δ(w, a)5

Add(F ′, clone(w))6

δ(p, x) ← clone(w)7

if Incoming(w) = 0 then Remove(w)8

end9

Algorithm 4. Optimized Extend procedure

3.3 On-Line Construction of Truncated Generalized Suffix
Automaton

As before, the algorithm for constructing a TGSA reads the degenerate string
x̃ = x̃1x̃2 . . . x̃n from left to right, one symbol set at a time. After processing each
symbol set x̃i (1 ≤ i ≤ n), a TGSA Mi = (Q, Σ, δ, q0, F ) accepting at least all k-
suffixes of x̃[1, i] is created. The TGSA Mi+1 is constructed in a similar fashion as
presented in Section 3.2 (Algorithms 1-4). The main difference is that instead of
only traversing the final states of Mi and creating or updating transitions where

procedure: Construct

input: x̃ = x̃1x̃2 . . . x̃n - a degenerate string over alphabet Σ, k - maximum
length of factors to index

output: M ← (Q,Σ, δ, q0, F ) - a TGSA over x̃ = x̃1x̃2 . . . x̃n

begin1

Q ← ∅ ; q0 ← New-State({0}) ; Q ← Q
S

{q0} ; D ← New-Queue()2

for i ← 1 to n do3

F ← {q0} ; p′ ← New-State({i}) ; Q ← Q
S

{p′}4

Enqueue(D, q0) ; status(q0) ← OPEN ; used ← false5

while not Empty(D) do6

p ← Dequeue(D)7

if level(p) < k then8

if i − 1 ∈ p or p = q0 then Update()9

Enqueue-Successors(D, p, p′)10

else Eliminate-Redundant(p)11

if used = false then Remove(p′) Remove p′ if not used12

Mi ← (Q, Σ, δ, q0, F )13

for each q ∈ Q do status(q) ← FRESH14

end15

Algorithm 5. On-line construction of a TGSA accepting all k-suffixes of a degenerate
string x̃ = x̃1x̃2 . . . x̃n
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procedure: Update()

begin1

for each x ∈ x̃i do2

if ∃δ(p, x) then Extend(δ(p, x), p, x)3

else4

δ(p, x) ← p′ ; level(p′) ← Min(level(p′), level(p) + 1)5

if used=false then F ← F
S

{p′} ; used ← true p′ was used6

end7

Algorithm 6. As in Algorithm 2, procedure update updates the appropriate transitions
of final states of automaton Mi−1

procedure: Extend(w, p, x)

input: w - destination state, p - source state, x - transition symbol
begin1

if � clone(w) or clone(w)
T

{i} = ∅ then2

clone(w) ← New-State(w
S

{i}) ; status(clone(w)) ← FRESH3

for each a ∈ Σ do δ(clone(w), a) ← δ(w, a)4

F ← F
S

{clone(w)}5

δ(p, x) ← clone(w) ; level(clone(w)) ← Min(level(clone(w)), level(p) + 1)6

if Incoming(w) = 0 then Remove(w)7

end8

Algorithm 7. Optimized Extend procedure

necessary, it is required to traverse all states of Mi in a breadth-first-search (BFS)
manner.

This is because when transforming Mi to Mi+1, certain states of Mi can
change depth in the new Mi+1 to a value higher than k, which (states) must be
eliminated. The BFS is carried out in order to mark all visited states that have
a depth less than k in the resulting Mi+1. For each final state of Mi, having a
depth less than k, the same steps described in Section 3.2 (Algorithms 1-4) are
applied. All states having a depth greater than k are removed, resulting in a new
Mi+1 having at most as many states as TrieSuffk(x̃).

In step i, to check whether a given state is a final state of Mi−1, we need only
check whether element i−1 is part of its d -subset. This can be done in constant
time if the d -subset is implemented as a linked-list of arrays and storing the size
of each state’s d -subset. Element i − 1 will then be either on the last position
or one position before the last one since the d -subset is always sorted (this is a
consequence of reading the degenerate string x̃ = x̃1x̃2 . . . x̃n from left to right).
The whole process is presented in Algorithms 5-10.

Lemma 2. Given a degenerate string x̃ = x̃1x̃2 . . . x̃n and positive integer k,
Algorithm 5 correctly constructs TGSAx̃(k) in O(n2σk+2) time, where σ is the
size of used alphabet.
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procedure: Eliminate-Redundant(p)

input: p - the state whose non-visited successors are to be eliminated
begin1

for each u ← δ(p, a), a ∈ Σ do2

if status(u) = FRESH then3

δ(p, a) ← nil ; if Incoming(u) = 0 then Remove(u)4

end5

Algorithm8. Elimination of redundant states (states with a level > k)

procedure: Enqueue-Successors(D, p, p′
)

input: D - BFS Queue, p - state whose successors are to be enqueued, p′ -
new state

begin1

for each δ(p, a) �= p′, a ∈ Σ do2

if status(δ(p, a)) = FRESH then3

Enqueue(D, δ(p, a)) ; level(δ(p, a)) ← level(p) + 14

status(δ(p, a)) ← OPEN5

end6

Algorithm 9. Part of the breadth-first-search algorithm which enqueues all successors
of a state

procedure: Remove(p)

input: p - the state to remove
begin1

for each u ← δ(p, a), a ∈ Σ do2

if status(u) = FRESH then3

δ(p, a) ← nil ; if Incoming(u) = 0 then Remove(u)4

Q ← Q \ {p} ; Delete-State(p)5

end6

Algorithm 10. Removal of state p and all its, unreachable from other states, successors

Corollary 1. Given a degenerate DNA/RNA sequence x̃ = x̃1x̃2 . . . x̃n and a
positive integer k (n 	 k), Algorithm 5 correctly constructs TGSAx̃(k) in O(n2)
time.

Proof. This follows immediately because σ is constant for DNA/RNA sequences.

Remark 2. We remark that in practical setting we are interested in indexing
strings of size in 10’s of MBs and the patterns involved are typically small and
hence the assumption that n >> k is a valid assumption.
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Existence Query. As is mentioned before, TGSA has at most linear number of
states. However, with each state there is an associated list namely d -subset. Since
each such list can have upto n items, the space requirements becomes higher.
But if we need only answer the existence queries, we don’t need the d -subset
lists and in that case we can get a very efficient version of TGSA.

4 Conclusion

In this paper, we have presented efficient on-line algorithm to construct Trun-
cated Generalized Suffix Automaton (TGSA), a novel type of finite automaton
serving as a k-factor-index for a degenerate strings. The TGSA algorithm works
in O(n2) time for DNA/RNA sequences and the resulting automaton has at
most linear number of states. The already known algorithms for searching regu-
larities in degenerate strings designed originally for GSA can be easily modified
to work with TGSA and hence, TGSA can be used for searching regularities in
degenerate strings as well.
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Abstract. The swap matching problem consists if finding a pattern in
a text, while allowing for transpositions in the pattern. A new approach
using a graph-theoretic model was presented in [6] by Iliopoulos et al. In
this paper we present a useful application for this algorithm and provide
an analysis of its running time with a naive approach through implemen-
tation.

1 Introduction

The problem of the pattern matching with swaps (the Swap Matching problem,
for short) is an interesting variant of the classical pattern matching problem
motivated by practical applications. In this problem, the pattern P is said to
match the text T at a given location i, if adjacent pattern characters can be
swapped, if necessary, so as to make the pattern identical to the substring of the
text ending (or equivalently, starting) at location i. All the swaps are constrained
to be disjoint, i.e., each character is involved in at most one swap. The first
non-trivial results for this problem was presented in [1]. In [1], the problem
was solved in time O(nm1/3 log m log σ), where σ = min(|Σ|, m). Later, in [2],
an improved algorithm with O(n log m log σ) time was presented. Also, certain
special but rather restrictive cases were studied in [3], for which, O(n log2 m)
time solution were presented. Notably, all the above solutions to swap matching
problem depend on the fast fourier transform (FFT) technique.

Very recently, Iliopoulos and Rahman [6] presented a new graph theoretic
model to solve the swap matching problem. Incorporating their model to the
classic shift-or algorithm [4], they presented a simple and efficient algorithm
(referred to as the IR algorithm henceforth) for the problem that runs very fast
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for sufficiently short patterns. In particular, if the pattern size is similar to the
word size of the target machine, then the IR algorithm runs in O(n log n) time.
Moreover, the algorithm is quite simple and lightweight and doesn’t use any
heavy machinery like the FFT techniques. In this paper, we are interested in the
practical performance of the IR algorithm. In particular, we use the algorithm for
an interesting problem from biological computing and provide an experimental
analysis of its running time and present detailed comparison with the naive
approach to solve the problem.

1.1 Biological Motivation

As has already been mentioned, the swap matching problem is motivated by
practical applications. We are particularly interested in its application in biolog-
ical computing. More specifically, an interesting application of the IR algorithm
lies in the process of translation in Molecular Biology. The ability of our algo-
rithm to match the pattern not only in its identical form in the text, but also
by its swaps has a direct application with the genetic triplets, otherwise called,
codons. In the process of translation we have the protein synthesis where the
genetic code is translated to proteins. The mRNA, holding the genetic informa-
tion from the DNA, travels to the cytoplasm in the cell, and there it engages
with the ribosomes to start the process of translation. The assembly of a new
polypeptide is controlled by a triplet genetic code. Successive groups of three
nucleotides (codons) in the mRNA sequence are encoded sequentially in order
to specify specific amino acids [7]. Figure 1 presents the encoded amino acids
resulted from each possible codon triplet.

Only the central part of the sequence of the mRNA is encoded into proteins.
Around both sides of the central part lie flanking sequences. The process begins
with DNA polymerase scanning the mRNA, starting with the flanking sequence
until it finds the initiation codon. This codon is usually AUG, ACG, GUG, or

Fig. 1. The encoded amino acids of the translation process. Picture taken from
http://www.msstate.edu/dept/poultry/pics/gnscht.gif
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CUG. Besides starting codons, we also have STOP codons UAA, UAG, UGA;
when these codons are encountered the process ends.

As is already mentioned, the genetic code is a three-letter code. Since there
are four bases to choose from, logically thinking, one would assume that there
are 43 = 64 different amino acids encoded; but in reality, there are only 20. That
is because the genetic code is degenerate. Each amino acid is specified on average
by about three different codons [7]. So, some different codons specify the same
amino acids and some specify different ones. In some cases, swapping the letters
of a specific triplet can result in encoding the same amino acid or a different
one. These swaps and base substitutions are usually the causes of mutations in
genes. There are two different types of mutations, namely, the Silent mutations
and the Nonsynonymous mutations.

Now, the IR algorithm [6], can be used to detect in the text the possible
positions of the start and stop codons of an mRNA sequence and provide us
with the hints as to where the flanking regions are in respect to the translated
mRNA region. If our input pattern, does not contain a STOP codon by itself but
one of its permutations does, the algorithm by swapping the letters that consist
it, will notify us immediately where a possible STOP codon lies in the text so
we can avoid it, in order to maintain a larger translated region. Similarly, if we
are looking for a starting codon the algorithm does not need the exact triplet as
an input pattern to find a possible START codon early on in the text but its
permutation will suffice.

The rest of the paper is organized as follows. In Section 2, we give a brief
overview of the model and algorithm presented in [6]. In Section 3, we give the
details of our implementation. In Section 4, we present our experimental results
in the form of graphs along with a detailed analysis of the results. Finally, we
briefly conclude in Section 5.

2 Preliminaries

In this section, we first present the basic concepts and then briefly review the
model and algorithm presented in [6].

2.1 Basic Definitions

A string is a sequence of zero or more symbols from an alphabet Σ. A string X
of length n is denoted by X [1..n] = X1X2 . . . Xn, where Xi ∈ Σ for 1 ≤ i ≤ n.
The length of X is denoted by |X | = n. A string w is called a factor of X if
X = uwv for u, v ∈ Σ∗; in this case, the string w occurs at position |u| + 1 in
X . The factor w is denoted by X [|u| + 1..|u| + |w|]. A k-factor is a factor of
length k. A prefix (or suffix) of X is a factor X [x..y] such that x = 1 (y = n),
1 ≤ y ≤ n (1 ≤ x ≤ n). We define i-th prefix to be the prefix ending at position
i i.e. X [1..i], 1 ≤ i ≤ n. On the other hand, i-th suffix is the suffix starting at
position i i.e. X [i..n], 1 ≤ i ≤ n.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13

T C A T C A C T C A T C A T

C A T A C T C A T
A T C C A T

A T C

Fig. 2. Pattern matching with swaps example

Definition 1. A swap permutation for X is a permutation π : {1, . . . , n} →
{1, . . . , n} such that:

1. if π(i) = j then π(j) = i (characters are swapped).
2. for all i, π(i) ∈ {i− 1, i, i + 1} (only adjacent characters are swapped).
3. if π(i) �= i then Xπ(i) �= Xi (identical characters are not swapped).

For a given string X and a swap permutation π for X , we use π(X) to denote
the swapped version of X , where π(X) = Xπ(1)Xπ(2) . . . Xπ(n).

Definition 2. Given a text T = T1T2 . . . Tn and a pattern P = P1P2 . . . Pm, P
is said to swap match at location i of T if there exists a swapped version P ′ of
P that matches T at location i, i.e. P ′

j = Ti−m+j for j ∈ [1..m].

Problem “SM” (Pattern Matching with Swaps). Given a text T = T1T2

. . . Tn and a pattern P = P1P2 . . . Pm, we want to find each location i ∈ [1..n]
such that P swap matches with T at location i.

Example 1. The swapped matches of pattern, P = ACT , in text, T = TCATC
ACTC ATCAT , can be seen in Figure 2 at positions 1, 2, 5, 8, 9 and 11 in T .
The positions in which the characters of P had to be swapped to match those
in T , are shown in bold.

2.2 Review of the Model and Algorithm of [6]

In this section, we briefly review the model and algorithm presented in [6].

Definition 3. Given a text T = T1 . . . Tn of Problem SM, a T -graph, denoted
by T G = (V T , ET ), is a directed graph with n vertices and n − 1 edges such
that V T = {1, 2, . . . n} and ET = {(i, i + 1)|1 ≤ i < n}. For each i ∈ VT we
define label(i) = Ti and for each edge e ≡ (i, j) ∈ ET we define label(e) ≡
label((i, j)) ≡ (label(i), label(j)) = (Ti, Tj).

Definition 4. Given a text P = P1 . . . Pm of Problem SM, a P-graph, denoted
by PG = (V P , EP ), is a directed graph with 3m− 2 vertices and at most 5m−
9 edges. The vertex set V P can be partitioned into three disjoint vertex sets
namely V P

(+1), V
P
0 , V P

(−1) such that |V P
(+1)| = |V P

(−1)| = m − 1 and |V P
(0)| = m.

The partition is defined in a 3 ×m matrix M [3, m] as follows. For the sake of
notational symmetry we use M [−1], M [0] and M [+1] to denote respectively the
rows M [1], M [2] and M [3] of the matrix M .
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Fig. 3. P-graph for a pattern, P = abacc

1. V P
(−1) = {M [−1, 2], M [−1, 3], . . .M [−1, m]}

2. V P
(0) = {M [0, 1], M [0, 2], . . .M [0, m]}

3. V P
(+1) = {M [+1, 1], M [+1, 2], . . .M [+1, m− 1]}

The labels of the vertices are derived from P as follows:

1. For each vertex M [−1, i] ∈ V P
(−1), 1 < i ≤ m:

label(M [−1, i]) =

{
Pi−1 if Pi−1 �= Pi,

X if Pi−1 = Pi, where X /∈ Σ
(1)

2. For each vertex M [0, i] ∈ V P
(0), 1 ≤ i ≤ m, label(M [0, i]) = Pi

3. For each vertex M [+1, i] ∈ V P
(+1), 1 ≤ i < m:

label(M [+1, i]) =

{
Pi+1 if Pi �= Pi+1,

X if Pi = Pi+1, where X /∈ Σ
(2)

The edge set EP is defined as the union of the sets EP
(−1), E

P
(0) and EP

(+1) as
follows:

1. EP
(−1) = {(M [−1, i], M [0, i + 1]), (M [−1, i], M [+1, i + 1]) | 2 ≤ i ≤ m −

2
∧

label(M [−1, i]) �= X}
⋃
{(M [−1, m− 1], M [0, m]) | label(M [−1, m−

1]) �= X}
2. EP

(0) = {(M [0, i], M [0, i+1]) | 1 ≤ i ≤ m−1}
⋃
{((M [0, i], M [+1, i+1]) | 1 ≤

i ≤ m− 2
∧

label(M [+1, i + 1]) �= X}
3. EP

(+1) = {(M [+1, i], M [−1, i+ 1]) | 1 ≤ i ≤ m− 1
∧

label(M [+1, i]) �= X}1

The labels of the edges are derived from using the labels of the vertices in the
obvious way.

Example 2. Figure 3 shows the P-Graph for a pattern, P = abacc.

1 Note that, if label(M [+1, i]) = X then label(M [−1, i + 1]) = X as well.
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Fig. 4. F-graph for a pattern, P = abacc

Definition 5. Given a P-graph PG = (V P , EP ), the forbidden Graph (F-
graph) P

G
= (V

P
, E

P
) is such that V

P
= V P and E

P
is defined as follows:

E
P

= {(M [i, j], M [i, j + 1]) | i ∈ {−1, 0, +1}, 1 ≤ j < m,
(label(M [i, j]) �= X

∨
label(M [i, j + 1]) �= X )

∧
(∀(M [k, j], M [k, j + 1]) ∈

EP , k ∈ {−1, 0, +1},
label((M [k, j], M [k, j + 1])) �= label((M [i, j], M [i, j + 1])))}.
Example 3. Figure 4 shows the corresponding F-Graph for the P-Graph shown
in Figure 3 for a pattern, P = abacc.

Definition 6. For each c ∈ Σ let Dc be a bit array of size m such that for
1 ≤ i ≤ m, Dc[i] = 0 of and only if Pi = c. The array Dc which denotes the
position of the character c in p will be referred to as the D −mask.

Once we have computed the D-masks and F-graph, we can now begin to search
for swapped occurrences of our pattern in the text. To do this, the IR algorithm
uses a modified Shift-Or [4] algorithm to compute the swapped occurrences of
the pattern2. In particular, the algorithm computes Rj+1 using the following
formula [6]:

Rj+1 = SHIFT (Rj) OR DTj+1 OR F(Tj ,Tj+1)

3 Implementation

In this section we describe in detail how the steps of the algorithm were imple-
mented. In the following pseudocodes, p will represent the pattern we will be
searching for; D and F will be the D-mask and forbidden graph respectively, in
a hash table representation.

1. Constructing the D-mask vector
Algorithm 1 presents the pseudocodes for the construction of the D-masks.

2. Constructing the F-graph
Although [6] defines the F-graph using the inverse of the P-graph, it is not
necessary to build the P-graph at all. The direct construction of the F-graph
can be done easily using Algorithm 2.

2 Here we assume that the readers are familiar with the Shift-Or algorithm. For
further details, we refer to [4] or [5].
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Algorithm 1. Algorithm to construct D-Mask
buildDMasks (p)
for i = 0 to m - 1 do

x = p[i]
D[x] = (01 � m - i - 1) | D[x]

end for
for each D[x] = y do

D[x] = y XOR R
end for
return D

Algorithm 2. Algorithm to construct F-Graph
buildFGraph (p)
for i = 0 to m - 1 do

if p[i] != p[i - 1] then
if p[i - 1] != p[i + 1] then

F [p[i - 1]] = F [p[i - 1]] OR (01 � (m - i - 1))
else if p[i] != p[1 - 2] then

F [p[i]] = F [p[i]] OR (01 � (m- i - 1))
else if i != 1 AND p[i - 2] != p[i - 1] then

if p[i] != p[i - 2] then
F [p[i - 2]] = F [p[i - 2]] OR (01 � (m - i - 1))

end if
else

if i != (m - 1) AND p[i] != p[i + 1] then
if p[i - 1] != p[i + 1] AND p[i] != p[i - 2] then

F [p[i + 1]] = F [p[i + 1]] OR (01 � (m - i - 1))
end if

end if
end if

end if
end for
return F

Algorithm 3. Modified Shift-Or algorithm
R = (R � 1) OR D[t[0]]
for i = 0 to n - 1 do

if D[t[i]] != NULL then
R = (R � 1) | D[t[i]] | F [t[i - 1]t[i]]

else
R = (R � 1) | D[X] | F [t[i - 1]t[i]]

end if
if !(R AND 1) then

print ”Match found ending at” i
end if

end for

3. Perform modified Shift-Or
Algorithm 3 shows how the algorithm then uses the D-mask and F-graph to
find swapped matches of the pattern in the text.

4 Results

To show the full efficiency of the IR algorithm, we have performed two types of
tests. The first test is related directly to the application in codon matching. The
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Fig. 5. Single codon matching Fig. 6. All codon matching

second consisted of carrying out tests on various generated texts to show how
it fairs against the naive approach in general. The tests were run in a Windows
environment with a AMD Turion 64 processor of 1.6 GHz and 1GB RAM. The
implementation was done in Java (version 1.50).

Notably, we have chosen to compare the IR algorithm against a naive imple-
mentation instead of the algorithms employing the FFT techniques (specifically
the algorithm of [2]). This is due to the fact that in our problem the patterns
involved are of small length and hence the overhead of FFT algorithm is quite
high resulting in worse performance even from the naive approach.

4.1 Main Results

For the testing we tried to find the base codons in generated DNA sequences.
Since the algorithm searches for the transpositions of consecutive characters, we
only have to search for 40 of the 64 codons.

We first ran the algorithms using a single codon and randomly generated
biological texts of increasing lengths. The results are shown in Figure 5. The
results of the tests using the full set of codons needed for all matches (40 for
the Swap match and 64 for the Naive match) are shown in Figure 6. The graphs
show in both cases that the swapped matching runs in almost linear time.

4.2 Other Results

In this section, we show the effectiveness of the graph model swap matching
algorithm when used to find a fixed pattern in an arbitrary text. The results of
Test 1, 2 and 3 are shown in Figures 7, 8 and 9 respectively. They show how the
algorithm performs against a naive approach for various patterns and texts.

In Test 1, we used a generated text which contained many swapped occur-
rences of the pattern in it. It can be seen clearly that in this case, the swap
matching algorithm does much better than the naive algorithm.

In Test 2, we used a generated text which contained few swapped occurrences
of the pattern in it. The graph clearly shows that in this case also, the swap
matching algorithm performs much better than the naive algorithm.

In Test 3, we used a combination of the above texts. We kept the length of the
text fixed, and used increasing pattern lengths. It can be seen from Figure 9 that
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Fig. 7. Matching in text with many occur-
rences of pattern

Fig. 8. Matching in text with few occur-
rences of pattern

Fig. 9. Matching with fixed length text and increasing pattern length

the swap matching algorithm outperforms the naive algorithm, irrespective of the
length of the pattern. This is because when the length of the pattern increases,
the swap matching algorithm only increase its running time in the preprocessing
stage. However, in the naive approach, increasing the pattern length leads to an
overall increase in the running time. We remark that, it might be of interest to see
how the FFT algorithms perform for Test 3, specifically for the lengthy patterns,
because, the theoretical analysis suggests that, for higher length patterns the
algorithm of [2] should outperform the IR algorithm. However, we didn’t carry
out that experiment because our main focus was to experimentally analyze the
IR algorithm which works best when the pattern size is small.

5 Conclusion

In this paper, we have implemented and tested the algorithm to solve the
swapped pattern matching presented in [6] and have presented detailed experi-
mental results. We have also compared the running times of it against a naive
approach. We have then analyzed the theoretical time complexity bounds with
the actual running times achieved by the experiments and compare the results
of the two algorithms.
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Abstract. Finding motifs in biological sequences is one of the most in-
triguing problems for string algorithms designers as it is necessary to
deal with approximations and this complicates the problem. Existing al-
gorithms run in time linear with the input size. Nevertheless, the output
size can be very large due to the approximation. This makes the output
often unreadable, next to slowing down the inference itself. Since only a
subset of the motifs, i.e. the maximal motifs, could be enough to give the
information of all of them, in this paper, we aim at removing such redun-
dancy. We define notions of maximality that we characterize in the suffix
tree data structure. Given that this is used by a whole class of motifs
extraction tools, we show how these tools can be modified to include the
maximality requirement on the fly without changing the asymptotical
complexity.

Keywords: Suffix trees, Maximal Motifs, Biological Sequences.

1 Introduction

Finding frequent patterns (motifs) in biological sequences has myriads of appli-
cations in molecular biology. Following the hypothesis that sequence similarity
is often a necessary condition for function correlations, there have been sug-
gested in literature many versions, for as many various biological applications,
of the problem of finding motifs as particularly frequent patterns in a biological
sequence, or as patterns surprisingly shared by several distinct sequences. The
motifs search is approximated, that is, distinct occurrences of the same motif are
not necessarily identical, but just similar, according to a given similarity notion.
From the computational complexity point of view, this makes the task of find-
ing over-represented patterns harder, whatever is the type of approximation one
uses. The Hamming distance is defined between patterns of the same length and
it simply consists of the number of differences that occur between them. One
usually sets a maximum allowed distance and then requires that the motifs differ
by at most that number of letters substitutions.

Finding approximate motifs is a computationally challenging task because
the output itself can be very big, especially with the approximation: its size can
be exponential with respect to a parameter that measures the approximation
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(the maximum distance, the degeneracy degree of the degenerated alphabet, the
number of don’t care symbols used, etc.). This is a big drawback that, next to
make the inference task possibly too slow, often also leads to a poor usability
of the results as they are too large to be investigated with a naked eye. The
difficulty to make use of the results of some motifs finding tools is often due to
the fact that there are many motifs that satisfy the requirements, while only
some of them are significant or, more in general, only some of them contain
enough information to actually represent all the others. In this paper, we aim at
eliminating most of the redundancy that make unreadable the output of existing
methods that find approximate motifs. We define some notions of maximality for
exact and approximate motifs and give for all of them a characterization on the
suffix tree data structure. This allows us to show how to adapt a whole class of
algorithms based on suffix tree for which available tools exist, to infer maximal
motifs only, without additional complexity. We thank Esko Ukkonen for sending
us a copy of [11].

2 Preliminary Definitions

We consider strings that are finite sequences of characters drawn from an al-
phabet Σ. In particular we will focus out attention on the DNA alphabet
Σ = {A, C, G, T }. We denote by s[i] the character at position i in a string s
and by |s| the length of s. Consecutive characters of s form a substring of s. The
substring of s that starts from position i and ends at position j is denoted by
s[i..j], where 1 ≤ i ≤ j ≤ |s|. Given a string x drawn from the same alphabet as
s (or from one of its subsets), we say that s[i..j] exactly occurs at position i in
s if and only if x = s[i, i + |x| − 1]. In this case, we also say that s[i, i + |x| − 1]
is an occurrence of x in s. The Hamming distance between two strings x and y,
denoted as dH(x, y), is the smallest number of letter substitutions that transform
x into y (or vice versa as the distance is symmetric). Given an integer e ≥ 0, we
say that a substring y of a string s is an e-occurrence of a string x, if and only
if dH(x, y) ≤ e. In this case we will also talk about an approximate occurrence,
or simply an occurrence, of x in s. The list of all occurences of a pattern x in s
is denoted by L(e,x) and is called positions set.

Definition 1. Given a sequence s, a quorum q ≥ 2, and e ≥ 0, a pattern m is
a motif iff |L(e,m)| ≥ q.

If e = 0 we speak about exact motifs, because no differences between motifs and
their occurrences are allowed; otherwise, when e > 0, we call them approximate
motifs. The traditional motifs extraction problem gives as input: (i) the string
in which one wants to find the repeated motif (or the set of strings in which one
wants to find the common motif); (ii) the quorum; (iii) the (minimal) length

 required for the motif; (iv) optionally, an approximation measure (e.g. the
Hamming distance), and the value of e for the approximation measure. The
requested output is simply the set of all patterns of length (at least) 
 that have
at least q (possibly approximated) occurrences in s, that is, the complete set
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of motifs. Within this traditional framework, the output can be very noisy as
it contains redundant data. In this paper, we suggest a way to overcome this
drawback by introducing a notion of maximality for motifs, thus identifying a
subset of interesting representatives, and an efficient way to detect directly only
those. To this purpose, we first introduce the notion of length extension of a
motif. With left extension (resp. right extension) of m, we mean a pattern m′

obtained by the concatenation of m with characters at its left (resp. right), and
so such that m is a substring of m′. If there exists a right or left extension m′

of a motif m which is also a motif, then we will say that m is included in m′.

Definition 2. Let m and α be patterns of s. The pattern m′ = mα (resp. m′ =
αm) is a mandatory right (resp. mandatory left) extension of m iff all the
occurrences of m in s are followed (resp. preceded) by α. In this case, we call
k = |α| the degree of the extension.

Definition 2 above is the same for both exact and approximate motifs. In the
latter case, if m′ is a mandatory right/left extension of m, then the two motifs m
and m′ have the same number of occurrences and also the total number of letters
mismatches is the same because the right/left extension of m does not introduce
further substitutions between the motif and its occurrences. It follows that if
m is a motif, then also m′ is a motif and vice versa. We will name mandatory
extension (without specifying whether it is left or right) an extension on possibly
both sides. We can observe that for a motif there exists at most one left and
one right mandatory extension with a certain degree d. It is intuitive to observe
that if the occurrences of a motif m are not all followed (resp. preceded) by the
same character, then there can not be a mandatory right (resp. left) extension
of degree 1 of m, and hence neither a mandatory right (resp. left) extension of
higher degree can exist.

Notions of motif maximality have been defined in [3] for exact motifs. Fur-
thermore, there have been notions of maximality defined for approximate mo-
tifs when the approximation is achieved using a degenerate alphabet, the edit
distance, and don’t care symbols. We give here a notion of maximality for ap-
proximate motifs with Hamming distance. Other (different) maximality notions
for this type of approximate motifs exist in literature but are not meant for the
general case as ours. In [4] the notion is restricted to the case of tandem repeats.
The notion of maximality for motifs approximated with Hamming distance given
in [5] does not apply to the whole occurrences set of the motif, but rather only
for the special case of repeats, that are pairs of occurrences.

Definition 3. A motif m is right (resp. left) maximal iff it has no mandatory
right (resp. left) extension of degree 1. A motif m is maximal iff it is both right
maximal and left maximal.

For the particular case of exact motifs and q = 2, this notion of maximality
coincides with that already introduced in [3]. This maximality property may not
be enough to significantly bound the number of motifs. It can thus be useful to
use an even more strict notion of maximality in extension of a motif (also already
introduced in [3] for the special case of q = 2 and exact motifs). Moreover, in
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some applications long patterns with few occurrences can be more interesting
of short patterns with a lot of occurrences. For these reasons, we formulate the
notion of supermaximality1.

Definition 4. A motif m is supermaximal iff it is not a substring of another
motif.

In other words, a motif is supermaximal if, as one tries to extend it in any way,
then the quorum property does not hold anymore. Note that the supermaximal
motifs are a subset of the maximal ones.

3 Characterization of Motif Maximality on Suffix Tree

In this section we will give a characterization of maximal and supermaximal
motifs of a string s on the suffix tree of the string itself. We will do this both
for exact and for approximate motifs. For a formal definition of the suffix tree
and its properties, we remind to [3]. We just recall here that it is a tree data
structure that indexes a text such that there is a root-leaf path per each suffix of
the text, and thus each root-node path for a node u corresponds to a substring
of the text, to which we will refer to the word spelled by u, or path-label of u.
Given that for some substrings the path does not end at a node but rather inside
an edge, we will also talk about the word spelled by a path.

For exact motifs, in [3] there is already a characterization of maximal and
supermaximal motifs on suffix trees for the special case in which q = 2, that is,
when any pattern occurring two times or more is a motif. For the purpose of the
suffix tree characterization, setting the quorum equal to two simplifies the task
because every internal node corresponds to a pattern that satisfies the quorum
and thus it is a motif. In this section, we first describe Gusfiled’s result and then
show the trivial generalization to the case of q ≥ 2 that involves a search in a
specific area of the suffix tree of the input string. Let s be a sequence and T its
suffix tree. It is known that T can be built in linear time and space ([7,10]). Let
us start with observing that an exact motif m, not necessarily maximal, labels
a single path on suffix tree from the root that can end at an internal node or
inside an edge having an internal node as destination. Using the mildest possible
repetitiveness constraint (quorum = 2) Gusfield in [3] showed that there exists
linear time algorithm based on suffix tree to find all maximal and supermaximal
motifs. We now briefly describe Gusfield’s result for maximal exact motifs. Each
internal node of T , has at least two children and the edges out of an internal node
are labeled with nonempty substrings of s that start with different characters.
Therefore, if m labels an internal node it means that there are at least two
occurrences of m in s followed by different characters, and hence m is right
maximal. On the contrary, if m labels a path which ends inside an edge, then all
its occurrences are followed by the character at depth (|m|+ 1) along that edge
in T , and hence m has a mandatory right extension and thus it is not maximal.
1 Being our definition the natural extension of that in [3] to the case of approximate

motifs, we keep the same name.
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The left character of a leaf of T is the character preceding the suffix of s at the
position (where starts the suffix) represented by that leaf. A node v is left diverse
if at least two leaves in the subtree rooted at v have different left characters, so
if m labels a left diverse node it means that there are at least two occurrences of
m in s preceded by different characters. Recall that, by definition, a leaf cannot
be left diverse ([3]). Gusfield indeed proves that maximal motifs label exactly
paths on the suffix tree that start from the root and lead to left diverse nodes of
T . Let us now show how to extend the idea to the case of maximal exact motifs
m occurring at least q ≥ 2 of times in the input sequence. In the suffix tree T ,
for any internal node v that spells the pattern m, the positions of occurrences of
m in the input sequence are represented by the (starting positions of the suffixes
that label the) leaves in the subtree rooted at v. For each internal node v, let
Lv[v] denote the number of leaves in the subtree rooted at v. If v is a leaf, then
we set Lv[v] = 1. It is possible to annotate all the internal nodes of T with the
value of Lv[v] within the linear time complexity by a simple traversal of the
suffix tree (as shown in [9]). A pattern is a motif if it labels a path on the suffix
tree that ends to an internal node v such that Lv[v] ≥ q, or inside an edge that
ends at an internal node for which this is the case. A motif is right maximal if it
labels a path on T that ends at an internal node, and it is left maximal if such
node is left diverse. Summing up, an exact motif is maximal if and only if it
labels an internal node v of T such that Lv[v] ≥ q and v is left diverse, because
right and left mandatory extensions of degree 1 can not exist for m. Gusfield
also provides a characterization on suffix tree of supermaximal exact motifs, for
the special case in which q = 2. If an exact motif m labels a path ending inside
an edge, then it is not supermaximal either, because it has a right extension
of degree 1 which is a motif preserving the same occurrences of m. Gusfield
furthermore proves that supermaximal exact motifs label internal nodes v of T
such that all the children of v are leaves and each has a distinct left character.
In such case, indeed, a motif can not be furtherly extended without breaking
the quorum constraint, because none of its extensions has two occurrences. This
idea can be extended to the case of supermaximal exact motifs occurring at least
q ≥ 2 times in the input sequence. For this purpose, we introduce the notion of
right and left q-limited node.

Definition 5. Let T be the suffix tree for the sequence s. A node v of T that
spells a pattern m is right q-limited (resp. left q-limited) iff m has no right
(resp. left) extension of degree 1 which occurs at least q times in s. We say that
a node is q-limited if it is right q-limited and left q-limited.

Note that not being right q-limited (or left q-limited) is a property that propa-
gates upward: if an internal node v is not right (resp. left) q-limited, then neither
is any of its ancestors in the tree. Clearly, if Lv[v] < q then v is q-limited. A
right extension of degree 1 of m can label a child of v or a path ending inside an
edge with a child of v as destination. It follows that v is right q-limited if and
only if its children are nodes v′ such that Lv[v′] < q.

The characterization on the suffix tree of the left q-limited property is a bit
less immediate and it involves the so-called suffix link [3], that is a pointer that
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connects a node v spelling ax (with a ∈ Σ and x ∈ Σ∗) to the node u that spells
x. In other words, this pointer provides a link from node v to node u such that v
spells a left extension of degree 1 of the path-label of u. Note that each pattern
x has at most |Σ| left extensions of degree 1 and thus a node u that spells x
is reached by at most as many suffix links. Moreover, the left extensions of x
do not always label nodes, but they can also label paths ending inside edges.
Node u is reached by as many suffix links as the number of left extensions of
degree 1 of x which label a node. If there exists a left extension which labels a
path ending inside an edge that leads to node v′, then there exists a suffix link
from v′ to a descendant of u whose left extension of degree 1 is the path-label
of v′. It follows that if all the left extensions of degree 1 of the pattern spelled
by a node label paths ending inside edges, then this node is not reached by any
suffix link. In particular, we can observe that an internal node u, labeled by x,
is reached by a suffix link only if at least two of its children are such that both
their path-labels are preceded by the same character α at some (possibly all) of
their occurrence positions in the input sequence. Moreover, there exists only one
suffix link directed to the leaf node representing the suffix at position i in the
input sequence s and it starts from the leaf representing the suffix at position
i− 1 in s.

Due to what we just showed about suffix links and to the fact that not being
left q-limited is a property that propagates upward in the tree, we observe that
a node v is left q-limited only if Lv[u] < q holds for each node u from which a
suffix link to v originates and its children are left q-limited nodes.

Theorem 1. Given a quorum q, a sequence s and its suffix tree T , the pattern
m labeling the path to a node v of T is a supermaximal exact motif iff Lv[v] ≥ q
and v is q-limited.

Considering that the distinct occurrences of an approximate motif label different
paths on suffix tree, the characterization on suffix tree provided for maximal
exact motifs can be simply extended to approximate motifs.

Theorem 2. Let T be the suffix tree for string s. An approximate motif m is
right maximal iff:

1. at least an occurrence-path of m labels a node of T , or
2. all the occurrence-paths of m end inside edges of T and at least two of

them have different characters at depth (|m|+ 1).

Reminding that if a node of T is not left diverse then all the leaves in its sub-
tree have the same left character, we give a characterization also for the left
maximality of approximate motifs.

Theorem 3. Let T be the suffix tree for a string s. An approximate motif m is
left maximal iff:

1. at least an occurrence-path of m labels a left diverse node or ends inside
an edge ending at a left diverse node, or
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2. there are at least two distinct occurrence-paths of m ending (inside an
edge ending) at a node that is not left diverse, and such that the leaves
reached following these paths have not the same left character.

Let us now show the characterization on suffix tree of supermaximal approximate
motifs. In the case of exact motifs we used the notion of right and left q-limited
node to verify supermaximality of a motif. When we consider approximate mo-
tifs, this notion does not suffice because they could have multiple occurrence-
paths. Nevertheless, we can observe that if there exists an occurrence-path of
an approximate motif m ending at an internal node which is not q-limited or
inside an edge with a destination node that is not q-limited, then m is not su-
permaximal. In order to check whether an approximate motif can be extended
keeping on satisfying the quorum constraint, one must take into account, per
each occurrence, the number of mismatches with the motif. In details, given
the mismatches threshold e, let x be an occurrence of a motif m with positions
set L(e,x) = {px1 , . . . , pxh

} and such that dH(m, x) = d. The positions set of
the right (resp. left) extension mα (resp. αm) of m with any character α ∈ Σ
includes positions pxi (resp. pxi − 1) where x is followed (resp. preceded) by:

- α, if d = e; the other occurrences are lost because the mismatches threshold e
is exceeded, or
- any β ∈ Σ, if d < e; if β �= α, an extra mismatch between the extension
m′ = mα (resp. αm) and its occurrences xβ (resp. βx) is introduced.

If x labels a path ending inside an edge (u, v), or at an internal node u and let
v be any child of u, then m′ = mα has an occurrence-path ending inside (u, v)
or at v, only if the character at string-depth (|m| + 1) along (u, v) in T is α,
or if it is β �= α and d < e. Concerning left extensions, we have to follow suffix
links directed to u and to its descendants. Actually, not all these suffix links
are interesting but only those whose source node is not a child of a node from
which a suffix link directed to u, or to a descendant closest to u, comes. Denoted
by sln[u] the set of these nodes, m′ = αm has an occurrence-path ending at
string-depth (|m|+ 1) along the edge ending at any node v ∈ sln[u], only if the
label of v starts with α, or if it starts with β �= α and d < e.

Theorem 4. An approximate motif m is supermaximal iff, for every α ∈ Σ,
m′ = αm (resp. m′ = αm) has occurrence-paths ending at nodes, or inside edges
with destination nodes, u1

′, . . . , uh
′ such that

∑h
i=1 Lv[ui

′] < q.

4 Inferring Maximal Motifs with Suffix Tree

The first (exact) algorithm working on suffix trees was introduced for the extrac-
tion of motifs with mismatches in [9]. Motifs are considered in lexicographical
order starting from the empty word, and they are extended on the right as long
as the quorum is satisfied until either a valid motif of maximal length is found (if
the required length is reached), or the quorum is no longer satisfied. At each mo-
ment, all paths spelling approximated occurrences of the current motif are taken
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into account. The number of the motif’s occurrences is then computed as the sum
of Lv[v] for all nodes or destination nodes v of edges at which such occurrence-
paths end. The algorithm exploits the property that these occurrence-paths on
the suffix tree are such that those of the motif mα (where m ∈ Σ∗ and α ∈ Σ)
are found just going along the occurrence-paths of m and checking whether there
is a character α following or a new mismatch can be introduced. Assuming that
the required length of the motif is 
, and that at most e mismatches are al-
lowed, the algorithm has worst case time complexity in O(t�ν(e, 
)), where t�
is the number of tree nodes at depth 
, and ν(e, 
) is the number of words of
length 
 that differ in at most e letters from a word m of length 
. Finally,
the space complexity is O(t�). The algorithm above was extended in [6] to the
case of structured motifs, that is motifs composed of two or more parts lying
at a certain given distance. The resulting tool, named SMILE, was applied to
promoter signals detection in [12]. Moreover, using a data structure which is an
enriched version of the suffix tree, basically the same framework has been used
in [1]. Finally, the tool presented in [8], which resulted [2] to have very good
performances, uses an algorithm that is basically an heuristic version of [9]. The
definitions of maximality introduced in this paper and the characterizations on
the suffix tree can be used by all the algorithms and tools mentioned above to
output directly only (super)maximal motifs, with the consequent obvious im-
provement in readability and significance. Moreover, our results also apply to
the versions of the problem that require motifs common to a set of input strings
(rather than repeated within the same unique input string).

We now provide a brief description of the operations needed to extend existing
motif discovery algorithms in order to extract only (super)maximal motifs and
we show that the additional complexity cost due to motif (super)maximality
check is negligible. Let us first consider maximal exact motif extraction. In [3],
Gusfield presents a linear time algorithm to find left diverse nodes of a suffix
tree T . A bottom-up traversal of T is performed, and, for each node v, the
algorithm stores either that v is left diverse, or the common left character of
every leaf in the subtree rooted at v. Hence, assuming that we have a suffix tree
whose nodes are annotated with this information, the additional cost to select
only maximal motifs among all exact motifs is constant: for every motif found,
it is enough to verify whether it labels a left diverse node of T . If we search
for maximal approximate motifs m, the existing extraction algorithms can be
simply extended in order to test out the conditions of Theorems 2 and 3. For
every occurrence-path of m, if it ends at a node v or else if it ends inside an
edge with destination node v and the character at string-depth (|m|+ 1) along
that edge is different from the one of already identified occurrence-paths of m
that end inside edges, then m is right maximal. Moreover, if v is a left diverse
node, or else if the left character with which v is annotated is different from the
one of already identified occurrence-paths of m, then m is left maximal. In both
cases, the condition to check consists of two character comparisons, and then
the additional cost to extract only maximal approximate motifs is constant.
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Consider now the extraction of supermaximal exact motifs. All nodes v of T
can be annotated with right and left q-limited property by a simple bottom-up
traversal of T . Therefore, like for maximal motifs, the additional cost to extract
only supermaximal exact motifs is constant. The extension of existing motif
discovery algorithms in order to extract only supermaximal approximate motifs
is a little more complex. It requires that for every node v of T , in addition to
right and left q-limited information, we also have the set sln[v] of nodes from
which suffix links directed to v or to its descendants originate. This set can be
implemented by an array of |Σ| positions. At position i of sln[v] there is the node
from which a suffix link to v (or to one of its descendant) originates, and whose
label starts with the ith character in Σ. Assuming to have at start, for every
node v of T , the array sln[v] storing only nodes from which suffix links directed
to v come (if any), that can be built within the linear time complexity of suffix
tree construction, the complete set sln[v] for all nodes of T can be found with
a bottom-up traversal of T with an additional cost of |Σ|2 per each node. The
existing extraction algorithms can be extended to output only supermaximal
approximate motifs m in the following manner. For every occurrence-path of
m identified on the suffix tree T , if it ends at a node that is not right or left
q-limited or inside an edge with a destination node of this type, then m is not
supermaximal. Moreover, m is not supermaximal if the number of its occurrences
which are at Hamming distance strictly less than e from m exceeds the quorum
q, because in this case all right and left extensions of m preserve such occurrences
and so they are motifs as well. These checks introduce a constant additional cost
to the extraction algorithms. After finding all the occurrence-paths of m, if none
of the described cases is verified, then, if m is a motif, we must also count, for
every character α in Σ, how many occurrences of m at Hamming distance equal
to e from m are preserved by right and left extensions of m with α. This counting
can be made examining occurrence-paths of m labeled by such occurrences as
showed in Section 3. If there exists a right or left extension of degree 1 of m
which occurs more than q times, then m is not supermaximal. Therefore the
operations needed to count the occurrences preserved by every right and left
extension of m with a character α have a cost proportional to the number of
occurrence-paths of m whose label is at Hamming distance e from m. This is due
to the property of the suffix tree such that the edges from a node (at most |Σ|)
are lexicographically sorted and to the implementation of set sln[v] as an array
of |Σ| positions: the cost for each path is constant because, in the worst case, it
simply consists of a comparison between two characters. If 
 is the motif length,

these occurrence-paths are at most p =
(



e

)
·(|Σ|−1)e and hence the additional

cost to verify if a motif is supermaximal is proportional to O(p|Σ|). Moreover,
notice that if a motif is supermaximal, then the extraction algorithm can avoid to
furtherly extend it, because none of its right extensions can be a motif. Thus, the
overhead introduced by the supermaximality check is balanced by a reduction of
the number of intermediate length motifs that have to be extended during the
extraction process. We expect that the approach we suggested could sensibly
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reduce the number of output motifs without changing their significance and
with a constant or negligible extra time complexity. However, we are aware that
in a worst case scenario the improvement could be none: one can always design a
string in which all motifs are maximal. Nevertheless, biological sequences contain
many more repetitions than randomly generated sequences which, on their turn,
averagely would be far from containing only maximal motifs.

5 Conclusions

In order to remove the redundancy in the output of existing algorithms for find-
ing motifs, we defined notions of (super)maximality for exact and approximate
motifs. For all of them we gave a characterization on the suffix tree data struc-
ture. This allowed us to show how to adapt a whole class of algorithms based on
suffix tree for which available tools exist, to infer (super)maximal motifs only. We
proved that the additional computational cost due to the on the fly check of (su-
per)maximality requirements is negligible. Therefore, our results suggest a way
to improve motifs extraction tools providing outputs which are more readable
and usable by biologists.
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Abstract. We apply the concept of subset seeds proposed in [1] to sim-
ilarity search in protein sequences. The main question studied is the
design of efficient seed alphabets to construct seeds with optimal sensi-
tivity/selectivity trade-offs. We propose several different design methods
and use them to construct several alphabets. We then perform an analysis
of seeds built over those alphabet and compare them with the standard
Blastp seeding method [2,3], as well as with the family of vector seeds
proposed in [4]. While the formalism of subset seed is less expressive
(but less costly to implement) than the accumulative principle used in
Blastp and vector seeds, our seeds show a similar or even better per-
formance than Blastp on Bernoulli models of proteins compatible with
the common BLOSUM62 matrix.

1 Introduction

Similarity search in protein sequences is probably the most classical bioinfor-
matics problem, and a commonly used algorithmic solution is implemented in
the ubiquitous Blast software [2,3]. On the other hand, similarity search al-
gorithms for nucleotide sequences (DNA, RNA) underwent several years ago a
significant improvement due to the idea of spaced seeds and its various general-
izations [5,6,7,8,9,10,11]. This development, however, has little affected protein
sequence comparison, although improving the speed/precision trade-off for pro-
tein search would be of great value for numerous bioinformatics projects. Due
to a bigger alphabet size, protein seeds are much shorter (typically 2-5 letters
instead of 10-20 letters in the DNA case) and also letter identity is much less rel-
evant in defining hits than in the DNA case. For these reasons, the spaced seeds
technique might seem not to apply directly to protein sequence comparison.
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Recall that Blast applies quite different approaches to protein and DNA
sequences to define a hit. In the DNA case, a hit is defined as a short pattern
of identically matching nucleotides whereas in the protein case, a hit is defined
through an accumulative contribution of a few amino acid matches (not necessar-
ily identities) using a given scoring matrix. Defining a hit through an additive
contribution of several positions is captured by a general formalism of vector
seeds proposed in [7]. On the other hand, it has been understood [6,12,13,14,15]
that using simultaneously a family of seeds instead of a single seed can further
improve the sensitivity/selectivity ratio. Papers [4,16] both propose solutions
using a family of vector seeds to surpass the performance of Blast.

However, using the principle of accumulative score over several adjacent po-
sitions has an algorithmic cost. Defining a hit through a pattern of exact letter
matches allows for a direct hashing scheme, where each key of the query sequence
is associated with a unique hash table entry storing positions of the subject se-
quence (database) where the key can hit. On the other hand, defining a hit
through an accumulative contribution of several positions leads to an additional
pre-computed table storing, for each key, its neighborhood i.e., the list of subject
keys (or corresponding hash table entries) with which it can form a hit. For ex-
ample, in a standard Blastp setting (Blosum62 scoring matrix with threshold
11 for accumulative score of 3 contiguous positions) a 3-letter key hits on average
19.34 distinct keys, i.e. requires that many accesses to the hash table. For the
family of vector seeds from [4] with an equivalent selectivity level (score 18), a
(here 4-letter) key hits on average 15.99 keys. For some applications, for example
in setting large-scale protein comparisons on a specialized computer architecture
(see e.g. [17]) one might need to minimize the number of hash table accesses,
and therefore to use another seeding formalism.

In [1], we proposed a new concept of subset seeds that can be viewed as an
intermediate between ordinary spaced seeds and vector seeds: subset seeds al-
low one to distinguish between different types of mismatches (or matches) but
still treat seed positions independently rather than cumulatively. Distinguish-
ing different mismatches is not done by scoring them, but by extending the
seed alphabet such that each seed letter specifies different sets of mismatches.
For example, in the DNA case it is beneficial to distinguish between transition
mutations (A ↔ G, C ↔ T) and others (transversions) [18].

Since the protein alphabet is much larger than the one of DNA, subset seeds
provide a very attractive seeding option for protein alignment. The present study
is then motivated by following general questions: how far can we go with subset
seeds applied to protein sequences? Can we reach the performance of Blast

seeds? the one of vector seeds? or maybe even outperform them? . . .
In the paradigm of subset seeds, each seed letter specifies a set of amino acid

pairs matched by this letter. Therefore, a crucial question is the design of an
appropriate seed alphabet, which is one of the main problems we study in this
paper. In Section 2, we introduce some probabilistic notions we need to reason
about seed efficiency. Section 3 introduces the first simple approach to design
a seed alphabet, which, however, does not lead to so-called transitive seeds,
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useful in practice. Section 4 presents three different approaches to designing
transitive seed alphabets, based on a pre-defined (Section 4.1) or newly designed
(Section 4.2) hierarchical clustering of amino acids, as well as on a non-hierarchical
clustering (Section 4.3). Section 5 describes comparative experiments made with
the designed seeds on probabilistic models.

2 Preliminaries

Throughout the paper, Σ = {A, C, D, E, F, G, H, I, K, L, M, N, P, Q,R, S,T, V,W, Y} de-
notes the alphabet of amino acids.

In most general terms, a (subset) seed letter α is defined as any symmetric
and reflexive binary relation on Σ. Let B be a seed alphabet, i.e. a collection
of subset seed letters. Then a subset seed π = α1 . . . αk is a word over B. π
defines a symmetric and reflexive binary relation on words of Σk (called keys):
for s1, s2 ∈ Σk, s1 ∼π s2 iff ∀i ∈ [1..k], we have 〈s1[i], s2[i]〉 ∈ αi.

For practical reasons, we would like seed letters to define a transitive rela-
tion, in addition. This induces an equivalence relation on keys, which is very
convenient and allows for an efficient indexing scheme (see Introduction). In
this paper, we will be mainly interested in transitive seed letters, but we will
also study the non-transitive case in order to see how restrictive the transitivity
condition is.

The quality of a seed letter or of a seed is characterized by two main pa-
rameters: sensitivity and selectivity. They are defined through background and
foreground probabilistic models of protein alignments. Foreground probabilities
are assumed to represent the distribution of amino acids matches in proteins of
interest, when two homologous proteins are aligned together. Background prob-
abilities, on the other hand, represent the distribution of amino acid matches in
random alignments, when two proteins are randomly aligned together.

In this paper, we restrict ourselves to Bernoulli models of proteins and protein
alignments, although some of the results we will present can be extended to
Markov models.

Assume that we are given background probabilities {b1, . . . , b20} of amino
acids in protein sequences under interest. The background probability of a seed
letter α is defined by b(α) =

∑
(ai,aj)∈α bibj. The selectivity of α is 1− b(α) and

the weight of α is defined by

w(α) =
log b(α)
log b(#)

, (1)

where # = {〈a, a〉|a ∈ Σ} is the “identity” seed letter. For a seed π = α1 . . . αk,
the background probability of π is b(π) =

∏k
i=1 b(αi), the selectivity of π is

1− b(π) and the weight of π is w(π) = logb(#) b(π) =
∑k

i=1 w(αi). Note that the
weight here generalizes the weight of of classical spaced seeds [19] defined as the
number of “identity” letters it contains.

Let fij be the probability to see a pair 〈ai, aj〉 aligned in a target alignment.
The foreground probability of a seed letter α is defined by f(α) =

∑
(ai,aj)∈α fij .
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The sensitivity of a seed π is defined as the probability to hit a random target
alignment1. Assume that target alignments are specified by a length N . Then
the sensitivity of a seed π = α1 . . . αk is the probability that a randomly drawn
gapless alignment (i.e. string of pairs 〈ai, aj〉) of length N contains a fragment
of length k which is matched by π. In [1] we proposed a general algorithm to
efficiently compute the seed sensitivity for a broad class of target alignment
models. This algorithm will be used in the experimental part of this work.

The general problem of seed design is to obtain seeds with good sensitiv-
ity/selectivity trade-off. Even within a fixed seed formalism, the quality of a
seed is dependent on the chosen selectivity value. This is why we will always be
interested in computing efficient seeds for a large range of selectivity levels.

3 Dominating Seed Letters

Our main question is how to choose seed letters that form good seeds? Intuitively,
“good letters” are those that best distinguish foreground and background letter
alignments.

For each letter α, consider its foreground and background probabilities f(α)
and b(α) respectively. Intuitively, we would like to have letters α with large f(α)
and small b(α). A letter α is said to dominate a letter β if f(α) ≥ f(β) and
b(α) ≤ b(β). Observe that in this case, β can be removed from consideration, as
it can be always advantageously replaced by α.

Consider all amino acid pairs (ai, aj) ordered by descending likelihood ra-
tio fij/bibj . Consider the set of pairs (ai, aj) such that fij/bibj > s for some
threshold value s. Then one can show that this set forms a letter that cannot be
dominated by any other letter2 (proof omitted). This observation leads to defin-
ing seed letters that consist of those pairs (ai, aj) for which the ratio fij/bibj is
above a given threshold.

Resulting Alphabet. We computed the likelihood ratio for all amino acid
pairs, based on practical values of background and foreground probabilities com-
puted in accordance with the BLOSUM62 matrix (see Section 5.1). Not surpris-
ingly, amino acid identities (pairs 〈a, a〉) have highest likelihood scores varying
from 38.11 for tryptophan down to 3.69 for valine. Among distinct pairs, only
25 have a score greater than 1 (Figure 1). A quick analysis shows that those do
not form transitive relations, and therefore do not verify the transitivity require-
ment. The alphabet containing those 25 pairs is denoted Non-transitive. It
will be used in the experimental part of the paper (Section 5) in order to study

1 Note that our definitions of sensitivity and selectivity are not symmetric: sensitivity
is defined with respect to the entire alignment and selectivity with respect to a
single alignment position. These definitions capture better the intended parameters
we want to measure. However, selectivity could also be defined with respect to the
entire alignment. We could suggest the term specificity for this latter definition.

2 It is interesting to point out the relationship to the well-known Neyman-Pearson
lemma which is a more general formulation of this statement.
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Fig. 1. Alphabet Non-transitive: amino acid pairs with likelihood ratio > 1

how restrictive is the requirement of transitive letters, i.e. how much better are
general seeds than those obtained with the restriction of transitivity.

4 Transitive Seed Alphabets

In the case of transitive seed alphabets, every letter α ∈ B is a partition of the
amino acid alphabet Σ. In other words, the binary relation associated with each
letter (cf Section 2) is an equivalence relation. Transitive alphabets represent the
practical case when each amino acid is uniquely mapped to its equivalence class.
This, in turn, allows for an efficient hashing scheme during the stage of seed
search, when different entries of the hash table index non-intersecting subsets of
keys.

In Sections 4.1,4.2, we explore transitive seed alphabets verifying an addi-
tional condition: for any two seed letters α1, α2 ∈ B corresponding to partitions
Pα1 , Pα2 respectively, one of Pα1 , Pα2 is a refinement of the other. Formally, for
any α1, α2 ∈ B,

either every set σ ∈ Pα1 is a subset of some δ ∈ Pα2 , or vice versa. (2)

The purpose of the above requirement is to define seed letters using a bio-
logically significant hierarchical clustering of amino acids represented by a tree.
In Section 4.1, we will use a pre-defined hierarchical clustering to design effi-
cient seed alphabets. Then in Section 4.2, we construct our own clustering based
on appropriate background and foreground models of amino acids distribution.
Finally, in Section 4.3 we lift condition (2) and study “non-hierarchical” seed
alphabets.

4.1 Transitive Alphabets Based on a Pre-defined Clustering

Assume we have a biologically significant hierarchical clustering tree which is
a rooted binary tree T with 20 leaves labelled by amino acids. Such trees have
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CFYWMLIVGPATSNHQEDRK

CFYWMLIV GPATSNHQEDRK

CFYW MLIW GPATS NHQEDRK

C FYW ML IV G PATS NHQED RK

FY W M L I V P ATS NH QED R K

F Y A TS N H QE D

T S Q E

Fig. 2. Hierarchical tree derived from [20]

been proposed in [20,21], based on different similarity relations. The hierarchical
tree derived from [20] is shown on Figure 2.

The tree, obtained with a purely bioinformatics analysis, groups together
amino acids with similar biochemical properties, such as hydrophobic amino
acids L,M,I,V, hydrophobic aromatic amino acids F,Y,W, alcohols S,T,
or charged/polar amino acids E,D,N,Q. A similar grouping is obtained in [21].

A seed letter is defined here as a subset α of nodes of T such that

(i) α contains all leaves,
(ii) for a node v, if v ∈ α, then all descendants of v belong to α too.

In other words, a seed letter can be thought of as a “horizontal cut” of the tree.
For example, for the tree of Figure 2 there are 1597 different seed letters. Seed
letters are naturally ordered by inclusion. The smallest one is the “identity” seed
letter #, containing only the leaves. The largest one is the “joker” seed letter ,
containing all the nodes of T . One particular seed letter is obtained by removing
from the root node. We denote it by @.

Observe that each seed letter α represents naturally an equivalence relation
on Σ: ai and aj are related iff their common ancestor belongs to α. It is identity
relation in case of # and full relation in case of .

Following condition (2), a hierarchical seed alphabet is a family B of seed
letters such that

for every α1, α2 ∈ B, either α1 ⊆ α2 or α2 ⊆ α1. (3)

Hence, a seed alphabet is a chain in the inclusion ordering of seed letters. Let
us analyze what are the maximal seed alphabets wrt. inclusion. Clearly each
maximal seed alphabet B always contains the smallest and the largest seed letters
# and . Interestingly, each maximal B contains also @, as @ is comparable (by
inclusion) to any other seed letter.

It can be shown that any maximal seed alphabet contains exactly 20 letters
that can be obtained by a stepwise merging of two subtrees rooted at immediate
descendants of some node v into the subtree rooted at v. Therefore, since a
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{CF Y WMLIV GP ATSNHQEDRK}
{CF Y WMLIV } {GPAT SNHQEDRK}

{CF Y W MLIV } {GPAT S} {NHQEDRK}
{CF Y W } {MLIV } {GPAT S} {NHQEDRK}

{CF Y W } {MLIV } {G} {PAT S} {NHQEDRK}
{C} {F Y W } {MLIV } {G} {PAT S} {NHQEDRK}

{C} {F Y W } {MLIV } {G} {P} {ATS} {NHQEDRK}
{C} {F Y } {W} {MLIV } {G} {P} {ATS} {NHQEDRK}

{C} {F } {Y } {W} {MLIV } {G} {P} {ATS} {NHQEDRK}
{C} {F} {Y } {W} {MLIV } {G} {P} {A} {TS} {NHQEDRK}

{C} {F} {Y } {W} {MLIV } {G} {P} {A} {T} {S} {NHQEDRK}
{C} {F} {Y } {W} {MLIV } {G} {P} {A} {T} {S} {NHQED} {RK}

{C} {F} {Y } {W} {MLIV } {G} {P} {A} {T} {S} {NHQED} {R} {K}
{C} {F} {Y } {W} {MLIV } {G} {P} {A} {T} {S} {NH} {QED} {R} {K}

{C} {F } {Y } {W} {MLIV } {G} {P} {A} {T} {S} {N} {H} {QED} {R} {K}
{C} {F } {Y } {W} {MLIV } {G} {P} {A} {T} {S} {N} {H} {QE} {D} {R} {K}

{C} {F } {Y } {W} {MLIV } {G} {P} {A} {T} {S} {N} {H} {Q} {E} {D} {R} {K}
{C} {F } {Y } {W} {ML} {IV } {G} {P} {A} {T} {S} {N} {H} {Q} {E} {D} {R} {K}

{C} {F } {Y } {W} {M} {L} {IV } {G} {P} {A} {T} {S} {N} {H} {Q} {E} {D} {R} {K}
{C} {F } {Y } {W} {M} {L} {I} {V } {G} {P} {A} {T} {S} {N} {H} {Q} {E} {D} {R} {K}

Fig. 3. Alphabet Transitive-predefined designed using the tree of Figure 2. Each
line corresponds to a seed letter (amino acid partition).

binary tree with n leaves contains n−1 internal nodes, a maximal seed alphabet
contains precisely 20 letters and can be specified by a permutation of internal
nodes in tree T .

Resulting Alphabet. Figure 3 shows alphabet Transitive-predefined de-
signed through the approach of this Section. The alphabet has been designed
from the tree of Figure 2. Each line corresponds to a letter (amino acid parti-
tion). Among the alphabets obtained with different parameter values, alphabet
Transitive-predefined produced better seeds and will be used in the experi-
mental part of this work (Section 5).

4.2 Transitive Alphabets Using an ab initio Clustering Method

Hierarchical Clustering of Amino Acids. A prerequisite to the approach of
Section 4.1 is a given tree describing a hierarchical clustering of amino acid based
on some similarity measure. In this section, we describe an ab initio approach
that constructs a hierarchical clustering of amino acids from scratch, using a
likelihood measure.

As in Section 4, our goal here is to construct a family of seed letters verifying
(3). This family will be obtained with a simple greedy neighbor-joining clustering
algorithm, starting with the family of twenty amino acid singletons.

We start with the partition of amino acids into 20 singletons. This partition
corresponds to the # letter. For a current partition P = {C1, . . . , Cn}, iteratively
apply the following procedure.

1 For each pair of sets Ck, C�,
1.1 consider the set Bridge(Ck, C�) = {(ai, aj)|ai ∈ Ck, aj ∈ C�}.
1.2 compute ForeProb(k, 
) =

∑
{fij |ai ∈ Ck, aj ∈ C�}

and BackProb(k, 
) =
∑
{bibj|ai ∈ Ck, aj ∈ C�},

1.3 compute L(k, 
) = ForeProb(k, 
)/BackProb(k, 
)
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{CF Y WHMLIV PGQERKNDAT S}
{CF Y WHMLIV } {PGQERKNDAT S}

{C} {F Y W HMLIV } {PGQERKNDAT S}
{C} {F Y W HMLIV } {P} {GQERKNDATS}

{C} {F Y W H} {MLIV } {P} {GQERKNDATS}
{C} {F Y W H} {MLIV } {P} {GATS} {QERKND}

{C} {F Y W H} {MLIV } {P} {G} {ATS} {QERKND}
{C} {F Y W H} {MLIV } {P} {G} {ATS} {QERK} {ND}

{C} {F Y W } {H} {MLIV } {P} {G} {ATS} {QERK} {ND}
{C} {FY W } {H} {MLIV } {P} {G} {A} {TS} {QERK} {ND}

{C} {FY W } {H} {MLIV } {P} {G} {A} {TS} {QE} {RK} {ND}
{C} {FY W } {H} {ML} {IV } {P} {G} {A} {TS} {QE} {RK} {ND}

{C} {FY W } {H} {ML} {IV } {P} {G} {A} {TS} {QE} {RK} {N} {D}
{C} {FY W } {H} {ML} {IV } {P} {G} {A} {T} {S} {QE} {RK} {N} {D}

{C} {F Y } {W} {H} {ML} {IV } {P} {G} {A} {T} {S} {QE} {RK} {N} {D}
{C} {F Y } {W} {H} {ML} {IV } {P} {G} {A} {T} {S} {Q} {E} {RK} {N} {D}

{C} {F Y } {W} {H} {M} {L} {IV } {P} {G} {A} {T} {S} {Q} {E} {RK} {N} {D}
{C} {F Y } {W} {H} {M} {L} {I} {V } {P} {G} {A} {T} {S} {Q} {E} {RK} {N} {D}

{C} {F } {Y } {W} {H} {M} {L} {I} {V } {P} {G} {A} {T} {S} {Q} {E} {RK} {N} {D}
{C} {F } {Y } {W} {H} {M} {L} {I} {V } {P} {G} {A} {T} {S} {Q} {E} {R} {K} {N} {D}

Fig. 4. Alphabet Transitive-ab-initio obtained with the method of Section 4.2

2 Find the pair of sets (Ck, C�) yielding the maximal L(k, 
),
3 Merge Ck and C� into a new set, obtaining a new partition.

The rationale behind this simple procedure is that those two sets of amino
acid are merged together which produce the maximal increment in the likelihood
f(α)/b(α). An alternative method, when the likelihood of the whole resulting
set is maximized, yields biased results, as sets with a high likelihood tend to
“absorb” other sets.

Resulting Alphabet. An alphabet, called Transitive-ab-initio, obtained
with this greedy neighbor-joining approach is given in Figure 4. It will be used
in experiments presented later in Section 5.

4.3 Non-hierarchical Alphabets

Previous approaches (Sections 4.1 and 4.2) were based on requirement (3) spec-
ifying that letters of the seed alphabet should be embedded one into another
to form a “nested” hierarchy. This requirement is biologically motivated and,
on the other hand, computationally useful as it reduces considerably the space
of possible letters. However, this requirement is not necessary to implement the
direct indexing (see Introduction). Therefore, we also designed non-hierarchical
alphabets in order to compare them to hierarchical ones. We used the follow-
ing heuristic consisting in generating first a large number of seed candidates,
and selecting the ones with (1) high likelihood ratio, (2) a range of different
weights.

Resulting Alphabet. An alphabet obtained with the above heuristic, called
Non-tree-transitive, is shown in Figure 5. This alphabet will be used in the
experiments reported in Section 5.
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{ARNDCQEGHILMKFP STW Y V }
{ARNDQEGHILMKFP STWY V } {C}
{ARNDCQEHILMKFP STWY V } {G}
{ARNDQEHILMKFSTY V } {CGPW }
{ARCQEHILMKFST Y V } {NDGPW}
{ARNDCQEGHKPST} {ILMFW Y V }

{ARNDQEGHKST} {CILMF WY V } {P}
{ARNDQEHKPST } {CW} {G} {ILMF Y V }
{ARNDQEKST} {CP} {GHW } {ILMF Y V }
{AGPST} {RNDQEHK} {C} {ILMFW Y V }

{APST} {RNDQEHK} {CW } {G} {ILMF Y V }
{AGST} {RNDQEK} {C} {HF WY } {ILMV } {P}

{AST} {RNDQEK} {CH} {G} {ILMV } {F W Y } {P}
{AST} {RQEHK} {ND} {CP} {G} {ILMV } {FW Y }

{AST} {RQK} {NH} {DE} {C} {G} {ILMV } {F W Y } {P }
{A} {RQK} {N} {DE} {C} {G} {H} {ILMV } {FY } {P} {ST} {W}

{A} {RK} {N} {DE} {C} {QH} {G} {ILV } {M} {FY } {P} {ST} {W}
{A} {RQK} {ND} {C} {E} {G} {H} {IV } {LM} {F W Y } {P} {ST}

{A} {RK} {ND} {C} {Q} {E} {G} {H} {IV } {LM} {F W Y } {P} {S} {T }
{A} {RK} {N} {D} {C} {Q} {E} {G} {H} {IV } {L} {M} {F Y } {P} {S} {T } {W}
{A} {R} {N} {D} {C} {QE} {G} {H} {I} {L} {K} {M} {F W Y } {P} {S} {T} {V }

{A} {R} {N} {D} {C} {Q} {E} {G} {H} {I} {L} {K} {M} {F } {P} {S} {T } {W} {V }

Fig. 5. Non-hierarchical alphabet Non-tree-transitive

5 Experiments

This section describes the experiments we made to test the efficiency of seeds we
designed with different methods of previous sections. Sections 5.1-5.3 describe
the experimental protocol, from the assignment of background and foreground
probabilities, to the seed design. In Section 5.4, we analyze the power of different
seed models proposed in Sections 3-4 with respect to probabilistic models.

5.1 Probability Assignment and Alphabet Generation

First of all, we derived probabilistic models in accordance with the BLOSUM62
data from the original paper [22]. We obtained the BLOCKS database (version
5) [23] and the software of [22] to infer Bernoulli probabilities for the back-
ground and foreground alignment models. These probabilities have been used
throughout the whole pipeline of experiments.

Different seed alphabets have then been generated by the methods presented
in Section 3 (alphabet Non-transitive), Section 4.1 (alphabet Transitive-
predefined), Section 4.2 (alphabet Transitive-ab-initio) and Section 4.3
(alphabet Non-tree-transitive).

5.2 Seed Design

To each alphabet, we applied a seed design procedure that we briefly describe
now. Since each seed (or seed family) is characterized by two parameters – sensi-
tivity and selectivity – it can be associated with a point on a 2-dimensional plot.
Best seeds are then defined to be those which belong to the Pareto set among
all seeds, i.e. those than cannot be strictly improved by increasing sensitivity,
selectivity, or both.
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For different selectivity levels, we designed good seed families containing one
to six individual seeds, among which the best family was selected. In each seed
family, each individual seed has been assumed to have approximately the same
weight, within 5% tolerance. This requirement is natural as in the case of diver-
gent weights, seeds with lower weight would dominantly affect the performance.
In practice, having individual seeds of similar weight allows an efficient parallel
implementation (see e.g. [17]).

Estimation of sensitivity of individual seeds or seed families has been done
with the algorithm described in [1] and implemented in the Iedera software,
available at http://bioinfo.lifl.fr/yass/iedera.php. The selectivity of an in-
dividual seed has been computed according to the definition (Section 2). For a
seed family, its selectivity has been lower-estimated by summing the background
probabilities of individual seeds.

Seed family design has been done using a hill climbing heuristics
(see [24,25,11]) alternating seed generation and seed estimation steps. All ex-
periments were conducted for alignment lengths 16 and 32.

5.3 Blastp and the Vector Seed Family from [4]

Our goal is to compare between different seed design approaches proposed in
this paper, but also to benchmark them against other reference seeding methods.
We used two references: the Blastp seeding method and the family of vector
seeds proposed in [4]. Both of them use a score (or weight) resulting from the
accumulative contribution of several neighboring positions to define a hit (see
Introduction). Therefore, they use a more powerful (and also more costly to
implement) formalism of seeding.

To estimate the sensitivity and selectivity of those seeds, we modified our
methods described in the previous section by representing an alignment by a
sequence of possible individual scores. Foreground and background probability
of each score is easily computed from those for amino acid pairs. After that,
sensitivity and selectivity is computed similarly to the previous case.

5.4 Results

We compare the performance of the different approaches by plotting ROC curves
of Pareto-optimal sets of seeds on the selectivity/sensitivity graph. The two plots
in Figure 6 show the results for alignment length 16 and 32 respectively. The two
first polylines show the performance of Blastp with word size 3 and the vector
seed family from [4], for different score thresholds. The other curves show the
performances of different seed alphabets from Sections 3-4 represented by the
Pareto-optimal seeds (seed families) that we were able to construct over those
alphabets. As mentioned earlier in Section 5.2, each time we selected the best
seed family among those with different number of individual seeds. Typically
(but not exclusively), points on the plots correspond to seed families with 3 to
5 seeds. Typically, the seed span ranges between 3 and 5 (respectively, 3 and 6)

http://bioinfo.lifl.fr/yass/iedera.php


476 M. Roytberg et al.

 0.6

 0.7

 0.8

 0.9

 0.996  0.997  0.998  0.999

se
ns

iti
vi

ty

selectivity

B62 L16

Blastp (thr.)
Protein vector seeds (thr.)

Transitive-predefined
Transitive-ab-initio
Non-tree-transitive

Non-transitive

10

11

12

13

14

15

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 0.996  0.997  0.998  0.999

se
ns

iti
vi

ty

selectivity

B62 L32

Blastp (thr.)
Protein vector seeds (thr.)

Transitive-predefined
Transitive-ab-initio
Non-tree-transitive

Non-transitive

10

11

12

13

14

15

16

Fig. 6. ROC curves of seed performance measured on the probabilistic model
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for alignment length 16 (respectively, 32). Seeds with langer span (> 4) tend to
occur in seed families with larger number of seeds (> 3).

We observe that non-transitive seeds over the alphabet of Section 3 are com-
parable in performance with the vector seed family from [4] and clearly outper-
forms seeds over other alphabets. This result is interesting in itself, although
this alphabet is unpractical in many cases, due to its incompatibility with the
transitivity condition.

As for the other alphabets, they roughly show a comparable performance among
them. Note that using non-hierarchical alphabet (Section 4.3) does not bring much
of improvement, which justifies condition (3). For the alignment length 16, our
seeds perform comparably to Blastp, with a slightly better performance for high
thresholds and a slightly worse performance for low thresholds. On the other hand,
for alignments of length 32, our seeds clearly outperform Blastp.

6 Conclusion

The main conclusion of our work is that although the subset seed model is less ex-
pressive than the method of accumulative score used in Blastp, carefully designed
subset seeds can reach the same or even a higher performance. To put it informally,
the use of the accumulative score in defining a hit can, without loss of performance,
be replaced by a careful distinction between different amino acid matches without
using any scoring system. From a practical point of view, subset seeds can provide a
more efficient implementation, especially for large-scale protein comparisons, due
to a much smaller number of accesses to the hash table. In particular, this can be
very useful for parallel implementations or specialized hardware (see e.g. [17]).

Note that the seed design heuristic sketched in Section 5.2 does not guarantee
to compute optimal seeds, and therefore our seeds could potentially be further im-
proved by a more advanced design procedure, possibly bringing a further increase in
performance. This is especially true for seeds of large weight (due to a bigger num-
ber of those), for which our seed design procedure could produce non-optimal seeds,
thus explaining some “drop-offs” in high-selectivity parts of plots of Figure 5.4.

As far as further research is concerned, the question of efficient seed design
remains an open issue. Improvements of the hill climbing heuristics used in this
work are likely to be possible.
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Abstract. In this paper, we develop a new algorithm to construct Multiple and 
Global Alignments (MGA) of primary structures, i.e., strings coding biological 
macromolecules. The construction of such alignments is based on the one of the 
(longest) Approximate Common Subsequences (ACS), made up by longer ap-
proximate substrings appearing, approximately, in the same positions in all the 
strings. This ACS represents a MGA. Constructing such alignments is a way to 
find homologies between biological macromolecules. Our algorithm is of com-
plexity O(N2*L2*(log(L))2) in computing time, where N is the number of the 
strings and L is the length of the longest string. 
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vide-and-conquer strategy, algorithms, complexities. 

1   Introduction 

The comparison of the primary structures, i.e., strings coding biological macromolecules 
consists in identifying similar substrings of these strings. We distinguish two strategies 
of comparison of primary structures [1]: Either comparison by alignment or comparison 
by rearrangement [2], [3], [4]. In this paper we are interested only in the strategy of 
comparison by alignment. There are four basic ways to align primary structures: 

(i) The first way is to construct a global alignment: It consists in aligning the to-
tality of the primary structures to be compared. Among global alignment algorithms, 
we mention [5], [6], [7], [8], [9], [10], [11], [12]. 

(ii) The second way is to construct a local alignment: It consists in aligning por-
tions of the primary structures to be compared, in order to observe local similarities 
between these structures. Among local alignment algorithms, we mention [13], [14], 
[15], [16] [17], [18], [19], [20]. 

(iii) The third way is to construct a pairwise alignment: It consists in aligning 
only two primary structures. Among pairwise alignment algorithms, we mention [21], 
[22], [23], [24], [25], [26], [27], [28]  

(iv) Finally, the fourth way is to construct a multiple alignment: It consists in align-
ing, more than two primary structures. Among multiple alignment algorithms, we 
mention [5], [6], [8], [9], [17], [29], [30], [18], [19], [31].  
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The rest of this paper is organized as follows: In the second section, we give some 
definitions and notations. In the third section, we describe our algorithm for construct-
ing a MGA to a family of primary structures. In the fourth section, we present the 
experimental results obtained after running the corresponding program on primary 
structures of proteins and RNA. Finally, in the last section, we present our conclusion. 

2    Definitions and Notations 

Let A be a finite alphabet, a string is an element of A*, it is a concatenation of ele-
ments of A. The Levenshtein distance [32], denoted by dσ,γ,δ, is the minimum cost of 
a sequence of edit operations, i.e., substitution of cost σ , insertion of cost γ and dele-
tion of cost δ, that transform a string w into another w': 

dσ,γ,δ, = min {σ*mi + γ*ni+ δ*li  } . (1) 

Where mi, ni and li are, respectively, the numbers of substitutions, insertions and de-
letions to transform w into w'. Let f= {w1, w2, …, wN} be a family of strings, we say 

that a string x is an approximate common substring to the strings of f, if and only if, 
for each string wi, 1≤i≤N, of f there exists an exact substring x’ of wi, such that 

ε  
||

,, ≤
x

x'xd )( ,δγσ , where ε >0 is an error rate. The exact substring x’ is called image of 

x in wi, 1≤i≤N. An Approximate Common Subsequence (ACS) to the strings of f is a 

list of approximate common substrings to the strings of f that appear in the same or-
der, and without overlappings, in all the strings of f. The length of an ACS s, denoted 
by |s|, is the sum of the lengths of the approximate common substrings that make up s. 
An ACS s, s = [sw1, sw2… swn], will be denoted by sw1 → sw2 → … → swn. A 

portion of s beginning at swi and ending at swj, 0<i≤j≤n, is called sub-ACS of s and 

will be denoted by swi→swi+1→ … → swj. Let y1 and z1 be two exact substrings of 

a string w1, y2 and z2 be two exact substrings of a string w2 and let x be a common 

approximate substring to w1 and w2 such that y1xz1 is an approximate substring of 

w1 and y2xz2 is an approximate substring of w2, with |y1|=|y2|=|z1|=|z2|=l. The con-

textual distance CDx,l(w1,w2), associated with x and l, between w and w' is defined 

by: 

CDx,l (w1,w2)=  dσ,γ,δ,(y1,y2)  +  dσ,γ,δ,(z1,z2) . (2) 

Let f={w1, w2, … , wN} be a family of strings and x be a common approximate 

substring to f. The norm Nx,l(f), associated with CDx,l, between the strings of f is de-

fined by:  

Nx,l (f) =∑i, j ∈ [1..N]  CDx,l (wi,wj) . (3) 

Let x1, x2, … , xN  be images of x, respectively, in w1, w2, … , wN . A list px=[p1, 

p2, … , pN]x made up by the positions of the first characters of x1, x2, … , xN,  
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respectively, in the strings w1, w2, … , wN, is called alignment of x. The width of an 

alignment px, denoted by δ (px), is defined by:  

δ (px) = max i, j ∈ [1..N]  {pi} – min i, j ∈ [1..N]  {pi} (4) 

3   Construction of a MGA 

Let f = {w1, w2, … , wN} be a family of strings and ε>0 be an error rate, Our algo-

rithm of construction of a MGA of the strings of f is based on the construction of the 
(longest) ACS. This ACS represents a MGA. Let s = sw1 → sw2 → … → swn be an 

ACS to f. The more s is made up by longer approximate common substrings appear-
ing, approximately, in the same positions in all the strings of f, the more s is interest-
ing, i.e., reflects in a better way structural similarities between the strings of f. It is 
within this scope that we deal with the problem of the ACS to a family of strings. Let 
f = {w1, w2, … , wN} be a family of strings and ε>0 be an error rate, to construct an 

ACS to the family f, our algorithm operates by a divide-and-conquer strategy [33]: 
first, we locate a longest approximate common substring, let us call it sw, appearing, 
approximately, in the same position in all the strings of f. This approximate common 
substring partitions each string wi into three smaller strings: wil, swi and wir such that 

wi=wilswiwir, where  swi is the image of sw in wi. This partition gives rise to two new 

families: f1 = {w1l, w2l, … , wNl} and f2 = {w1r, w2r, … , wNr}. Then, we process, 

recursively, f1 and f2 in the same way as f. Let us call s1 and s2, respectively, the 

ACS to f1 and f2. The ACS to f is then s = s1→ sw → s2. The construction of the 

longest approximate common substring to the strings of f can be made via an adapta-
tion of the algorithm (KMR) [34]. This construction is achieved in two steps: During 
the first step, we concatenate the strings of f into a single string t, then, at each step, 
we filter the vector representing the repeated substrings in t, such that, we get exact 
common substrings with equal lengths. Then, during the second step, we measure the 
distances d between the different longest exact common substrings, found during the 
previous step, taken pairwise. Two exact common substrings w and w’ such that 

ε  
||

≤
w

w'wd )( ,  represent then the same longest approximate common substring to the 

strings of f. If we have more than one longest approximate common substring, we 
make a filtering. The filtering is achieved in two steps: During the first step, we a 
make a horizontal filtering: It consists in filtering the different images, in a string, of a 
same approximate common substring. We operate as follows: with each approximate 
common substring, we associate a pivot string. This string can be the one that con-
tains the maximum number of images of this approximate common substring. At the 
level of this string, we align each image of this approximate common substring with 
the (N-1) nearest images appearing in the (N-1) other strings. The alignment kept is 
the one that has the smallest width. Then, for an approximate common substring, we 
consider, at the level of each string, only the image taking part of the alignment that  
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has the smallest width. Hence, for each approximate common substring, we will have 
one image per string. During the second step, we make a vertical filtering: It consists 
in filtering the alignments associated with the different approximate common sub-
strings. We have considered different criteria to filter alignments: 

(i) Vertical filtering by norms: we consider only the alignment with the smallest 
norm. In the computation of the contextual distances and, hence, in the one of the 
norms, we set the costs of the edit operations as follows: σ = 2, γ = δ = 1. 

(ii) Vertical filtering by widths of alignments: we consider only the alignment 
with the smallest width.  

(iii) And vertical filtering by frequencies of appearance: we consider only the 
alignment for which the associated longest approximate common substring has the 
maximum number images in f.  

Time complexity of our algorithm is O (N2*L2*(log (L)) 2). 

4   Experimental Results 

The program corresponding to our MGA algorithm is called μAlign. It is coded in 
C++ and implemented on a 850 Mhz Pentium-3 machine, running Windows XP with 
320 Mb of RAM. We have run our program μAlign on the following families of pri-
mary of structures of proteins and families of primary of structures of RNA:  

Proteins: esterase, lipase, lyase, dehydrogenase, asnc family, oxidase family, Phos-
pholase, gntr family, lipocalin family, lysr family, sam domain family, YjgP_YjgQ. 

RNA: cobalmin, toga family, RNCO family, QUAD family, t_box family, 6S family, 
intron family, L20 family, U3 family 

We have obtained these data from the biological databases RFAM [35], PFAM 
[36] and Entrez [37]. We have used a rate λ(ε,prog) in order to compare the lengths of 
the ACS obtained by our program and those of the ACS obtained by other programs. 
The rate λ(ε,prog) is defined as follows:  

                                     100*),(
progACS

AlignACS

prog
μ

ελ =                                     (5) 

where: 
• prog is the name of the program used  
• ε s the error rate. 

The histograms below represent the results obtained for families of proteins and 
families of RNA. We have introduced the notion of quorum into our program μ Align. 
The quorum is defined as follows: an approximate substring that appears in at least q 
strings of the family of strings is regarded as being common to this family. The fol-
lowing results were obtained with a quorum q=75% and thresholds of error rates 
ε =25%, ε=50% and ε =75%. 
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Fig. 1. Results obtained for families of proteins for ε =25% 
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Fig. 2. Results obtained for families of proteins for ε =500025 

We notice that the results obtained with families of proteins in the case where ε=50% 
and the case where ε=75% are almost identical. This is due to the fact that the size of the 
repeated substrings in the majority of the cases is equal to two characters thus the 
classes of equivalence and those of pseudo-equivalence formed in both cases are almost 
the same ones. According to the histograms, we notice that the results obtained with our 
program μAlign for families of proteins and for families of RNA are good, compared to 
the results obtained with the other programs. But the results obtained with families of 
proteins are better than those obtained with families of RNA. We can explain this as 
follows: Our program μ Align is based on the identification of repeated substrings. 
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However, more the size of the alphabet decreases more the probability of having  
repeated substrings in a string coded starting from this alphabet increases. Since the size 
of the alphabet associated with the primary structures of RNA is equal to 4 and the one 
of the alphabet associated with the primary structures of proteins is equal to 20 thus the 
probability of having repeated substrings in primary structures of RNA is higher than 
the one of having repeated substrings in primary structures of proteins. On the other 
hand, more there are occurrences representing the same repeated substrings in a string 
more our program μ Align is likely to be induced in error, because of the choice of the  
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Fig. 3. Results obtained for families of proteins for ε=75% 
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Fig. 4. Results obtained for families of RNA for ε=25% 
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Fig. 5. Results obtained for families of RNA for ε=50% 
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Fig. 6. Results obtained for families of RNA for ε=75% 

occurrence associated with the repeated substring. This is why, by using our program 
μ Align, we obtain better results with proteins compared to RNA. 

5   Conclusion  

In this paper, we have developed a new algorithm to construct Multiple and Global 
Alignments (MGA) of primary structures, i.e. The construction of such alignments is 
based on the one of the (longest) Approximate Common Subsequences (ACS), made 
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up by longer approximate substrings appearing, approximately, in the same positions 
in all the strings. This ACS represents a MGA. Constructing such alignments is a way 
to find homologies between biological macromolecules. Our algorithm is of complex-

ity O(N2*L2*(log(L))2) in computing time, where N is the number of the strings and 
L is the length of the longest string. We have run the program μAlign, corresponding 
to our MGA algorithm, on families of primary of structures of proteins and families of 
primary of structures of RNA. We have compared the lengths of the ACS obtained by 
our program μAlign with those of the ACS obtained by the programs presented in [5], 
[6], [8], [9] and [19]. We have noticed that the results obtained with our program 
μAlign for families of proteins and for families of RNA are good, compared to the 
results obtained with other programs. But the results obtained with families of pro-
teins are better than those obtained with families of RNA. We think that we can im-
prove much more the results obtained with our program μAlign by using substitution 
matrices, like PAM [38] and BLOSUM [39], to measure the similarities between sub-
strings.  
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Abstract. We have developed a non-heuristic tool (LASA) for the mul-
tiple sequence alignment problem (MSA), one of the most important
problems in computational molecular biology. It is based on a dynamic
programming algorithm for solving a Lagrangian relaxation of an inte-
ger linear programming (ILP) formulation for MSA. The objective func-
tion that is optimized by LASA models the sum-of-pairs scoring scheme
and “truly” affine gap costs. Due to a reformulation w.r.t. additionally
introduced variables prior to relaxation we improve the convergence
rate dramatically while at the same time being able to solve the La-
grangian problem efficiently. Our experiments show that our implemen-
tation LASA outperforms all exact algorithms for the multiple sequence
alignment problem. Furthermore, the quality of the alignments ranks
among the best computed so far.

1 Introduction

The importance of multiple string comparison (of DNA or protein sequences) in
computational molecular biology is evidenced by the large number of programs
that have been developed for the multiple alignment problem, one common for-
malization (see next section) of the multiple string comparison.

Multiple alignment programs may detect biologically important, yet faint,
similarities from a set of strings, that might not be apparent when comparing two
strings alone. From these commonalities one might be able to infer evolutionary
trees or group proteins into structurally or functionally related families.

On the other hand, multiple alignment can be viewed as solving problems
that are inverse to the ones addressed by pairwise string comparisons [9]. Pair-
wise alignments are mostly used to find strings in a database that share certain
patterns with a query sequence but which might not be known to be biologi-
cally related. The inverse problem is to deduce common patterns from known
biological relationships.

Finding an alignment of k sequences that is optimal in the sum-of-pairs (SP)
scoring scheme (defined in the next section) becomes quickly computationally
intractable as k increases. For example, dynamic programming algorithms find
an optimal alignment of sequences of length n with (quasi)-affine gap costs in
time and space O

(
nk
)

[8]. More complex gap cost functions add a polylog factor
to this complexity [7]. If the number k of sequences is not fixed, it has been
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proved by Elias [6] that multiple alignment with SP score is NP-complete by a
reduction from Independent Set in 3-regular graphs . Hence it is unlikely that
polynomial time algorithms exist and, depending on the problem size, various
heuristics are applied to solve the problem approximately (see, e.g., [17,16]).

The remainder of this paper is organized as follows. It first introduces pre-
liminary definitions and reviews the ILP formulation of the multiple sequence
alignment problem in Section 2. Section 3 gives a broad overview of our approach
and assesses the practical relevance of our improvements in asymptotic running
time. Section 4 describes the approximation of the Lagrangian dual problem.
Finally, computational experiments on a set of real-world instances are reported
in Section 5, Section 6 concludes the paper.

Preliminaries. Let us formally state the multiple alignment problem. Let S =
{s1, s2, . . . , sk} be a set of k strings over an alphabet Σ and let Σ̄ = Σ ∪ {−}.
Given a string s, we let ‖s‖ denote the number of characters in the string and
sl the lth character of s, for l = 1, . . . , ‖s‖. We will assume that ‖si‖ ≥ 4 for all
strings si and let n :=

∑k
i=1 ‖si‖.

A (global) multiple alignment of S is a set A = {s̄1, s̄2, · · · , s̄k} of strings over
the alphabet Σ̄ where each string can be interpreted as a row of a two dimensional
alignment matrix. A has to satisfy the following properties: (1) the strings in A
all have the same length, (2) ignoring dashes (“−”), string s̄i is identical to
string si, and (3) there is no column of the alignment matrix consisting entirely
of dashes (see figure 1(a)).

For a given pairwise scoring function w on letters from alphabet Σ̄, the sum
of pairs (SP) score for a multiple alignment A is the sum of the scores of all
pairwise projections [9], namely c(A) =

∑l
h=1

∑k−1
i=1

∑k
j=i+1 w(s̄i

h, s̄j
h), where l

denotes the (equal) length of strings in A and w(−,−) := 0.
Depending on the definition of the scoring function w, the “score” of an

alignment can be naturally interpreted as distances between or similarities of
sequences. In this paper we will formally cast the multiple alignment problem
as a maximization (“of weights”) problem.

To create biologically meaningful alignments, our objective function includes
a term that reflects the notion of a gap. For a given alignment A, a gap in s̄i with
respect to s̄j is a maximal, consecutive run of dashes in s̄i in the projection of
A to strings s̄i and s̄j . Associated with each of these gaps is a cost. In the affine
gap cost model the cost of a single gap of length q is given by the affine function
copen+qcext, i.e. such a gap contributes a weight of −copen−qcext = wopen+qwext

to the total weight of the alignment, while w(x,−) = w(−, x) := 0 for any x ∈ Σ.
The problem calls for an alignment A whose overall weight is maximized.

2 Previous Work

In [2] Althaus et al. use a formulation for the multiple sequence alignment prob-
lem as an ILP given by Reinert in [18].

For ease of notation, they define the gapped alignment graph, a mixed graph
whose node set corresponds to the characters of the strings and whose edge set
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A B C

A − C

−

−

AC−B

(a) Alignment of
Input Sequences

(b) Gapped Alig-
nment Graph

(c) Ordering Co-
nflict

Fig. 1. (a) A possible alignment M of the input sequences S = {ABC, AC, BCA}. (b)
The gapped alignment graph for the sequences in S . The thick edges specify alignment
M. (c) The alignment edges can not be realized at the same time in an alignment.
Together with appropriate arcs of AP , they form a mixed cycle.

is partitioned into undirected alignment edges and directed positioning arcs as
follows: G = (V, EA ∪AP ) with V = V i ∪· · · ∪V k and V i = {ui

j | 1 ≤ j ≤ ‖si‖},
EA = {uv | u ∈ V i, v ∈ V j , i �= j} and AP = {(ui

l, u
i
l+1) | 1 ≤ i ≤ k and 1 ≤

l < ‖si‖} (see Figure 1(b)). Furthermore, we denote with G = {(u, v, j) | u, v ∈
V i, j �= i} the set of all possible gaps.

The ILP formulation uses a variable for every possible alignment edge e ∈ EA,
denoted by xe, and one variable for every possible gap g ∈ G, denoted by yg.
Reinert [18] showed that solutions to the alignment problem are exactly the
{0, 1}-assignments to the variables such that

(PaiwAl) we have pairwise alignments between every pair of strings,
(MixedCy) there are no mixed cycles, i.e. in the subgraph of the gapped align-

ment graph consisting of the positioning arcs AP and the realized edges
{e ∈ EA | xe = 1} there is no cycle that respects the direction of the arcs of
Ap (and uses the edges of EA in either direction) and contains at least one
arc of AP (see Figure 1(c)),

(Trans) transitivity is preserved, i.e. if u is aligned with v and v with w then
u is aligned with w, for u, v, w ∈ V .

These three conditions are easily formulated as linear constraints (see [2]).
We refrain from explicitly specifying the inequalities enforcing (PaiwAl) and

(Trans), as they are not crucial for the understanding of our approach.
Similarly as in the cutting plane approach in [2], we observed in [1] that

the number of iterations of our subgradient optimization (see section 4) can be
considerably reduced, if we use additional variables z(u,v) for u ∈ V i, v ∈ V j , i �=
j, with the property that z(u,v) = 1 iff at least one character of the string of u
lying (not strictly) right of u is aligned to a character of the string of v lying
(not strictly) left of v, i.e. z(ui

l ,u
j
m) = 1, iff there is l′ ≥ l and m′ ≤ m with

xui
l′ u

j

m′
= 1. This condition is captured by the inequalities
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0 ≤ z ≤ 1, z(ui
‖si‖

,uj
1)

= xui
‖si‖

uj
1
,

z(ui
l ,u

j
m) ≥ z(ui

l+1,uj
m) + xui

lu
j
m

and (1)

z(ui
l ,u

j
m) ≥ z(ui

l ,u
j
m−1)

+ xui
lu

j
m

.

Notice that indicator variables xe are associated with undirected edges e = uv,
whereas variables ze are associated with directed edges e = (u, v).

Using these additional variables, we can define facets that guarantee
(MixedCy) as follows. We model the mixed cycles as introduced above by letting
AA = {(u, v) | u ∈ V i, v ∈ V j , i �= j}, i.e. for each undirected edge uv ∈ EA, we
have the two directed arcs (u, v) and (v, u) in AA. Then a cycle M ⊆ AA∪AP in
(V, AA∪AP ) that contains at least one arc of AP uniquely defines a mixed cycle.
Where it is clear from the context, we therefore resign to distinguish between the
term mixed cycle in its original meaning, namely cycles as defined in (MixedCy)
having both undirected and directed edges, and their corresponding cycles in
(V, AA ∪AP ), consisting exclusively of directed arcs. The set of all mixed cycles
is denoted by M.

In [2] the authors show, that for a mixed cycle M ∈ M the inequality

∑
e∈M∩AA

ze ≤ |M ∩AA| − 1 (2)

is valid and that we can restrict the attention to mixed cycles M containing
exactly one positioning arc.

3 The Extended Pairwise Alignment Problem

Our Lagrangian approach is based on the integer linear program outlined above.
In order to score the alignment, we assign each edge ui

lu
j
m ∈ EA a weight

wui
lu

j
m

:= w(si
l , s

j
m) and a gap (ui

l, u
i
m, j) the weight w(ui

l ,u
i
m,j) := wopen + (m−

l + 1) · wext, which represents the benefit of realizing that edge or gap.
Since a single variable xuv, y(u,v,j), or z(u,v) involves exactly two sequences,

we can partition the three classes of variables, X , Y , and Z, into sets X i,j , Y i,j ,
and Zi,j , of variables involving sequences i and j.

If we restrict our attention to the variables in X i,j, Y i,j and Zi,j , for a specific
pair of sequences i, j, a solution of the ILP yields a description of a pairwise
alignment between sequences i and j, along with appropriate values for the
variables in Zi,j . The constraints (MixedCy) and (Trans) are used to guarantee
that all pairwise alignments together form a multiple sequence alignment. We
call an assignment of {0, 1}-values to variables in (X i,j, Y i,j , Zi,j) such that
(X i,j , Y i,j) imposes a pairwise alignment and Zi,j satisfies inequalities (1), an
extended pairwise alignment. Given weights for the variables in X i,j, Y i,j and
Zi,j , we call the problem of finding an extended pairwise alignment of maximum
weight the extended pairwise alignment problem.
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In our Lagrangian approach we dualize the constraints for condition
(MixedCy) (i.e. inequalities (2)) and relax conditions (Trans) (during experi-
ments it turned out that relaxing condition (Trans) is more efficient in practice
as dualizing them). Hence our Lagrangian subproblem is an extended pairwise
alignment problem. More precisely, if λM ≥ 0 is the current multiplier for the
mixed cycle inequality of M ∈ M, we have to solve the Lagrangian relaxation
problem

∑
M∈M

λM (|M ∩AA| − 1) +

max
∑

e∈EA

wexe +
∑
g∈G

wgyg −
∑

M∈M
λM

∑
e∈M∩AA

ze (LRλ)

s.t.(X i,j , Y i,j , Zi,j) forms an extended pairwise alignment for all i, j.

For a given pair of sequences si and sj let K denote the number of vari-
ables in Zi,j that have a non-zero coefficient assigned in the objective func-
tion, i.e. K = |{z(u,v) ∈ Zi,j |

∑
M∈M|(u,v)∈M λM �= 0}| (see LRλ). In [1]

the authors introduced a dynamic programming algorithm that solves the ex-
tended pairwise alignment problem between sequences si and sj of lengths ni

and nj , respectively, in time O
(
n2

i n
2
jK

)
, to which we refer to in the following

as “simple algorithm”. In a second step the number of arcs in the dynamic pro-
gramming graph was reduced such that our “improved algorithm” achieves a
running time of O

(
ninj + K4

)
. Finally, the dynamic programming graph was

augmented with a so called bypass graph G = (V , E), to achieve a running time
of O (ninj + |V|+ |E|), which can be bounded by O

(
ninj + K3

)
(by bounding

|V| and |E| by O
(
K2

)
, respectively O

(
K3

)
).

Due to the minor improvement w.r.t asymptotic running time (K ∈ O (ninj)),
we tried to compare the practical performance of the simple algorithm and both
versions of the improved algorithm (with and without bypass graph) by consid-
ering the size of the underlying graph structure after the last iteration in the root
node of the branch and bound tree. Table 3 indicates that for a bpg G = (V , E),
O
(
K2

)
and O

(
K3

)
are rather pessimistic estimates for |V|, respectively |E|, and

therefore we expect the running time of the simple algorithm to be significantly
larger than the running time of the improved algorithm using the bpg. Moreover,
the “transitive reduction” obtained by introducing the bypass graph reduces the
number of additional arcs considerably.

We could solve the extended pairwise alignment problem at least twice as fast
when using an A∗-approach: Roughly speaking, the dynamic programming scores
computed during an iteration of the subgradient optimization (see Section 4) can
be at most the scores of the first iteration, i.e. when all multipliers λ are set to 0.

4 Improving the Lagrangian Relaxation Bound

Recall that (LRλ) is the problem of computing all extended pairwise alignments
for a given set of multipliers λ and v(LRλ) is its objective function value. More-
over, (P ) is the multiple sequence alignment problem itself.
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Table 1. For the first four benchmark alignments of each subgroup of short and medium
sized instances of the BAliBASE library [21], we give the size of the bpg. To the names
of instances an indication (k, n) of the number of sequences and the overall number
of characters is added. The last three columns give the running times of tools LASA,
COSA and MSA. The CPU time was limited to 12 hours (“−”).

Instance K #BPG-Nodes #BPG-Arcs #Arcs LASA COSA MSA

Reference 1 Short, V3

1aho (5/320) 32 7 42 205 <1 1:29 -
1csp (5/339) 6 0 0 0 <1 1 <1
1dox (4/374) 18 3 18 56 3 30 <1
1fkj (5/517) 29 6 35 137 13 6:04 -

Reference 1 Short, V2

1aab (4/291) 18 3 18 51 <1 4 < 1
1csy (5/510) 57 11 58 333 17 3:01 -
1fjlA (6/398) 13 2 13 33 12 34 -
1hfh (5/606) 61 17 91 760 33 - -

Reference 1 Short, V1

1aboA (5/297) 63 40 236 4047 9:13:49 - -
1tvxA (4/242) 82 61 373 8979 1:59:44 - -
1idy (5/269) 51 21 120 1314 10:27:30 - -
1r69 (4/277) 74 29 165 1934 58:40 - -

Reference 1 Medium, V3

1amk (5/1241) 17 1 7 9 8 - -
1ar5A (4/794) 39 10 56 258 20 - -
1ezm (5/1515) 24 5 26 83 23 - -
1led (4/947) 65 13 72 468 3:54 - -

Reference 1 Medium, V2

1ad2 (4/828) 51 11 61 360 42 - -
1aym3 (4/932) 54 21 122 1286 2:37 - -
1gdoA (4/988) 104 22 121 1168 2:38:36 - -
1ldg (4/1240) 67 14 76 491 8:32 - -

Since the optimal value v(LRλ) is an upper bound on the optimal value of
(P ) for all multiplier vectors λ ∈ Rm

+ , m = |M|, we are interested in solving the
problem

min
λ≥0

v(LRλ) (LR)

to obtain tighter bounds for our branch-and-bound algorithm.

Subgradient Optimization. It is well known that the Lagrangian function
f(λ) = v(LRλ) (for our case where (P ) is a maximization problem) is a convex
function of λ, but it is not differentiable at points, where the optimal solu-
tion of (LRλ) is not unique. A commonly used approach to determine near-
optimal Lagrangian multipliers efficiently is based on the vector of subgradients
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g(λ) ∈ Rm, associated with a given λ. The set ∂f(λ0) of all subgradients of f(λ)
at a point λ0 is always nonempty, and one can show that the vector

gM (λ0) = r − 1−
r∑

j=1

z̄(uj ,uj+1), M ∈M (3)

is contained in ∂f(λ0), where z̄ is an optimal solution to (LRλ0). The iterative
approach proposed by Held and Karp [10] generates a sequence λ0, λ1, . . . of
Lagrangian multipliers by taking at iteration k a step along a subgradient of
f(λk), projecting the resulting point onto the nonnegative orthant:

λk+1
M = max

⎧⎨
⎩0, λk

M + θ
v(LRλk )− LB∑

M ′∈M
gM ′

2
gM (λk)

⎫⎬
⎭ , M ∈M (4)

where LB is a lower bound on v(P ), and θ is a step size parameter assuming
values in (0, 2]. As to the adaption of scalar step size θ, our approach differs
from the classical Held-Karp method, which halves parameter θ when there is
no upper bound improvement for a certain number of consecutive iterations. If
the best and worst upper bounds computed in the last p iterations differ by
more than 1%, we suspect that we are “overshooting” and thus we halve the
current value of θ. If, in contrast, the two values are within 0.1% from each
other, we overestimate v(LRλ∗ ), where λ∗ is an optimal solution to (LR), and
therefore increase θ by a factor of 1.5. Similarly to [4], we experienced a faster
convergence to near optimal multipliers using this strategy, compared to the
classical approach.

As (2) involves exponentially many mixed cycle inequalities that would have
to be dualized, formula (4) can not be applied in a straightforward way, but we
use the relax-and-cut framework outlined below.

Relax-and-Cut. In the traditional case of the subgradient method (SM), when
the number of dualized constraints is not too large, Beasley [3] reported good
practical convergence to v(LR), when setting gi = 0 whenever gi ≥ 0 and λi = 0,
for i ∈ 1, . . . , m, i.e. if an inequality whose multiplier is 0 is not violated. We
extend this idea by setting gM = 0 for all M with λM = 0 whose corresponding
mixed cycle inequalities are not violated by the Lagrangian solution. These mul-
tipliers would remain zero valued at the end of the current iteration and thus
would not directly contribute to v(LRλ), at any given SM iteration. We call the
corresponding constraints inactive inequalities. Conversely, we call inequalities,
whose associated multiplier may directly contribute to the Lagrangian objective
function, active inequalities. These are the constraints (2) that are violated by the
Lagrangian solution and those inequalities that have nonzero multipliers associ-
ated with them. Otherwise the value

∑
M∈M gM would be very high, resulting in

virtually unchanged multipliers from iteration to iteration. We therefore apply
(4) exclusively to active inequalities, as suggested in [14].

This dynamic scheme, where the pool of active inequalities may continuously
change, heavily relies on the ability to identify inequalities that are violated by
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the Lagrangian solution. In order to prevent the set of active inequalities from
growing too rapidly we restrict the separation problem to mixed cycle inequali-
ties, that are most violated by the average of the last h solutions. Experiments
show, that this modification improves the rate of convergence dramatically.

5 Experiments

We have implemented our Lagrangian approach in C++ using the LEDA-library
[15] and have embedded it into a branch-and-bound framework. The lower
bounds in each bb node are computed by selecting, in a greedy fashion, edges
from the set {e ∈ EA | xe = 1} that satisfy conditions (PaiwAl), (MixedCy),
and (Trans). We set wext = 4 and wopen = 6, i.e. the gap arcs were assigned a
weight that was computed as 4l + 6, where l is the number of characters in the
corresponding gap. The weights for the alignment edges in EA were obtained by
the BLOSUM62 amino acid substitution matrix.

While the purpose of the experiments in [1] was mainly to evaluate the com-
plexity of instances our approach was able to solve in reasonable time, in this
work we want to assess the quality of alignments our current implementation,
which we will call LASA (LAgrangian Sequence Alignment), produces. Addi-
tionally to the set of instances of the BAliBASE library [21] we used reference
alignments from three different sets: SABmark [22], PREFAB [5] and artificially
created alignments using Rose [19]. We used the original benchmarking mea-
sures proposed by its respective database. A score between 0 and 1 indicates the
degree of accordance with the reference alignment.

Table 3 compares the performance of our implementation with the exact meth-
ods MSA [13] and COSA [2]. Although MSA reduces the complexity of the prob-

Table 2. Average score of the alignments computed by different programs. Only in-
stances that have been solved by LASA in less than 2 hours were considered. In BAl-
iBASE 3.0 full length sequences (full) and instances from the homologous region set
(hom) are distinguished.

Group LASA T-COFFEE CLUSTALW MAFFT MUSCLE

BAliBASE 2.0

Short V1 0.969 0.968 0.984 0.988 0.970
Short V2 0.865 0.819 0.936 0.948 0.811
Short V3 0.512 0.340 0.562 0.882 0.537
Medium V1 0.944 .952 0.943 0.969 0.969
Medium V2 0.933 0.886 0.911 0.901 0.895
Long V1 0.960 0.941 0.933 0.976 0.982

BAliBASE 3.0

RV11 full 0.942 0.966 0.935 0.939 0.952
RV11 hom 0.795 0.672 0.764 0.819 0.780
RV12 full 0.918 0.900 0.918 0.919 0.905
RV12 hom 0.894 0.876 0.895 0.882 0.888
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Table 3. Rows show the average developer (fD) score and modeler (fM ) score for
the “Superfamily”(≤ 50% identity) and “Twilight Zone” (≤ 25% identity) sets in the
SABmark database, the quality (Q) score and total column (TC) score for PREFAB
instances and reference alignments created by Rose, achieved by each aligner. The
latter are grouped according to their average evolutionary distance. The number of
sequences in each set is given in parenthesis.

Group/Score LASA T-COFFEE CLUSTALW MAFFT MUSCLE DIALIGN POA

SABmark (405)

Superfam. fD 79.56 80.50 81.04 82.32 80.80 75.50 69.41
Superfam. fM 61.11 62.50 62.39 62.88 62.28 60.57 63.69
Twilight fD 47.82 46.84 50.3 48.72 47.91 40.64 29.74
Twilight fM 33.43 33.13 34.25 34.26 33.43 31.23 34.66

PREFAB (161)

Q 0.71 0.69 0.69 0.69 0.71 0.63 0.57
TC 0.71 0.69 0.69 0.69 0.71 0.63 0.57

Rose (264)

Dist100 Q 0.91 0.90 0.88 0.91 0.92 0.87 0.79
Dist100 TC 0.86 0.86 0.82 0.88 0.88 0.81 0.67
Dist150 Q 0.78 0.76 0.80 0.81 0.83 0.72 0.55
Dist150 TC 0.70 0.67 0.72 0.71 0.75 0.59 0.38
Dist200 Q 0.67 0.60 0.62 0.63 0.67 0.51 0.34
Dist200 TC 0.50 0.44 0.46 0.50 0.54 0.32 0.18
Dist250 Q 0.58 0.46 0.55 0.49 0.53 0.39 0.29
Dist250 TC 0.37 0.23 0.36 0.28 0.35 0.18 0.11

lem by incorporating quasi-affine gap costs into the multiple alignment, it could
hardly solve instances with a moderate degree of similarity. In contrast, LASA
outperforms the CPLEX based approach COSA.

In terms of alignment quality, we compared LASA with the heuristic methods
T-COFFEE [17], CLUSTALW [20], MAFFT [11], MUSCLE [5], DIALIGN [16]
and POA [12]. Our approach ranks among the best programs implemented so
far (see Table 2 and Table 3). The quality could be probably improved by a more
careful choice of the objective function. In our current implementation we use a
fixed objective for all instances, no matter what their level of identity is.

6 Conclusion

We have presented the fastest algorithm to exactly compute multiple sequence
alignments with affine gap costs and showed that the quality ranks among the
best alignments computed so far. Nevertheless, we believe that a more care-
ful choice of the underlying biological model can improve the quality of the
alignments considerably. Our implementation LASA will be available as part
of the software library SEQAN currently developed by the free university of
Berlin.
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Abstract. This paper presents a SVM-based local search (SVM-LS) ap-
proach to the problem of gene selection and classification of microarray
data. The proposed approach is highlighted by the use of a SVM classifier
both as an essential part of the evaluation function and as a “provider”
of useful information for designing effective LS algorithms. The SVM-LS
approach is assessed on a set of three well-known data sets and compared
with some best algorithms from the literature.

Keywords: Microarray gene expression, Feature selection, Local search,
Support vector machines.

1 Introduction

With the fast advances of DNA Microarray technologies, more and more gene ex-
pression data are made available for analysis. These data can be used for various
purposes, for instance, in classification of tissue samples using gene discriminator
between normal and cancer samples [6,2].

Gene expression data are known to be of very high dimensions (thousands of
gene expressions at least) with a small number of samples (typically under one
hundred). This characteristic, known as the “curse of dimensionality”, induces
a difficulty for classification and requires special techniques to reduce the data
dimensionality (gene selection) in order to obtain reliable predictive results.

Gene selection is a kind of feature selection [10], aiming at identifying a (small)
subset of informative genes from the initial data in order to obtain high clas-
sification accuracy. In the literature there are two main approaches for feature
selection: the filter approach and the wrapper approach.

In the filter approach [5], feature selection is performed without taking into
account the classification algorithm that will be applied to the selected features.
A filter algorithm generally relies on a relevance measure that evaluates the
importance of each feature for the classification task. A typical filter algorithm
ranks all the features according to their interestingness for the classification
problem and selects the top ranked features. The feature score can be obtained
independently for each feature, as it is done in [6] which relies on correlation
coefficients between the class and each feature. The drawback of such a method
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is to score each feature independently and to ignore the relations between the
features.

In contrast, the wrapper approach selects a subset of features that is “opti-
mized” for a given classification algorithm. So the classification algorithm, that is
considered as a black box, is run many times on different candidate subsets, and
each time, the quality of the candidate subset is evaluated by the performance of
the classification algorithm trained on this subset. The wrapper approach con-
ducts a search in the space of candidate subsets. For this search problem, genetic
algorithms have been used in a number of studies, see e.g. [12,11,8]. Embedded
methods, a variant of the wrapper approach, use feature selection as a part of the
training process in which the learning algorithm is no more a simple black box.
One example of an embedded method is proposed in [7] with recursive feature
elimination using support vector machines (SVM-RFE).

In this paper, we present a Local Search approach guided by SVM which can
be considered as an embedded method. In this approach, a SVM classifier is
used not only to evaluate a candidate gene subset, but also to provide the local
search algorithm with useful information for its search operators. As we show in
the experimentation section, despite its simplicity, this SVM-based Local Search
(SVM-LS) approach allows us to obtain highly competitive results on three well-
known data sets when compared with some best algorithms from the literature.

2 SVM Classification and Gene Selection

It is common in wrapper approaches to use a classifier to evaluate the quality
of a proposed gene subset. SVM classifiers can be used for such a purpose. In
our SVM-based Local Search approach, a SVM classifier is used not only in the
evaluation function of gene subsets but also in the design of LS strategies. SVM
is thus a key component of our SVM-LS approach. For this reason, this section
recalls the main characteristics of SVM and explains how a feature selection
process can be guided by useful information provided by a SVM classifier.

2.1 Support Vector Machines

SVMs represent a class of state-of-the-art classifiers [4] that have been success-
fully used for gene selection and classification [7,13]. SVMs solve a binary classifi-
cation problem by searching a decision boundary that has the maximum margin
with the examples. SVMs handle complex decision boundaries by using linear
machines in a high dimensional feature space, implicitly represented by a kernel
function. In this work, we only consider linear SVMs because they are known to
be well suited to the datasets that we consider.

For a given training set of labeled samples, a linear SVM determines an op-
timal hyperplane that divides the positively and the negatively labeled samples
with the maximum margin of separation. A noteworthy property of SVM is that
the hyperplane only depends on a small number of training examples called the
support vectors, they are the closest training examples to the decision boundary
and they determine the margin.
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Formally, we consider a training set of n samples belonging to two classes; each
sample is noted {Xi, yi} where {Xi} is the vector of attribute values describing
the sample and yi the class label.

A soft-margin linear SVM classifier aims at solving the following optimization
problem:

min
w,b,ξi

1
2
‖w‖2 + C

n∑
i=1

ξi (1)

subject to yi (w ·Xi + b) ≥ 1− ξi and ξi ≥ 0, i = 1, ..., n.
In this formulation, w is the weight vector that determines the separating

hyperplane; C is a given penalty term that controls the cost of misclassification
errors. To solve this optimization problem, it is convenient to consider the dual
formulation [4]:

min
αi

1
2

n∑
i=1

n∑
l=1

αiαlyiylXi ·Xl −
n∑

i=1

αi (2)

st:
∑n

i=1 yiαi = 0 and 0 ≤ αi ≤ C

The decision function for the linear SVM classifier with input vector X is
given by: ϕ(X) = w ·X + b with w =

∑n
i=1 αiyiXi and b = yi − w ·Xi.

The weight vector w is a linear combination of training samples. Most weights
αi are zero and the training samples with non-zero weights are the support
vectors. The maximum margin M is given by:

M =
2
‖w‖ (3)

2.2 Gene Ranking by SVM

As discussed in [7], the weights of a linear discriminant classifier can be used to
rank the genes for selection purposes. More precisely, in a backward selection
method, one starts with all the genes and removes iteratively the least informa-
tive gene. To determine the feature to be removed at each iteration, one considers
the gene that has the least influence on the cost function of the classification
process. For a linear SVM, the cost function is defined by 1

2 ||w||2. So given a
SVM classifier with weight vector w, one can define the ranking coefficient vector
c given by:

∀i, ci = (wi)
2 (4)

Intuitively, in order to select informative genes, the orientation of the sepa-
rating hyperplane found by a linear SVM can be used. If the plane is orthogonal
to a particular gene dimension, then that gene is informative, and vice versa. As
we show in the next section, the coefficient vector c contains very useful ranking
information that can be used to design a dedicated LS strategy.
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3 SVM-LS for Gene Selection and Classification

In this section, we present our SVM-based LS approach for gene selection and
classification of Microarray data. We explain the basic ingredients and their
underlying rational. Our method begins by a pre-selection step where we use a
filter criterion (in our case, the BW ratio introduced in [5]) to obtain a group Gp

of p (typically p ≥ 75) top ranked genes. Then our SVM-LS approach is applied
to select, from Gp a gene subset of smaller size (typically less than 20 genes).

3.1 Representation and Search Space

A candidate solution s = < sg, sc > is composed of two parts sg and sc called
respectively gene subset vector and ranking coefficient vector [8]. The first part,
sg = (g1, g2...gp), is a binary vector of fixed length p. Each gi ∈ {0, 1} (i =
1...p) corresponds to a particular gene and indicates whether or not the gene
is selected. The second part, sc = (c1, c2...cp), is a positive real vector of fixed
length p and corresponds to the ranking coefficient vector c (Equation 4, Section
2.2) of the linear SVM classifier. sc indicates thus for each selected gene the
interestingness of this gene for the SVM classifier.

Therefore, a solution represents a candidate subset of genes with additional
ranking information on each selected gene. The gene subset vector of a solution is
evaluated by a linear SVM classifier and the ranking coefficients obtained during
this evaluation will be used in our specialized LS strategies.

For the group Gp of p pre-selected genes, the search space is given by the set
Ω = 2p (i.e. all the possible gene subsets of p genes).

3.2 Evaluation Function

Given a candidate solution s = < sg, sc >, the quality of s (more precisely, of
the gene subset part sg) is assessed by an evaluation function f according to two
criteria: the ability of s to obtain a good classification with this gene subset (C)
and the maximum margin (M) given by the SVM classifier (Equation 3). More
formally, the evaluation function can be written as follows:

f(s) =< fC(s), fM (s) > (5)

where

– fC(s) is the classification accuracy of the SVM classifier using the set of
genes and applied to the given training data,

– fM (s) is simply the maximum margin of the SVM classifier, given by Equa-
tion 3 (Section 2.1).

Now given two candidate solutions s and s′, it is possible to compare them:
f(s) is better than f(s′), denoted by f(s) > f(s′), if the following condition is
satisfied: f(s) > f(s′) ⇔ fC(s) > fC(s′) or fC(s) = fC(s′) ∧ fM (s) > fK(s′).

So the dominating criterion is the classification accuracy, ties are broken by
comparing the maximum margins, with a preference for a larger value (a larger
margin indicates a better discrimination between the two classes).



SVM-LS for Gene Selection and Classification of Microarray Data 503

3.3 Move and Neighborhood

One of the most important features of a local search algorithm is its neighbor-
hood. In a local search algorithm, applying a move operator mv to a candidate
solution s leads to a new solution s′, denoted by s′ = s ⊕mv. Let Γ (s) be the
set of all possible moves which can be applied to s, then the neighborhood N(s)
of s is defined by: N(s) = {s⊕mv|mv ∈ Γ (s)}.

In our case, the move is based on the drop/add operation which removes
a gene gi from the solution s and add another gene gj. Moreover, the move
operator is defined in such a way that it integrates semantic knowledges of the
gene selection and classification problem. More formally, let s =< sg, sc > with
sg = (g1, g2...gp) and sc = (c1, c2...cp), define:

– i = ArgMinj{cj|cj ∈ sc ∧ cj �= 0}, i.e. i identifies the gene gi which has the
smallest ranking coefficient ci and thus is the least relevant gene,

– O = {j|gj ∈ sg∧gj = 0}, i.e. O is the set of non selected genes in the current
solution s

Then our move operator drops, from the current solution, gi (identified by the
above index i) which is the least informative gene among the selected genes
and adds a non selected gene gj (j ∈ O). This can be formally written as:
mv(i, j) = (gi : 1 → 0; gj : 0 → 1).

Clearly, for two neighbor solutions s =< sg, sc > and s′ =< s′g, s′c >, the
hamming distance between sg and s′g is exactly two. Moreover, one sees that
the size of this neighborhood is equal to |O| and bounded by p, the length of s.

3.4 Local Search Algorithms

Local search (LS) is a class of general and powerful heuristics methods [9]. For
our SVM-LS approach, we implemented three LS algorithms: steepest descent
(SD), Tabu Search (TS) and Iterative Local Search (ILS).

Steepest Descent (SD): Given the current solution s, the steepest descent
moves at each iteration to the best improving neighboring solution s′ ∈ N(s)
such that f(s′) > f(s) and ∀s“ ∈ N(s), f(s”) ≤ f(s′). Notice that SD needs no
parameter and stops when no improving neighbor can be found in the neighbor-
hood, at which point the last solution is the best solution found and corresponds
to a local optimum.

Tabu Search (TS): From the steepest descent SD, one can obtain a basic
TS algorithm by adding a tabu list (see below). At each iteration, the current
solution s is replaced by the best neighboring solution s′ that is not forbidden
by tabu list, i.e. s′ ∈ N(s) such that ∀s“ ∈ N(s), f(s”) ≤ f(s′) and s′ /∈ S̄ where
S̄ is the set of solutions currently forbidden by tabu list. Notice that contrary
to the SD algorithm, the selected neighbor s′ may or may not be better than s.
The TS algorithm stops when a fixed maximum number of iterations is reached
or when all the moves become tabu.
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The main role of a tabu list is to prevent the search from cycling. In our case,
the tabu list is implemented as follows. Each time a move mv(i, j) is carried out,
i.e. gene gi is dropped and gene gj is selected, gi is recorded in the tabu list for
the next k iterations. Consequently, gi cannot be reselected during this period.
The value of k is determined experimentally and varies typically from kmin to
kmax. Notice that such a tabu list does not forbid a newly selected gene gj to
be removed soon after its selection if its ranking coefficient is very weak.

Iterate Local Search (ILS): ILS uses a local search strategy (e.g. Descent or
TS) to reach a local optimum s∗, at which point the search applies a perturbation
operator to the local optimum solution to allow further search progress. ILS can
be combined with any local search algorithm. Here, we consider the combination
with TS, denoted by ILSTS because this is the best combination we have found.
More precisely, ILSTS iterates two phases: a TS phase to reach a local optimum
s∗ and a perturbation to diversify the search. Our perturbation operator changes
the best local optimum s∗ in a controlled way and is based on the evaluation
function; the second to the fifth best neighbors are successively tried in order to
continue the search process. Otherwise the search stops.

3.5 Initial Solution

The initial candidate solution can be randomly created with a risk of being of bad
quality. For this reason, we devise a simple way to obtain a “not-too-bad” initial
solution as follows. We generate randomly l solutions such that the number of
genes in each solution varies between p ∗ 0.9 and p ∗ 0.6 (p being the number of
pre-selected genes by a filter, see the beginning of Section 3), from which the
best solution according to the evaluation function (see Equation 5) is taken.

3.6 The General SVM-LS Procedure

The general SVM-LS procedure is shown in Algorithm 1. It is composed of
two repeated main phases: SVM-LS phase for gene selection (Line 7) and gene
reduction phase (Line 8). At line 7, a SVM-LS algorithm (with any of the above
LS algorithms) is used to search for the best gene subset of a given size. After
each LS phase, gene reduction is achieved by deleting the least relevant gene
(i.e., the gene with the least ranking coefficient) from the best gene subset given
by the SVM-LS phase, from which point a new SVM-LS search is re-applied.
This two-stage process stops when removing the least interesting gene worsens
the classification accuracy on the training data.

4 Experimental Results

In this section we present two comparative studies. The first compares the differ-
ent LS algorithms presented in Section 3: SD, TS, ITSTS . In the second study,
we compare the results of our SVM-LS approach with SVM-RFE as well as three
other state-of-the-art algorithms from the literature.
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Algorithm 1. General SVM-LS Procedure
1: Input: Gp, i.e. a group of p pre-selected genes with a filter
2: Output: sg, the set of selected (most informative) genes
3: Generate an initial set of genes sg (section 3.5)
4: repeat
5: Evaluate sg using the SVM classifier on the training data (section 2) and fill sc

6: s = (sg, sc) /* s is the current solution */
7: s= SVM-LS(s) /* LS phase: apply SVM-based local search to improve current

solution s = (sg, sc) */
8: sg = sg − {gi} /* Gene reduction phase: remove the least informative gene from

the best solution found by SVM-LS phase */
9: until (stop condition is verified)

4.1 Data Sets

We applied our approach on three well-known datasets that concern colon cancer,
leukemia and lymphoma. These data sets have largely been used for benchmark-
ing feature selection algorithms, for instance in [14,13,11].

The colon cancer data set, first studied in [2], contains 62 tissue samples (22
normal and 40 anomal), each with 2000 gene expression values. The data set is
available at http://www.molbio.princeton.edu/colondata

The leukemia data set, first studied in [6], consists of 72 tissue samples, each
with 7129 gene expression values. The samples include 47 acute lymphoblastic
leukemia (ALL) and 25 acute myeloid leukemia (AML). The original data are
divided into a training set of 38 samples and a test set of 34 samples. The data
set is available at http://www-genome.wi.mit.edu/cancer/

The lymphoma data set, first analyzed in [1], is based on 4026 variables describ-
ing 96 observations (62 and 34 of which are respectively considered as abnormal
and normal). The data set is available at http://www.kyb.tuebingen.mpg.de/-
bs/people/weston/l0

Notice that prior to running our method, we apply a linear normalization
procedure to each data set to transform the gene expressions to mean value 0
and standard deviation 1.

4.2 Protocol for Experimentations and Comparison Criteria

To avoid the problem of selection bias which leads to over-optimistic estimations,
we adopt the experimental protocol suggested in [3]. For each SVM-LS algorithm
and each data set, 50 independent experiments are carried out. For each of these
experiments, the data set samples are first randomly partitioned into a training
set L and a testing set T ((L, T ) respectively fixed at (50,12), (38,34) and (60,36)
for “Colon”, “Leukemia” and “Lymphoma”). The training set L is then used by
the SVM-LS algorithm to determine the best gene subset G (smallest size and
highest classification accuracy on the samples of L). Finally, the selected gene
subset G is evaluated on the testing samples of T using the SVM classifier. The
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resulting classification accuracy and the size of G are used for calculating the
averaged statistics.

For comparison, we use two criteria: averaged classification accuracy (Acc) on
the testing samples and the averaged number of selected genes (NG) over these
50 independent experiments. Computing time is not reported, but let us mention
that one experiment on one data set takes about 20 minutes on a typical PC
(Pentium Centrino Duo, 1.2MB).

4.3 Results and Comparisons

Comparison of the Three LS Algorithms. Table 1 shows the results of our
SVM-LS approach using the three different LS algorithms: SD, TS and ILSTS .
One can rank these LS algorithms as follows: ILSTS > TS > SD (> means
“better than”). Indeed, ILSTS performs globally the best even if for Leukemia,
SD obtains a better prediction accuracy (92.52% against 91.94%), but requires
more genes (6.04 against 3.14). The results of TS are also globally good, followed
by the simple descent. Comparing these results with those showed in the next
two tables will allow us to better assess the interest of the SVM-LS approach.

Table 1. Comparison of SVM-LS algorithms based on the classification accuracy on
test set (Acc) with standard deviation and the number of selected genes (NG) with
standard deviation

SD TS ILSTS

Dataset Acc NG Acc NG Acc NG
Colon 84.84%±9.17% 15.32±1.83 85.50%±8.21% 11.16±2.81 87.00%±7.36% 08.20±2.09
Leukemia 92.52%±3.42% 06.04±1.38 92.47%±3.36% 04.74±1.32 91.94%±4.06% 3.14±1.08
Lymphome 92.11%±2.20% 17.04±2.44 92.44%±1.86% 14.32±2.21 95.44%±2.15% 12.46±1.58

Table 2. Results of SVM-RFE algorithm

Colon Leukemia Lymphoma
Acc NG Acc NG Acc NG

SV M − RFE 85.16%±8.11% 18.32±6.07 92.35%±3.25% 4.82±2.39 92.33%±3.96% 16.40±2.51

Comparison with SVM-RFE. The proposed approach is somewhat related
to the well-known SVM-RFE approach [7]. With SVM-RFE, one starts with all
features and remove iteratively the “least relevant” feature (according to the
SVM classifier). Notice that SVM-RFE is fully greedy; a wrongly eliminated
gene can never be reselected afterwards. Table 2 shows the results of SVM-RFE
obtained under the same experimental conditions. Comparing Tables 2 and 1,
one observes that SVM-RFE performs better than the pure decent algorithm,
but is outperformed by TS and ILSTS . This confirms the interest of using LS to
explore the search space of a fixed size before gene elimination.

Comparison with State-of-the-art Approaches. Table 3 shows the results
of three other best performing selection algorithms [14,13,11]. We have chosen
these references because they use the same or similar experimental protocol to
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Table 3. Comparison with three other SVM-based based selection methods (the sym-
bol - indicates that the paper gives no information for the concerned dataset)

[14] [13] [11]
Dataset Acc NG Acc NG Acc NG

Colon 85.83%±2.0% 20 82.33%±9% 20 81.00%±8.00% 4.44±1.74
Leukemia - - - - 90.00%±6.00% 3.16±1.00
Lymphome 91.57%±0.9% 20 92.28%±4% 20 93.00%±4.00% 4.42±2.46

avoid selection bias. Once again, one observes that the SVM-LS approach (in
particular with TS and ILSTS) is very competitive since its results often dom-
inate these reference methods with a higher classification accuracy and smaller
set of selected genes.

5 Conclusion

In this paper, we have presented a SVM-based Local Search approach for gene
subset selection and classification with two distinguished and original features.
First, the evaluation function of our LS algorithms is based not only on the
classification accuracy given by the SVM classifier, but also on the its maxi-
mum margin. Second, the ranking information provided by the SVM classifier
is explicitly exploited in the LS strategies. These two features ensure that the
SVM-LS approach is fully dedicated to the targeted problem and constitute its
basic foundation.

Using an experimental protocol that avoids the selection bias problem, the
SVM-LS approach is experimentally assessed on three well-known data sets
(Colon, Leukemia and Lymphoma) and compared with four state-of-the-art gene
selection algorithms. The experimental results clearly show that the proposed
approach competes very well with the reference methods in terms of the classi-
fication accuracy and the number of selected genes. The proposed approach has
an additional and important advantage over the filter methods and SVM-RFE.
Indeed, SVM-LS allows us to generate multiple gene subsets of high quality,
which can be used for further analysis and data mining purpose.

This study shows that local search constitutes a simple, yet powerful approach
for gene selection and classification of microarray data. Its effectiveness depends
strongly on how semantic information of the given problem is integrated in its
basic operators such as neighborhood and evaluation function. Finally, it is clear
that the proposed approach can easily be combined with other ranking and
classification methods.
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Abstract. This work proposes a versatile tool (GENFOCS) for comparative 
analysis of predictions of selected gene-finders1. The objective of this tool is not 
necessarily to find better predictions, but to provide a platform for analyzing the 
predictions of different gene finding tools/techniques. The tool does compara-
tive analysis of individual predictions over the queried DNA sequence. This 
work significantly extended the analysis to eukaryotes and prokaryotes as well. 
GENFOCS uses sensitivity and specificity as measure to analyze the predic-
tions of selected organism2. This online3 tool generates various outputs like 
graphics, charts and tables.  

Keywords:  Comparative analysis of gene predictions, sensitivity and speci-
ficity. 

1   Introduction 

Recent developments in sequencing technology escalated the size of biological data-
bases dramatically. After the sequencing is done, rummaging for the potential genes 
in the sequenced genome is one of the important tasks to be carried out. This process 
known to be gene-finding, paved path to several computational gene-finding tech-
niques/tools. But the most assessing factor in gene prediction relays greatly on posi-
tioning of the genes, with its attributes rightly. The interest of this work is to set up a 
novel approach, by which he/she could analyze the predictions of different gene-
finders. This tool facilitates analysis for both eukaryotes and prokaryotes.   

1.1   GENFOCS – Introduction 

GENFOCS comes with many interesting features. It allows user to do a comparative 
run of gene-finders for a set of selected organisms (Arabidopsis thaliana, Human, 
Rice), with the sequence of his/her interest. The tool can run individual gene-finders 
with all their default options provide. The outputs generated by individual gene-
finders will be visualized under a single window. Also, the outputs can visualize in 

                                                           
1 Gene-finders considered were on the basis of approaches obtained. 
2 Currently limited to Arabidopsis thaliana. 
3 Deployed on a local server. 
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tabular as well as graphical forms. The comparative analysis based on sensitivity and 
specificity of gene-finders at various levels, for the organism (now limited to Arabidop-
sis thaliana) is the key feature of this tool. All the gene finding tools, GENFOCS se-
lected, are free to use for academic purpose. Genscan (C. Burge et.al, 1997), Glim-
merhmm (M. Pertea et al., 2004) and Geneid (M. Burset et al., 1996) are the gene-
finders selected under Eukaryotes. And under prokaryotes, Glimmer2 (A.L Delcher, 
1999) and Genemark.hmm (Lukashin A. and Borodovsky M, Nucleic Acids Research, 
1998) were selected for analysis. The comparison of Glimmer2 output with that of 
Genemark.hmm is limited, since the offline implementation of Genemark.hmm was not 
possible.  

Before generating the analyzed result, GENFOCS dynamically collects essential 
information predicted by gene-finders and store it temporarily for future processes. 
Using the collected information and available GFF4 file, the tool finds the sensitivity 
and specificity measures at gene level and exon level.  

In the case of eukaryotes, the tool displays the features like number of genes, DNA 
strand (forward/backward), number of exons per gene, type of exons (Ini-
tial/Intermediate/Terminal),type of gene(single exon/multiple exon), starting and 
ending nucleotide positions of each exon, length of individual exons in nucleotides 
etc. Under prokaryotes the features displayed are number of ORFs, starting and end-
ing nucleotide positions of ORFs, length of ORFs etc. User can view the individual 
outputs generated by respective gene-finders during the simultaneous run for a given 
input sequence. Users can also do individual run of gene-finders, by applying all the 
options and parameters provided along with the tools.  

2   Methodology 

This work has divided into two major divisions, for eukaryotes and prokaryotes. Un-
der each division, user is allowed to comparative run as well as individual run of 
gene-finders. If the user selects the individual run for a particular predictor, then a 
new window for the selected gene-finder would be displayed. Initially, the user has to 
select one of the organisms from the list (Human, Arabidopsis or Rice). Then, the user 
can paste or upload the corresponding DNA sequences. GENFOCS is limited to han-
dle input sequence5 length of one million base pairs on comparative run. Sensitivity 
and specificity are calculated for the queried sequence with the help of GFF file in-
formation. The predicted output and GFF information are parsed separately, and then 
specificity and sensitivity will be calculated. Here, the details like starting nucleotide, 
ending nucleotide and chromosome number are the essential parameters required to 
supply by the user. Due to various resource constraints, sensitivity and specificity 
analysis is limited to Arabidopsis thaliana. The performance of GENFOCS depends 
on the computing resources available. 

2.1   GENFOCS – Parsing the Predicted Outputs 

GENFOCS uses direct and simple steps for parsing the individual prediction results of 
different gene-finders. 
                                                           
4 General Feature Format (GFF). 
5 Since Genscan input sequence capacity is limited to one million bas pairs. 
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1. Open the output file (predicted result). 
2. Parse the data line by line and store them in array1 temporarily. 
3. Split each line using space as the separator and store each output fields in array2. 
4. Search for number of base pairs in array1  
5. From array2, using different index values, find the details like gene number, num-
ber of exons in that gene, DNA strand on which that gene is predicted, type of each 
exon, exon begin, exon end and exon length.  
6. Store the above details in the database for further use. 

2.2   GENFOCS Visual Representations 

This tool visualizes the predicted results in various forms, to interpret the predictions 
in a fast and friendly way. For larger sequences, simultaneous understanding of the 
separate predictions of each gene finder is a tiresome task. A combined visual repre-
sentation of each predicted results is more appropriate in this case. The option GEN-
FOCS Results under this tool gives an option to visualize the first level information of 
different predictions, under a common table. This is a table displays a first level in-
formation like gene finder name, the number of base pairs, number of genes predicted 
by each predicting tools etc... Users can also have a detailed tabular view of features 
with the option named View Tabular Output (Fig.1). Under this option output appar-
ently displays all the common features pertaining to each gene predicted. That is, for 
given sequence, the prediction result of Genscan will be displayed in first row, second 
row shows Glimmerhmm and third of Genid. Each feature elements beneath the 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1. Output displayed by selecting View Tabular Output option 
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corresponding column headings being fixed based on the generic characteristics of 
gene-finders. For example, under the column heading gene_no, number of gene pre-
dicted by the first tool will be displayed, and followed by that of second tool, then by 
that of third one. The other important features included are number of exons, type of 
gene (multiple/single exon) etc… Separate color schemes are used to represent the 
details of different gene-finders, for an easy discriminated view of the tabular result. 
By placing mouse over each element in the tabular view, GENFOCS can show a 
small description of information belonging to that element. This feature helps users by 
not scrolling back to the top for checking the feature name.   

Another interesting option View Graphical Comparison (Fig. 2.) gives a high level 
graphical presentation of different prediction. This option displays two graphs, the 
first graph shows a bar diagram of Gene-finders Vs Number of predicted genes.  And 
the second graph shows pie charts. Pie chart is a direct representation of the percent-
age of coding and non coding nucleotides present in the given DNA sequence. The 
percentage values are calculated by the following formula: 

Coding% = (total exon length/total number of base pairs) * 100 

Non coding% = 100 - Coding% 
(1) 

Below, the pie charts show the result for Genscan, Glimmerhmm and Geneid. These 
charts give highg level information about the amount of coding/non coding nucleo-
tides identified by individual gene-finders. The following figure shows the graphs 
generated by GENFOCS.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Fig. 2. Diagrams inside the window show the number of gene predicted and gene density 
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2.3   GENFOCS – Sensitivity and Specificity 

The following steps are used to measure the sensitivity and specificity by GENFOCS. 

1.  Open the GFF file for the specified organism and chromosome.  

2. Split the GFF file line by line and store in array1. 

3. Split each above line, with space as the separator and store in array2. 

4. Look for the substring gene in each GFF line, using array1. 

5. If (match found) {if (begin and end nucleotides within the allowed limits) {(a) 
Store gene start, gene end positions in separate arrays. 

6. (b) Store the exon details of current gene, like exon begin and exon end, in sepa-
rate arrays. }} 

7. For each gene finder, do the following: 

8.  For each gene finder, check the starting and ending of their exons with the exons 
got from GFF file. If both begin and end exactly matches, they are taken as True 
Exons. 

9. The total number of exons, within the given range, from the GFF file is taken the 
number of Annotated Exons.  

10. The total number of exons predicted by individual gene-finders is taken as Pre-
dicted Exons. 

11. If for any genes predicted by individual gene-finders, whose first exon's starting 
position and last exon's ending position are equal with the starting and ending po-
sitions of genes from GFF file, then they are taken as True Genes. 

12. The total number of genes predicted by individual gene-finders is taken as Pre-
dicted Genes. 

13. The total number of genes, within the given range, from the GFF file is taken the 
number of Annotated Genes.  

The sensitivity and specificity are calculated by: 

Sn_gene = (TG/AG) * 100% 

Sp_gene = (TG/PG) * 100% 

Sn_exon = (TE/AE) * 100% 

Sp_exon = (TE/PE) * 100% 

Avg_gene = ((Sn_gene + Sp_gene)/2) * 100% 

Avg_exon = ((Sn_exon + Sp_exon)/2) *100% 

(2) 

Where TG is True Genes, AG is Annotated Genes, PG is Predicted Genes, TE is True 
Exons, AE is Annotated Exons and PE is Predicted Exons. The figure (fig. 3.) shows 
the sensitivity and specificity measured for gene and exon level on a sample sequence 
(Arabidopsis thaliana). 
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Fig. 3. Sensitivity and Specificity measured for gene and exon level (Arabidopsis thaliana) 

3   Discussion 

For evaluating the accuracy of eukaryotic gene-finders, the following data is first 
collected from the NCBI website.  

 

Organism selected: Arabidopsis thaliana  
Sequence details  

• Chromosome: 1 Contig: NC 003070.5 start: 1 stop: 20000  
• Chromosome: 2 Contig: NC 003071.3 start: 1 stop: 20000 
• Chromosome: 3 Contig: NC 003074.4 start: 1 stop: 20000 
• Chromosome: 4 Contig: NC 003075.3 start: 1 stop: 20000 
• Chromosome: 5 Contig: NC 003076.4 start: 1 stop: 20000 
• Strand: plus 
 

GENFOCS is allowed to run in the comparative mode for each case and the various 
sensitivity and specificity measures are calculated:  
For chromosome: 1 the value of AE=25. The values of PE and TE for the three eu-
karyotic gene-finders are:  

1. Genscan: PE=12, TE=5 
2. Glimmerhmm: PE=14, TE=8 
3. Geneid: PE=12, TE=8. 
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Table 1. Shows the exon level accuracy of each eukaryotic gene-finder for chromosome 1 
(Arabidopsis thaliana) 

Gene Finder Sn_exon Sp_exon Avg_exon 

Genscan 20.00 41.67 30.84 

Glimmerhmm 32.00 57.14 44.57 
Geneid 32.00 66.67 49.34 
    

Table 2. Shows the average accuracy of each eukaryotic gene-finder for the five set of se-
quences selected (Arabidopsis thaliana) 

 
 

 

 

 

A complete run of the entire genome may beget apparent and better results based on 
the values of sensitivity and specificity. But the limited resources available for GEN-
FOCS were not sufficient to support an entire genome run. The result shows that all 
the eukaryotic gene-finders considered are more accurate in exon level sensitivity and 
specificity compared to than of gene level. In this example, the gene-finders selected 
can’t exactly locate the starting nucleotide of first exon.  

4   Conclusion and Future Works 

This proposed tool uncovered that; further woks need to be conducted on this analyz-
ing approach. From the studies it is found that the sensitivity and specificity of gene-
finders increases from gene level to exon level. It also shows an increase from exon 
level to nucleotide level. We suppose this work is just the beginning, and future en-
hancements like including other prediction techniques, dynamic interfaces and im-
plementing various constraints to analyze the predictions etc can make this tool more 
beneficial to researchers.  
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Abstract. Gene Machine© is a reconfigurable hardware/software architecture 
which can be used in studying a variety of problems in the field of computa-
tional biology. The key architectural features of Gene Machine© are a) hard-
ware implementation of nth order left-to-right Markov Model where the user ca 
n specify the number of states of the model and the order of the Markov model; 
b) cache memory for data input/output; c) shift, and logical instructions which 
operate at the singleton or set level, and d) floating point and integer arithmetic 
operations, and variable length operands whose lengths are based on the seman-
tics of the input data.  Gene Machine© can be programmed to perform a diverse 
set of computations such as nucleotide and protein sequence comparisons, pair 
wise and multiple sequence alignments, and secondary and tertiary structure 
predictions for DNA, RNA and protein sequences.   

Keywords: Genetic sequences alignment, hidden Markov model, computer ar-
chitecture. 

1   Introduction 

Recent efforts in designing new hardware and software have focused on abstract ma-
chines, molecular computing, etc. [1], [2], [3], [4].  Software packages and algorithms 
[5], [6], [7], [8], [9] for aligning gene sequences employ indexing, heuristics and fast 
comparison techniques to compare databases of sequences with a query sequence.  
The sequences retrieved are dependent on what scoring mechanisms are used.  In 
gene identification algorithms, one typically looks for features such as start and stop 
codons, promoter sites, etc.  Sequence folding studies attempt to find a set of aligned 
sequences and compute the degree of conservation of each amino acid in the target 
protein sequence. Gene Machine’s architecture has been designed to execute the se-
quence alignment and scoring algorithms in an efficient manner.   

2   Left-to-Right Hidden Markov Models [LMM] 

Hidden Markov models (HMM) such as profile HMM and motif HMM [10], [11] 
have been successfully used in bioinformatics to model dynamic data sequences  
and random processes using a minimum amount of memory.  An HMM can be  



518 R. Marshall 

represented by a finite state machine where transitions between states are specified by 
some probability function and the output at any given state is also probabilistically 
specified. Markov models of various orders have been used to find coding areas in 
nucleotide sequences.  Profile HMMs are left-to-right linear models containing match, 
add and delete states along with their associated probabilities. Motif HMMs are based 
on many strings of matched states which is appropriate for modeling ungapped blocks 
of sequence consensus, and a limited number of insert states which is appropriate for 
modeling spaces between ungapped blocks.  In this paper discuss a hidden Markov 
model architecture in which all state transitions are left-to-right time synchronous. 

3   Architectural Details 

The principal components of the Gene Machine are a) Query Sequence Vector, b) 
Consensus Sequence Vector, c) Hidden Sequence Vector, d) State Transition Vector, 
e) left-to-right Markov Module (LMM), and f) Baum-Welch Module. See Figure 1.  
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Fig. 1. Machine architecture 

3.1   Vector Modules Description 

3.1.1   Query Sequence Vector [QSV] 
Purpose: Contains the target sequence which is being analyzed/compared with se-
quences in the database/cache.  The dimensionality of QSV is N where N is the num-
ber of nodes in the LMM.  If the target sequence is of length L, the target sequence 
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vector will have 2L fields comprised of L features and L associated scores.  Initially 
the score fields will be empty; these fields will be filled upon execution of the LMM 
module.   If each feature is assigned f bits and each score field p bits, the length of the 
target sequence vector will be L  ( f  +  p ) bits. If the number of bits used to store 
each feature is also p, then the length of QSV will be 2 L p bits.   

3.1.2   Hidden Sequence Vector [HSV] 
Purpose:  Contains the hidden state sequence in the LMM that was followed in ob-
taining an optimal score for aligning the target sequence vector with the consensus 
sequence vector.  If the target sequence is of length L, there can be only (L-1) state 
transitions in the LMM from start to finish.  Therefore, the HSV will contain (L-1) 
fields, each specifying a state transition or path.  Since each field value is an integer 
between 2 and L, to specify this value only requires log 2 ( L ) bits per field.  The size 
of HSV is  N2 bits (N n-bit words). 

3.1.3   Consensus Sequence Vector [CSV] 
Purpose: contains the consensus sequence which is used as the basis against which 
the data in the target sequences are compared.  The set of output symbols and their 
associated emission probabilities or scores for all the nodes is stored in CSV.  If the 
consensus sequence is of length M, the consensus sequence vector will have 2M 
fields comprised of M features and M associated scores.  The value of M cannot ex-
ceed the maximum number of nodes N in the LMM module configuration.  Since 
there are N nodes and each node requires 2 N p bits, the size of CSV is given by 2 N2 
p bits. 

3.1.4   State Transition Vector [STV] 
Purpose:  To specify the number of nodes, the probability-based interconnection 
structure of the nodes and the order of the Markov process used in the N-node hidden 
Markov model. The dimensionality of  STV is N.  There are N fields, one for each 
node in the LMM. Each field, in turn, is comprised of two subfields – one to store 
interconnection of the node, the other to store the interconnections probabilities. In an 
LMM with N nodes, each node can only be connected to itself and/or to one or more 
nodes to its right. The last node may be connected only to itself.  Each transition is 
associated with a probability value.  Setting a probability to zero implies the connec-
tion does not exist. If a k th - order Markov model is desired this means ensuring that k 
is less than N. For any node J, where J is between 1 and N inclusive, the size of the 
state transition set is given by (N – J + 1); likewise, for the probability set associated 

 
Hardware    Format   Number of 

bits 
QSV [f1 s1] [f2 s2]  [….] [fl sl] 2 N p 
HSV [ P1 ] [ P2 ]  [ …] [P L-1] L log 2 L 
CSV [f1 s1] [f2 s2]  [….] [fM sM] 2 N 2 p 
STV [ts1 p1] [ts2 p2]  [….] [tsN pN] N2(p+log 2 

N) 

Fig. 2. Hardware Vector Format and Size 
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with each node. Since any item in the state transition set is an integer between 1 and 
N, and each set can contain no more than N values, to represent any node’s state tran-
sition set we use a bit vector of size N requires at most  N  log 2 ( N )  bits.  The mini-
mum total space requirement for the state transition vector will be N 2 [ p +  log 2 ( N 
)] bits.  See Figure 2. 

3.1.5   Left-to-Right Markov Module [LMM] 
Purpose: to compare the features of a given target sequence in the target or query se-
quence vector against the features of some specified sequence in the consensus se-
quence vector and return the optimal score in the QSV and the hidden state sequence 
in the HSV.  This is a hardware implementation of the forward and backward decod-
ing phases of the left-to-right hidden Markov algorithm.  LMM is an n by n node 
structure where each node has the same m features and associated output probabilities 
as in CSV. In addition, as the LMM evolves over time, the cells will contain the com-
puted probabilities of the evolved sequence; this will require an additional p bits.  The 
output probabilities of all the features of the first node are set to 1 and the output 
probabilities of the features of the remaining (n – 1) nodes are set to zero.   The mod-
ule is an N by N structure labeled H containing N2 cells.  The row index represents a 
time step and the column index represents a state in the LMM.  Therefore any refer-
ence to an arbitrary cell H I J means that at time I the machine is in state J.  The maxi-
mum number of cells that contribute to the value of cell H I J is given by J and these 
contributing cells (labeled ‘predecessor’ cells) are H I-1, K where 1 <= K <= J.  This 
means the value or score in each cell is determined by the values or scores in its 
predecessor cells including the cell under consideration, the state transition probabili-
ties and the output emission probabilities of the involved cells, and the particular op-
erations or computations that are used in defining what constitutes the ultimate value 
or score to be assigned to a cell.  In a standard LMM, the value assigned to a cell is 
typically the largest of several product probabilities where each product probability is 
specific to a predecessor cell or the negative log of the product probabilities.  In Gene 
Machine, cell value computations can be based on a variety of operators.  These op-
erations include arithmetic, relational, logical, shift and string operations; which op-
erators are used is dependent on which features of the CSV or QSV are involved.   
The value assigned to a cell can be numeric, character, string.  Consider feature f 
(with a score of s) in the CSV which is to be compared/aligned with feature g (whose 
initial score is zero) in the QSV.  The computed ‘value’ or associated score of g can 
be defined as follows: 

 Associated score of feature g    [ f   Op  g ] s 

where Op is some operator such as ‘and’, ‘xor’, ‘or’, add, multiply, greater than, etc.  
For example, if f and g are residues, s is a structure predictor such as ‘H’ for helix, 
and the operator Op is chosen to be ‘and’, then if the two residues match, we can as-
sign the score ‘H’ to feature g.  The format and size of LMM are determined by the 
lengths of QSV, STV and CSV.  

3.1.6   Baum-Welch Module [BW] 
Purpose:  To generate an optimal Markov model based on a number of training se-
quences.  The model’s interconnections and associated probabilities are stored in 
STV.   In this paper we do not discuss any additional details of the BW module.[12]. 
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Fig. 3. Storage Structure for Transition Probabilities (TPs) 

3.2   Storage Structure and Register Organization 

The LMM has a set of registers which are used to cache frequently used variables. 
The variables can be actual values, or addresses pointing to the RAM since all data 
for initializing the LMM are in the RAM.  The value registers are all 8 bytes (to store 
double precision values). However, each of these 8 byte registers can be addressed as 
8 single- byte registers or 4 short (i.e., 2-byte) registers. For example, AX is an 8 byte 
register. However, we can individually address the 8 single-byte registers as AB1, 
AB2...AB8, or 4 short registers as AS1, AS2, AS3 and AS4. This will allow the same 
registers to be used for byte operations as well as short or double value operations.  
The address registers are all 4-byte registers, allowing a total addressing space of 4 
GB.  See Figure 3. 

4   Instruction Set 

A RISC design has been chosen to handle the variable length operands (vectors) 
whose lengths are based on the semantics of the input data.  For example, the shift 
instruction allows one to change window sizes, introduce gaps in sequences, and 
switch from nucleotide data to codon data – operations which are essential to local 
and global sequence alignment.  Floating point operations are also needed since float-
ing point values such as probabilities and logarithmic probability ratios, bond angles, 
hydrophobic scales (e.g., [13]) are involved. 

5   Data Types 

The various logic operations for the Gene Machine© are defined at the set level and 
employ non-classical logic definitions.  The different types of data are 1) nucleotides 
and 2) amino acids interpreted as a) codons, b) forming alpha and beta secondary 
structures, c) hydrophilic and hydrophobic entities, and d) specified by their side 
chains.  Biological and chemical semantic criteria have been used in choosing set 
names and defining set membership.  For example, PB is the protein backbone set 
whose elements AC, BA, HF, HB stand for acidic, basic, hydrophilic and hydropho-
bic amino-acids, respectively.  AC is itself a set which contains those amino-acids 
which are primarily acidic in chemical composition.   
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5.1   Nucleotide Data Input 

We define the following basis sets: 

      NS = {A, T, G, C};  PR = {A, G};  PY = {C, T};  W1 = {A, T};  W2 = {C, G} 

NS is the nucleotide set and A, T, G, C are the four nucleotides; PR is the purine set 
and PY is the pyrimidine set; W1, W2 are the Watson-Crick base pair sets.  PR and 
PY are said to be in the purine/pyrimidine class C1.  Likewise, W1 and W2 are in the 
Watson-Crick base pair class, C2.  Note that sets within a given class are mutually 
exclusive. 

5.2   Codon Sequences as Data Input 

Basis sets: 

 AA = {LZ, HR, LS, MR}; MH = {MR, HR}; SZ = {LS, LZ};  
 MS = {MR, LS};  HZ = {HR, LZ} 

AA is the codon set whose elements MR, HR, LZ and LS stand for medium redun-
dancy, high redundancy, low stop and low start, respectively.  MS and HZ are in class 
C1; MH and SZ in class C2.  It should be pointed out here that MR, HR, LZ and LS 
actually represent sets whose elements are drawn from the standard symbols A, B… 
W, Y representing the 20 amino acids and the stop codon Z.   

MR = {A, G, P, T, V};   HR = {L, R, S}    
LZ = {C, D, E, F, H, K, N, Q, Y, Z};  LS = {I, M, W}  

Each amino acid in set MR can be represented by any of 4 codons specific to the 
amino acid.  Each amino acid in set LZ can be represented by any of 2 codons spe-
cific to the amino acid.  Note that set LZ also contains the stop codon Z.  Each amino 
acid in set HR can be represented by any of 6 codons specific to the amino acid.  The 
members of set LS are mixed; one codon specifies M and W whereas 3 are needed for 
I.  Note that set LS contains the start codon M (also methionine.)  

5.3   Amino Acids Data Input for Interpreting Secondary Structures 

Basis sets: 

 SS = {AF, AB, BF, BB}; ALFA = {AF, AB}; BETA = {BF, BB};  
 ALFABETA = {AF, BB};   BETALFA = {BF, AB}  

SS is the secondary structure set whose elements AF, AB, BF, BB stand for alpha 
former, alpha breaker, beta former and beta breaker, respectively.  ALFA is the alpha 
set and BETA is the beta set, and ALFABETA, BETALFA are the alpha-beta cross 
sets.  ALFA and BETA are in alpha-beta cross class C2.  Likewise, ALFABETA and 
BETALFA belong to the alpha/beta class C1.   

5.4   Amino Acids Data Input Interpreted as Hydrophobic/Hydrophilic Entities 

Basis sets: 

 PB = {AC, BA, HF, HB}; PH = {AC, BA};   HP = {HF, HB};  
 AHB = {AC, HB};   HFB = {HF, BA}  
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Table 1. Data Types 

Data Type Basis Set Class C1 Sets Class C2 Sets 
Nucleotide {a, t, c, g} {a, g} {c, t} {a, t} {c, g} 

Amino acids           

Codons {lz, hr, ls, mr} {ls, lz} {mr, hr} {mr, ls} {hr, lz} 

Secondary Structure {af, ab, bf, bb} {af, ab} {bf, bb} {af, bb} {bf, ab} 

Hydro- philic/phobic {ac, ba, hf, hb} {ac, ba} {hf, hb} {ac, hb} {hf, ba} 

Side Chain {ln, mb, r1, r2} {ln, mb} {r1, r2} {ln, r1} {mb, r2} 
 

PB is the protein backbone set whose elements AC, BA, HF, HB stand for acidic, 
basic, hydrophilic and hydrophobic, respectively.  PH is the acidic/basic set and HP is 
the hydrophilic/hydrophobic set; AHB, HFB are the acidic-hydrophobic and base-
hydrophilic cross sets.  AHB and HFB are in class C1 while PH and HP in class C2.   

 5.5   Amino Acids Interpreted on the Basis of Side Chains 

Basis sets: 

 SC = {LN, MB, R1, R2}; AL = {LN, MB};   AR = {R1, R2};  
 LR1 = {LN, R1};   R2M = {R2, MB}  

SC is the side chain set whose elements LN, MB, R1, and R2 stand for linear, multi-
branched, single ring and double ring, respectively.  AL is the aliphatic set and AR is 
the aromatic set; LR1, R2M are the linear/single ring and multi-branched/double ring 
cross sets.  LR1 and R2M are in class C1 while AL and AR are in class C2.  The dif-
ferent data types are summarized in Table 1. 

6   Logic Operators 

We define ten operators - 4 unary [NOTS, COM, SUB1, SUB2S] and 6 binary [AND, 
OR, ANDS, XORS, XNORS].  Operators (given by symbols X and Y) whose oper-
ands are sets are distinguished from standard logical operators by appending ‘S’ to the 
operators’ names.  Such operators do not have associative and commutative proper-
ties. In what follows, we use the nucleotide data type sets as operands in the truth  
tables for the various unary and binary operators.  Partial truth tables are shown in 
Tables 2a thru 2e.  We do not go into the truth tables for the other data types. 

6.1   Unary Operators 

NOTS X is defined as S – {X} where X is a member of S.  This operation returns a 
set as the result.  COM X returns Y, the Watson Crick base pair of X.  Thus X and Y 
are both in set S1 or they are both in set S2.  SUB1 X returns the transition substitu-
tion Y where X, Y are either both purines (i.e. in set S1) or both pyrimidines (i.e. in 
S2).  SUB2S X returns the transverse substitution Y where Y is S2 if X is in S1, and 
Y is S1 if X is in S2.  The result is a set. 
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Table 2. (a). Unary Operators Truth Table. (b). Binary logic[purine set only or pyrimidine set 
only] (partial). (c). Binary logic[Watson-Crick base-pair sets] (partial). (d). Binary logic [dif-
ferent sets within the purine-pyrimidine class] (partial). (e). Binary logic [different sets within 
Watson-Crick base-pair sets] (partial). 

(a) 

 Classical Logic Set-based Logic 
X COM X 

(Watson-
Crick) 

SUB1 X 
(transitions) 

SUB2S X 
(transverse) 

NOTS X 
(other) 

A T G {C, T} { T, C, G 
} 

T A C {C, T} { A, C, G 
} 

C G T {A, G} { A, T, G 
} 

G C A {A, G} { A, T, C 
} 

(b) 

  Classical Logic Set-based Logic 
X Y X  AND  Y X  OR  Y X  XORS  Y X  XNORS  Y 
A A A A { C,  T } { A, G } 
C C C C { A,  G } { C,  T } 

(c) 

  Classical Logic Set-based Logic 
X Y X  AND  Y X  OR  Y X  XORS  Y X  XNORS  Y 
A A A A { C,  G } { A, T } 
C C C C { A,  T } { C,  G } 

(d) 

X Y X  ANDS  Y X  ORS  Y X  XORS  Y X  XNORS  Y 
A C {A, G, T} {C, G, T} { G,  T } { A, C, G, T } 
 T {A, C, G} {C, G, T} { C,  G} { A, C, G, T } 

G C {A, G, T} {A, C, T} { A, T } { A, C, G, T } 
 T {A, C, G} {A, C, T} { A, C } { A, C, G, T } 

(e) 

X Y X  ANDS  Y X  ORS  Y X  XORS  Y X  XNORS  Y 
A C {A, T, G} {C, T, G} { T,  G } { A, C, T, G } 
 G {A, C, T} {C, T, G} { C,  T} { A, C, T, G } 

T C {A, T, G} {A, C, G} { A, G } { A, C, T, G } 
 G {A, C, T} {A, C, G} { A, C } { A, C, T, G } 

6.2   Binary Operators 

Here there are two cases to consider – both operands may come from the same set 
within a class or they may come from different sets within the same class. 
Case 1:  Operands X, Y belong to the same set within a given class. 
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X   ANDS   Y   is defined to be X; X   ORS   Y   is defined to be Y.  X   XORS   Y   
is defined to be another set within the same class.  The result is a set.  X   XNORS   Y   
is defined to be the set which contains both X and Y. The result is a set.   

Case 2: Operands X, Y belong to different sets within a given class. The result is a 
set. 
X ANDS Y   is defined to be the union of the sets containing X and Y but without the 
element Y; X ORS Y is defined to be the union of the sets containing X and Y but 
without the element X.  X XORS Y   is defined to be the union of the sets containing 
X and Y but without the elements X and Y; X XNORS Y   is defined to be the union 
of the set containing X and the set containing Y. 

7   Execution and Performance Considerations 

We assume a RISC machine with 1 cycle per phase in the instruction cycle, 1 cycle 
for read /write operations in load/store, and delays due to the floating point unit are K 
for add and M for multiply.  In our design, the length of the address pointer is imma-
terial and does not affect read/write time because pointer arithmetic is assumed.  In 
Table 3 we show the minimum and maximum number of cycles per instruction for 
various instruction categories; the computation is based on the addressing modes per-
tinent to an instruction category.   

The utility of Gene Machine lies in being able to implement a variety of sequence 
alignment and scoring algorithms using a single platform.  The optimal alignment can 
be obtained through scores defined on the basis of a single character (codon or nu-
cleotide), secondary structure (alpha, beta, etc.), polarity, hydrophobicity, etc.  This 
flexibility is possible because the architecture is especially tailored to executing the 
Viterbi search algorithm which is a fast variant of the standard dynamic programming 
algorithm and independent of any particular scoring mechanism.  What algorithms 
such as Needleman-Wunsch, and Profile HMM share in common are a Viterbi-like 
approach to extracting the optimal alignment from a set of sequences although differ-
ent scoring mechanisms are used in each of the algorithms.  For example, in the Sell-
ers algorithm, the value of cell M i j is given by M i j = max{M i-1, j-1 + S(a i, b j );  

 
Table 3. Instruction execution time by category 

Instruction Minimum number of cycles Maximum number of cycles 

compare 3 13 

jump 4 4 

move or input 3 8 

add    3+K  3+K   

multiply  4+M  4+M 

output 3 5 

load/store 5 5 
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M i-k, j - W k ; M i, j-1 - W 1 ;0} where S and W represent similarity scores and 
gap/substitution penalties.  Since Gene Machine is based on hidden Markov models, it 
is a probabilistic model that can assign likelihoods to all possible combinations of 
gaps, matches, and mismatches to determine the most likely sequence alignment or 
set of possible alignments to produce both global and local alignments. 

To perform multiple sequence alignment on Gene Machine, we iteratively pick two 
sequences from a set of sequences and replace them with their alignment (i.e., con-
sensus sequence) obtained by executing the Viterbi algorithm until all sequences are 
aligned into a single consensus sequence. The Viterbi algorithm is executed after the 
first sequence is loaded into LMM, the second into QSV. The resulting consensus 
sequence is then input into LMM and a third sequence is loaded into QSV.  The proc-
ess is repeated until a set of sequences has been successively refined and incorporated 
into a single consensus sequence.  In what follows, we give a synopsis of the machine 
input description, the Viterbi algorithm as implemented. Let A represent the set of 
input symbols including the special end marker symbol and let M be the cardinality of 
the set  Denote the sequence to be aligned by X1,X2…Xm. We require Xi ∈ A for all 

1 ≤ i < m and Xm = end marker.  V denotes the two dimensional Viterbi array and the 

states of the LMM are denoted by S0,S1.. where S0 is the start state and Sn+1 is the end 

state which always emits the end marker. Let aij denote the probability of a transition 
from Si to Sj and ej(k) the emission probability of symbol Xk from Sj. Of course, e 
n+1(m) = 1. The two main steps in the Viterbi algorithm are proper initialization and 
execution of the dynamic programming segment with an appropriate scoring mecha-
nism as shown below. 

 

1. Initialization: 

a. v0(0) = 1; vj(0) = 0  for   0 < j ≤ (n + 1); v0(i) = 0  for   1 < i  ≤ m; pj(i) = 0 

for all i and j. 
b. e(n+1)(i) = 1 for i = m, and e(n+1)(i) = 0 , for all i ≠ m.; a00 = 0 = an+1.n+1 

2. Dynamic Programming: 

for i = 1 to m  
{ for j = 1 to (n + 1) 

{ vj(i) = ej(i) + maxk(vk(i-1) + akj) ,  /*  0 ≤  k  ≤ j */ 

  pj(i) = argmaxk{ vk(i-1) + akj}. } }   

The  output items are the alignment score given by vn+1(m) and the traceback state 

path p in which  if p(i) = p(i+1)  a deletion is implied whereas p(i+1) > p(i) + 1  im-
plies an insertion. 

8   Concluding Remarks 

Gene Machine is the first architectural design of its kind for use in bioinformatics. It 
incorporates instructions and data types which can used in a hierarchical manner for 
executing algorithms at the DNA/RNA, protein, gene, protein-protein interaction, cell 
and genome levels.  



 Gene Machine© – A Hardware/Software Platform for Analyzing Genome Data 527 

References 

1. Hood, L.: Systems Biology and Medicine in the 21st century: Dealing with Complexity. 
In: Microsoft e-Science Workshop, Johns Hopkins University (October 2006) 

2. Cardelli, L.: Abstract Machines of Systems Biology. In: Priami, C., Merelli, E., Gonzalez, 
P., Omicini, A. (eds.) Transactions on Computational Systems Biology III. LNCS (LNBI), 
vol. 3737, pp. 145–168. Springer, Heidelberg (2005) 

3. Regev, A., Shapiro, E.: Cellular Abstractions: Cells as Computation. Nature 419, 343 
(2002) 

4. Benenson, Y., et al.: An Autonomous Molecular Computer for Logical Control of Gene 
Expression. Nature 429, 423–429 (2004) 

5. Needleman, S., Wunsch, C.: A General Method Applicable to the Search for Similarities 
in the Amino-acid Sequence of Two Proteins. Journal of Molecular Biology 48, 443–453 
(1970) 

6. Higgins, D.G., Sharp, P.M.: CLUSTAL: A package for performing multiple sequence 
alignment on a microcomputer. Gene. 73, 237–244 (1988) 

7. Altschul, S.F., et al.: A basic local alignment search tool. Journal of Molecular Biol-
ogy 215, 403–410 (1990) 

8. Fasman, G.D.: Prediction of Protein Structure and the Principles of Protein Conformation. 
Plenum, New York (1989) 

9. Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks. In: 
Proceedings of the National Academy of Sciences USA, vol. 89, pp. 10915–10919 (1992) 

10. Parida, L., et al.: An approximation algorithm for alignment of multiple sequences using 
motif discovery. Journal of Combinatorial Optimization 3, 247–275 (1999) 

11. Henderson, J., Salzberg, S., Fasman, K.H.: Finding Genes in DNA with a Hidden Markov 
Model. Journal of Computational Biology 4(2), 127–142 (1997) 

12. Baum, L.E., et al.: A Maximization Technique Occurring in the Statistical Analysis of 
Probabilistic Functions of Markov Chains. Annals of Mathematical Statistics 40, 164–171 
(1970) 

13. Kyte, J., Doolittle, R.F.: A Simple Method for Displaying the Hydropathic Character of a 
Protein. Journal of Molecular Biology 157, 105–132 (1982) 
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Abstract. This paper deals with the symbolic representation of a DNA
sequence. As indicator it is taken a complex function. A DNA sequence
is investigated by using a family of wavelets. The existence of a fractal
shape, patterns and symmetries are eventually shown.

Keywords: Wavelets, wavelet coefficients, short Haar wavelet transfor.

1 Introduction

In recent years, the analysis of DNA sequences has been mainly focused on the
existence of hidden law, periodicities, autocorrelation [3,4,7,8,10,12,13,14,17,18].
The main task is to find (if any) some kind of mathematical rules in the nu-
cleotide distribution. This would help us to characterize each DNA sequence in
order to construct a possible classification. From mathematical point a view the
DNA sequence is a symbolic sequence (of nucleotides) with some empty spaces
(no coding regions). In order to get some numerical information from this se-
quence it must be transformed into a digital sequence [4,13,18]. There follows
that the symbolic sequence is transformed into a very large time series (from half
million of digits, for the primitive organisms such as fungus, eukaryotes, etc..,
to several millions, as for mammals, like the nearly 1.5 billion of nucleotides for
the humans DNA). These large sequences look like some random sequence, from
where it seems to be quite impossible to single out any single correlation (see
e.g. [3,8] and references therein).

More recently, the analysis of DNA sequences was done by using wavelets
(see e.g. [1,2,7,9,14,16]). This was motivated by the fundamental properties of
wavelets, in fact,

1. with the localization property [7], it is possible (at least in principle) to single
out local behavior and to characterize local spikes, jumps [2,5,7].

2. due to the de-correlation process of the wavelet transform [15] the DNA
sequence is decomposed into sequences of detail coefficients at different levels,
each one expressing some kind of auto correlation on the corresponding level.

The DNA sequence is composed by a large string made by 4 chemical elements
(nucleotides) called bases (or base pairs): adenine (A), cytosine (C), guanine (G)
and thymine (T). They are combined in a such way to form a long filament which
has the structure of double spiral which is a very steady chemical structure.

M. Elloumi et al. (Eds.): BIRD 2008, CCIS 13, pp. 528–537, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Some problems in DNA analysis are the understanding of the underlying ge-
nomic language, to find an organization principle of the genome, to discover
some kind of order (symmetries) or hidden structures (patches or regular pat-
terns) and the existence of functions on genes such as localized periodicities,
correlation, complexity, etc. The easiest mathematical model is based on the
transformation of the symbolic string into a numerical string based on the Voss
indicator function [18] which is a discrete binary function. In the following it
is proposed a complex modification of the indicator function, in order to single
out a fractal law in the cumulative distribution of nucleotides. The existence of
patterns and symmetries is shown through the cluster analysis of the wavelet
coefficients [5,6].

2 Complex Indicator Function

Let xn, be the n−th symbolic element of the DNA sequence, with x1 = A, x2 =
G, x3 = T, x4 = C, the binary Voss indicator function, (or projection operator)
is the function uxk

, (k = 1, 2, 3, 4)

uxk
(xm) = δkm (1)

δkm being the Kronecker symbol. There follows that for each symbol we have a 2-
values map, so that the original sequence of DNA is transformed into 4 strings of
binary values {0, 1}. However, with the Voss indicator the relative weight of the
absence is not detected, therefore a slightly modified definition of the indicator
function is proposed as follows

u(xm) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if xm = x1 = A

−1 if xm = x2 = G

i if xm = x3 = T

−i if xm = x4 = C

, m = 1, ..., N (2)

thus obtaining the complex sequence um = {u (xm)}m=1,..,N which is the math-
ematical representation of the genome. The DNA random walk is defined as

Sn =
n∑

m=1

u (xm), n = 1, ..., N (3)

which is the cumulative sum on the indicator function. Since the indicator is a
complex function, the random walk is a complex function as well. If we map the
points Pn = ($ [Sn] ,% [Sn]) , n = 1, ..., N , whose coordinates are the real and
the imaginary coefficients of each term of the random walk sequence, we obtain
a cluster showing some kind of fractal rule (Figs. 1,2). It should be noticed (Fig.
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Fig. 1. Random walk (n ≤ 300) of the Candida’s DNA (left) and the dog’s (right)
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Fig. 2. Random walk (n ≤ 750) of the candida’s DNA (left) and dog’s (right) for
n ≤ 900

2) that nearly all points of the random walk lie in the positive sector of the plane
so that: $ [Sn] ≥ 0,% [Sn] ≥ 0, (n = n0, ..., N, n0 > 1).

If we take the absolute value of the random walk, the sequence

an = |Sn|2 = ($ [Sn])2 + (% [Sn])2 , n = 1, ..., N

shows that both for the candida DNA and dog’s there exists a linear correlation
so that both the real and the complex part of the random sequence grow with a
linear law as in a long range correlation [3,12,18].

3 Wavelet Analysis of the DNA Random Walk

Let Y ≡ {Yi},
(
i = 0, ..., 2M − 1; 2M = N < ∞, M ∈ N

)
be a real and square

summable sequence sampled at the spots xi = i/(N − 1) and ranging on the
regular grid of the dyadic (i.e. N = 2M , M ∈ N) points of the interval [0, 1]. The
discrete Haar wavelet transform is the linear operator WN : RN → RN , which
associates to a given vector Y the vector of the wavelet coefficients



Complex Representation of DNA Sequences 531

WNY =
{
α, β0

0 , β1
0 , . . . , βM−1

k

}
(2M = N) (4)

with respect to a given scaling function ϕ(t) and wavelet basis ψ(t).
As wavelet family we choose the Haar wavelets, so that

⎧⎨
⎩

ϕn
k (x) = 2n/2ϕ (2nx− k) ,

ϕ (2nx− k) =
{

1 , x ∈
[

k
2n , k+1

2n

)
0 , elsewhere ,

(5)

it is the scaling function with ϕ (x) = ϕ0
0(x), characteristic function in [0, 1], and

{ψn
k (x)} is the wavelet basis
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψn
k (x) = 2n/2ψ (2nx− k) , ‖ψn

k (x)‖L2 = 1

ψ (2nx− k) =

⎧⎪⎪⎨
⎪⎪⎩
−2−n/2 , x ∈

[
k
2n , k+1/2

2n

)
2−n/2 , x ∈

[
k+1/2

2n , k+1
2n

)
0 elsewhere .

, (0 ≤ n, 0 ≤ k ≤ 2n − 1)
(6)

The wavelet coefficients α, βn
k , may be used to easily characterized the local

variability of data. Let us define the mean value 〈Yi,i+s〉 ≡
i+s∑
k=i

Yk/(s + 1) , and,

in particular, for i = 0, s = N − 1 the mean value 〈Y 〉 =
N−1∑
k=0

Yk/N . It can be

easily shown (see e.g. [6]) by a direct computation that,
⎧⎨
⎩

α =
〈
Y0,2M−1−1

〉

βn
k = 2−1+(M−n)/2Δ2M−1−n

〈
Yk2M−n,k2M−n+2M−n−1−1

〉
with n = 0, . . . , M − 1, k = 0, . . . , 2M−1 − 1 and

ΔhYi ≡ Yi+h − Yi, 1 ≤ h ≤ 2M − 1− i .

For example, with M = 2, N = 4, we have
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α =
1
4

(Y0 + Y1 + Y2 + Y3) , β0
0 =

1
2

(Y2 − Y0 + Y3 − Y1)

β1
0 =

1√
2

(Y1 − Y0) , β1
1 =

1√
2

(Y3 − Y2) .

(7)

When the wavelet coefficients are given, the above equations can be solved to
obtain the original data. With M = 2, N = 4, we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Y0 = α− β0
0 +

√
2β1

0

2
, Y1 = α− β0

0 −
√

2β1
0

2

Y2 = α +
β0

0 −
√

2β1
1

2
, Y3 = α +

β0
0 +

√
2β1

1

2

. (8)
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4 Short Haar Wavelet Transform

The wavelet transform of a sequence with a huge number of data (like the random
walks on DNA) gives a (huge) sequence of detail coefficients which is meaningless
when we want to focus on the existence of local (short) or long range correlations.
If we are interested on the jumps that can arise from one element of the series
and the closer element of the sequence, then we must reduce the number of
the elements to be mapped into the wavelet space. This can be achieved by
a decomposition of the sequence into short segments of equal length and by a
wavelet transform to be applied to each segment.

Given a N -length sequence Y ≡ {Yi} we can decompose it into a set of
σ = N/p segments with length p

{Yi}i=0,...,N−1 = {Y0, Y1, ...Yp}⊕

⊕{Yp+1, Yp+2, ...Y2p} ⊕ .....⊕ {YN−1−p, YN−p+1, ...YN−1} .

Each segment can be transformed into the corresponding segment of the
wavelet coefficients. So that, instead to map the whole sequence, the wavelet
transform is applied to each segment

WN {Yi}i=0,...,N−1 = W p {Y0, Y1, ...Yp}⊕

⊕W p {Yp+1, Yp+2, ...Y2p} ⊕ .....⊕W p {YN−1−p, YN−p+1, ...YN−1} .

The resulting transform [5,6] can be considered as a linearization of the wavelet
transform in the sense that the wavelet transform of the sequence is taken as a
sequence of the wavelet transforms.

For a complex sequence {Yk}k=0,...,N−1 = {xk + i yk}k=0,...,N−1 we can con-
sider the correlations (if any) between the wavelet coefficients of the real part
{xk}k=0,...,N−1 against the imaginary coefficients {yk}k=0,...,N−1. This can be
realized by the following cluster algorithm:

{Y0, Y1, ...Yp} ⊕ {Yp+1, Yp+2, ...Y2p} ⊕ .....
⇓

{x0, x1, ...xp} ⊕ {xp+1, xp+2, ...x2p} ⊕ .....
{y0, y1, ...yp} ⊕ {yp+1, yp+2, ...y2p} ⊕ .....

〉
real sequences

⇓
W p {x0, x1, ...xp} ⊕W p {xp+1, xp+2, ...x2p} ⊕ .....
W p {y0, y1, ...yp} ⊕W p {yp+1, yp+2, ...y2p} ⊕ .....

〉
wavelet transform

⇓{
α, β0

0 , β1
0 , β1

1 , ...
}

1
⊕
{
α, β0

0 , β1
0 , β1

1 , ...
}

2
⊕ .....{

α∗, β∗0
0, β

∗1
0, β

∗1
1, ...

}
1
⊕
{
α∗, β∗0

0, β
∗1
0, β

∗1
1, ...

}
2
⊕ .....

〉
wavelet coefficients

⇓
{(α, α∗)}1 ⊕ {(α, α∗)}2 ⊕ {(α, α∗)}3 .....{(

β0
0 , β∗0

0

)}
1
⊕
{(

β0
0 , β∗0

0

)}
2
⊕
{(

β0
0 , β∗0

0

)}
3
.....{(

β1
0 , β∗1

0

)}
1
⊕
{(

β1
0 , β∗1

0

)}
2
⊕
{(

β1
0 , β∗1

0

)}
3
.....

...
...

...

〉
clusters
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Thus we can study the correlation between the real and imaginary coefficients
of the random walk. Moreover, by a direct inspection of the random walks (Figs.
2,3) we might be interested not only on the local variations of data but also on the
rate of changes. This can be achieved by comparing the sequence of random walk
with an artificial sequence which expresses the rate of change thereof. This artifi-
cial sequence is the numerical derivative of the random walk and can be defined as
follows: Given the N−length sequence of real numbers Y ≡ {Yi} we have to com-
pute the interpolating function of the {Yi} either by spline or polynomials or some
other differentiable interpolating functions, then we have to compute the deriva-
tive of the interpolating function and discretize the derivative with respect to the
dyadic points The resulting sequence is taken as the numerical derivative of {Yi}.

As for the {Yi}, it is useless to map the whole sequence of the derivative,
therefore it is expedient to combine the numerical derivative algorithm with
the short Haar transform in order to get more information from the cluster
analysis. The clusters of wavelet coefficients are obtained as follows. If we call
{Y ′

i }i=0,...,N−1 the numerical derivative of {Yi}i=0,...,N−1, the original sequence
{Yi}i=0,...,N−1 is segmented and for each segment is computed the corresponding
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Fig. 3. Cluster analysis of the 4-th short Haar wavelet transform of the random walk
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numerical derivative. For each segment we have p points where each one belongs
to a different 2-dimensional space:

{(α, α′)}1 ⊕ {(α, α′)}2 ⊕ {(α, α′)}3 .....⊕ {(α, α′)}N/p{
(β0

0 , β′0
0)
}

1
⊕
{

(β0
0 , β′0

0)
}

2
⊕
{

(β0
0 , β′0

0)
}

3
.....⊕

{
(β0

0 , β′0
0)
}

N/p{
(β1

0 , β′1
0)
}

1
⊕
{

(β1
0 , β′1

0)
}

2
⊕
{

(β1
0 , β′1

0)
}

3
.....⊕

{
(β1

0 , β′1
0)
}

N/p

...

〉
clusters

where the prime stands for the coefficients of the derivative sequence
{Y ′

i }i=0,...,N−1.
Thus we have as many clusters as many wavelet coefficients in each segment.

Since our random walk is a complex series {Yk}k=0,...,N−1 = {xk + yki}k=0,...,N−1

there are at least 4 possible cluster analysis:

1. (W pxk, W pyk)k=0,...,N−1 wavelet coefficients of the real and imaginary part
2. (W pxk, W px′

k)k=0,...,N−1 wavelet coefficients of the real part and its numer-
ical derivative

3. (W pyk, W py′
k)k=0,...,N−1 wavelet coefficients of the imaginary part and its

numerical derivative
4. (W px′

k, W py′
k)k=0,...,N−1 wavelet coefficients of the numerical derivative of

the real and imaginary part.

In the following we will consider only the first three kind of clusters.

5 Cluster Analysis of the Wavelet Coefficients

For each complex random walk there are 2 sets of wavelet coefficients which
correspond to the real and complex coefficient of the complex value. However,
even if the real and complex coefficients of the random walk have some nonlinear
patterns (Figs. 1,2) the detail coefficients range in some fixed values thus showing
the existence of some correlations. It can be seen by a direct computation that
the jumps from one value to another belong to some some discrete sets

β0
0 , β∗0

0 ∈
{
−2,−3

2
,−1,−1

2
,−1

4
, 0,

1
4
,

1
2
, 1,

3
2
, 2
}

, β∗1
0 , β∗1

1 ∈
{
− 1√

2
, 0,

1√
2

}

β1
0 ∈

{
−1,− 1√

2
, 0,

1√
2

}
, β1

1 ∈
{
− 1

4
√

2
,− 1√

2
, 0,

1√
2

}

It means that the real and imaginary coefficients of the random walk increases
with a given law and the distribution of the nucleotides must follow this rule.

In any case the existence of some patterns is not well shown. From the clusters
of wavelet coefficients of the dog’s DNA random walk, we can see that while
the average values (α, α∗) show a fractal behavior similar to the random walk
sequence (Fig. 3) the detail coefficients range instead in some discrete sets.

The existence of symmetries and quantization for the wavelet coefficients of
the real and imaginary part of the random walk and its derivatives is also unex-
pected (Fig. 4).
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6 Comparison with a Random Sequence

It should be noticed that the presence of a hidden correlation in the short range
for the dog’s DNA doesn’t depend on the simple (random-like) structure of the
complex indicator function. In fact, the first 20 elements of the indicator function
for the dog’s DNA, according to equation (2) are

{T, T, C, T, T, C, C, A, A, G, A, G, T, T, C, A, C, A, G, T, .....}
⇓

u (xm)
⇓

{i, i, − i, i, i, − i, − i, 1, 1, − 1, 1, − 1, i, i, − i, 1, − i, 1, − 1, i, .....}

So that this sequence looks like a random sequence. Let us compare the clus-
ters of the random walks on DNA with the cluster of a random walk on a random
sequence.

For instance if we take the complex pseudo-random sequence

rm = (−1)r1 ir2

with r1, r2, random integer, we get e.g.,

{−1, i, 1, 1,−i, i,−1,−i, i, 1,−i, i,−1, i, 1,−i,−i,−i,−1, .....} .

The corresponding random walk (3) gives rise to a complex sequence whose
real and imaginary part are analyzed in the wavelet coefficients planes (see Fig. 5
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Fig. 5. Cluster analysis of the 4-th short Haar wavelet transform of the random walk
(n ≤ 1200) of a random sequence in the planes: a) (α, α∗); b)

(
β0

0 , β∗0
0
)
; c)

(
β1

0 , β∗1
0
)
;

d)
(
β1

1 , β∗1
1
)
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to be compared with Fig. 4). We can see that even if the sequence random is
similar to the indicator function on a DNA sequence the clusters of the random
sequence (Fig. 5) doesn’t show the existence of any correlation. While for the
random walk on a DNA sequence there are some kind of symmetric distribution
of the wavelet coefficients (Fig. 4).

7 Conclusion

In this paper it has been given the definition of a complex indicator function
for the DNA sequences. The indicator, applied to the dog’s DNA and to the
candida’d DNA, has provided a pair of complex strings analyzed with the wavelet
transform. By using the wavelet transform together with some algorithms (short
Haar transform, numerical derivative and clusters of wavelet coefficients) it has
been shown that the random walks have a fractal behavior (with respect to
the scaling coefficient α and some (unexpected) symmetries and quantization
for the remaining wavelet coefficients

(
β0

0 , β1
0 , β1

1

)
both for the real coefficients

and the imaginary coefficients of the (complex) random walk. A very interesting
correlation it has been shown in the comparison of the random walk with its
rate of change.

It should be noticed that comparing the clusters of dog and candida there
appear some slight changes in the clusters (but not in the quantized values of
the wavelet coefficients). This could offer the possibility to organize a different
classification of DNA sequences.
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Abstract. The nonlinear dynamical system which models the axon im-
pulse activity is studied through the analysis of the wavelet coefficients.
A system with a pulse source is compared with the corresponding source-
less, through the wavelet coefficients.
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1 Introduction

In this paper we consider the nonlinear Fitzhugh-Nagumo system [1,2]
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dx

dt
=

1
ε

[x(1 − x2)− y],

dy

dt
= x− β ,

(1)

where ε is a small parameter 0 < ε ' 1 and β is a crucial parameter. This
system was proposed in the early 60ties in order to describe the neural activity.
Stimulated axons shows their activity by a suddenly change in their electrical
potential. These pulse in a short time were called spikes or axons firing. However,
the normal activity of neurons is usually describes by a continuous axons firing,
even in absence of external stimulations. Therefore one of the main problems is
to recognize among all generated spikes those which are caused by some external
stimulations. The same system, with an additional wave structure, has been also
used to describe solitary wave propagation (spikes or pulses) in a spatial regions
in order to modelling neural communication or calcium waves. There follows that
small variations in the parameter for signal which have a very short duration
gives rise to different physical phenomena. From mathematical point of view
system (1) is a nonlinear system which can be derived from the van der Pol by
Lienard’s change of variables.

This dynamical system is strongly depending [1,2,6,7] on the crucial parameter
β in the sense that the evolution would be completely different, starting from a
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critical time t∗. The dynamics of this system will be studied through the wavelet
coefficients of the numerical solution of (1).

Wavelets can capture [5,4] the local changes in a very efficient way. It will
be shown that crossing the bifurcation point the wavelet coefficients suddenly
change. In particular, if we restrict to the short wavelet transform [3], we have
that:

1. For a periodic solution β = 0.57 all the wavelet coefficients β0
0 , β1

0 , β1
1 both

for x(t) and y(t) show a periodic behavior. The amplitude is higher at the
lower frequency β0

0 .
2. In correspondence of the bifurcation parameter β = 0.5767. The amplitude

of the wavelet coefficients is the same as in the periodic case only for t <
t∗ = 4/5. The first coefficient β0

0 is still periodic.
3. When β = 0.6 all coefficients decay to zero in a short time, thus showing the

asymptotic convergence of the solution.

In Sect. 2 some preliminary definitions about Haar wavelets and short Haar
wavelet transform [3] are given. The Fitzhugh-Nagumo system is shortly dis-
cussed in Sect. 3. The wavelet analysis of Fitzhugh-Nagumo is performed in
section 4.

2 Preliminary Remarks on the Short Haar Wavelet
Transform

The Haar scaling function ϕ(t) is the characteristic function on [0, 1]. By trans-
lation and dilation we get the family of functions defined (in [0, 1])

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕn
k (t) ≡ 2n/2ϕ(2nt− k) , (0 ≤ n , 0 ≤ k ≤ 2n − 1) ,

ϕ(2nt− k) =

⎧⎨
⎩

1 , t ∈ Ωn
k , Ωn

k ≡
[

k

2n
,
k + 1

2n

)
,

0 , t �∈ Ωn
k .

(2)

The Haar wavelet family {ψn
k (t)} is the orthonormal basis for the L2([0, 1])

functions [?]:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψn
k (t) ≡ 2n/2ψ(2nt− k) , ||ψn

k (t)||L2 = 1 ,

ψ(2nt− k) ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1 , t ∈
[

k

2n
,
k + 1/2

2n

)
,

1 , t ∈
[
k + 1/2

2n
,
k + 1

2n

)
, (0 ≤ n , 0 ≤ k ≤ 2n − 1) ,

0 , elsewhere .
(3)

Without loss of generality, we can restrict ourselves to 0 ≤ n , 0 ≤ k ≤ 2n−1 =⇒
Ωn

k ⊆ [0, 1]. Let YYY ≡ {Yi}, (i = 0, . . . , 2M − 1, 2M = N < ∞, M ∈ N), be a
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finite energy time-series; ti = i/(2M−1), is the regular equispaced grid of dyadic
points.

Let the set YYY = {Yi} of N data be segmented into σ segments (in general)
of different length. Each segment YYY s, s = 0, . . . , σ − 1 is made of ps = 2ms ,
(
∑

s ps = N), data:

YYY = {Yi}i=0,...,N−1 =
σ−1⊕
s=0

{YYY s} , YYY s ≡ {Ysps , Ysps+1, . . . , Ysps+ps−1} ,

being, in general, ps �= pr. The short discrete Haar wavelet transform of YYY is
(see [3]) Wps,σYYY ,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Wps,σ ≡
σ−1⊕
s=0

Wp
s , YYY =

σ−1⊕
s=0

YYY s ,

Wps,σYYY =

(
σ−1⊕
s=0

Wps

)
YYY =

(
σ−1⊕
s=0

WpsYYY s

)
,

W2ms
YYY s =

{
α

0(s)
0 , β

0(s)
0 , β

1(s)
0 , β

1(s)
1 , . . . , β

ms−1(s)

2ms−1−1

}
.

with 2ms = ps,
σ−1∑
s=0

ps = N . The discrete Haar wavelet transform is the operator

WN which maps the vector YYY into the vector of the wavelet coefficients {α , βn
k }:

WNYYY = {α, β0
0 , . . . , βM−1

2M−1−1
} , YYY = {Y0, Y1, . . . , YN−1} . (4)

There follows that, the matrix of the wavelet transform is expressed as a
direct sum of lower order matrices so that the short transform is a sparse matrix
[3]. When the short wavelet transform maps short interval values into a few
set of wavelet coefficients, it can be considered as a first order approximation.
However, since the wavelet transform maps the original signal into uncorrelated
sequences [5], the short wavelet transform describes, for each sequence of detail
coefficients, its local behavior. When ps = p = N, σ = 1, the above coincides
with the ordinary wavelet transform. We assume, in the following, ps = p =
N/σ, s = 0, . . . , σ − 1, (σ > 1).

3 Fitzhugh-Nagumo System

Let us study the nonlinear model (1) in dependence only on the crucial param-
eter β. We fix the small parameter ε = 0.01 and we take as initial conditions
x(0) = 0 , y(0) = 0.39.

The dynamics of equation (1) has been studied by analyzing the short wavelet
transform of the time series obtained by a numerical computation of the solution
of (1). By using the Runge-Kutta 4-th order method, with the accuracy 10−6,
we obtain in the interval (0 < t ≤ 8), four numerical solution in correspondence
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Fig. 1. Numerical solution in the phase space of system (1) with parameters ε = 0.01,
and initial conditions x(0) = 0, y(0) = 0.39, in correspondence of different values of
β = 0.017, β = 0.57, β = 0.5767, β = 0.6

of the values of the parameter β = 0.017 , β = 0.57 , β = 0.5767 , β = 0.6.
These sequences are discretized in 29 = 512 time spots so to obtain 512 values
YYY = {Y0, Y1, . . . , YN−1}, with N = 512 and M = 9. Moreover, using the short
Haar wavelet transform, with ps = p = 4, we compare the wavelet coefficients of
three time-series, near the bifurcation value of β = 0.5767.

In correspondence of 4 different values of β we obtain 4 numerical solution in
the phase space as in Fig. 1. It can be seen that

1. when β < 0.5767, let say β = 0.017 , β = 0.57 (Fig. 1 top) the orbit is close
and the motion is periodic (Fig. 2 top) both for x(t) and y(t). There exist
some, periodically distributed, sharp jumps for x(t). These jumps are well
shown in the wavelet coefficients pictures (Fig. 3 left).

2. when β = 0.5767, the dynamical system has a limit cycle (Fig. 1 bottom,
left) around the asymptotic limits x∞ = 0.6 , y∞ = 0.38 (see also Fig. 2
bottom, left). It can be seen that, after a critical time t ∼= 4, x(t) has some
oscillations around the asymptotic value x∞ = 0.6, while y(t) → 0.38. In
this case there remain only some small oscillations of x(t).

3. when β > 0.5767, let say β = 0.6, the motion is asymptotically stable (Figs.
1,2 bottom right), in the sense that x(t) → 0.6 , y(t) → 0.39 in a finite time
t ∼= 4.
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Fig. 2. Numerical solution (plain x(t), dashed y(t)) of system (1) with parameters
ε = 0.01, and initial conditions x(0) = 0, y(0) = 0.39, in correspondence of different
values of β = 0.017, β = 0.57, β = 0.5767, β = 0.6

4 Critical Analysis

The qualitative analysis of the previous section can be improved by a further
analysis on the scale. It is known [3,5] that the wavelet transform is able to
separate the phenomenon into the many scales of approximation. In other words,
after transformation, we can observe how is the influence of each scale on the
dynamics. In particular, only a small set of detail coefficients (Figs. 3, 4, 5)
namely β0

0 , β1
0 , β1

1 , are able to give a sufficiently good information about the
dynamical system, but also to add some information hidden in the previous
numerical approach (Figs. 1, 2) in any case better than the numerical evalution.

The detail coefficients show some local maxima and changes which are hid-
den in the continuous interpolation of the numerical integration. Each detail
coefficient performs, at each scale but mostly at the lower scale n = 0, β0

0 , the
main feature of the function. Moreover the wavelet coefficients are very sensible
to local changes and therefore they can easily describe the intervals where the
function is monotonic or when there are some significant jumps. The positive
values of the detail coefficients describe the local growth, the negative values
the decreasing of the function. Local maxima (minima) of the detail coefficients
define some inflexion which enable us to predict if the phenomenon will increase
in time or decrease.

In particular, it can be seen that after the critical time t ∼= 4/5, the absence
of jumps in the graphs of β0

0 (approximately around the time t ∼= 4) is a sign of
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Fig. 3. Numerical solution and wavelet coefficients of 4-parameters of short Haar trans-
form of the numerical solution x(t) (left) and y(t) (right) of system (1) with parameters
ε = 0.01, and initial conditions x(0) = 0, y(0) = 0.39, in correspondence of β = 0.57
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Fig. 4. Numerical solution and wavelet coefficient of 4-parameters of short Haar trans-
form of the numerical solution x(t) (left) and y(t) (right) of system (1) with parameters
ε = 0.01, and initial conditions x(0) = 0, y(0) = 0.39, in correspondence of β = 0.5767
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Fig. 5. Numerical solution and wavelet coefficient of 4-parameters of short Haar trans-
form of the numerical solution x(t) (left) and y(t) (right) of system (1) with parameters
ε = 0.01, and initial conditions x(0) = 0, y(0) = 0.39, in correspondence of β = 0.6

the presence of the bifurcation. In fact, in Figs. 4,5 (left) after t = 4/5 there are
no changes in β0

0 , β1
0 , β1

1 . Just some small periodicity in β0
0 , Fig. 4 (left) shows

the existence of small oscillations as expected.
In conclusion, the wavelet method has the following advantages with respect

the numerical one, because the qualitative analysis can be performed on a dis-
crete set of points and the wavelet analysis can be well performed by only a few
set of wavelet coefficients. In fact the main feature of the system are concentrated
on the lower scale coefficients.
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Abstract. The goal of this study is to present some important updates regarding 
the photo bleaching field. Fluorescence Recovery after Photobleaching (FRAP) 
is a versatile technique to determine diffusion coefficients of suitably labeled 
species in fields like pharmaceutical research, biophysics or macromolecular 
chemistry. Also we want to emphasize the importance of the numerical simula-
tions especially when we want to extract features of the protein dynamics. The 
data are processed with Matlab and FEM programs. Of course the simulated 
situations have to be in a close agreement with the experimental data captured 
by an Andor Camera, iXON +. 

1   Introduction 

Fluorescence is an optical phenomenon in cold bodies, in which a molecule absorbs 
light at a particular wavelength and subsequently emits light of longer wavelength 
after a brief interval, termed the fluorescence lifetime. The energy difference between 
the absorbed and emitted photons ends up as molecular vibrations. The different time-
scales during the emission-absorption cycle play a crucial role for the fluorescence 
process. The Frank-Condon principle states that electronic transitions take place in 
times that are very short compared to the time required for the nuclei to move  
significantly. 

2   General Considerations 

Photobleaching occurs when a fluorophore permanently loses the ability to fluoresce. 
Each fluorophore has different photobleaching-characteristics. Its stability can be 
characterized by the average number of absorption-emission cycles that the molecules 
of this fluorophore undergo before they are irreversibly photobleached. The number 
of cycles depends on the local environment and the molecular structure and is, there-
fore, a fluorophore-specific property. The exact mechanism of photobleaching is yet 
not known, but it is assumed to be linked to a transition from the excited singlet state 
to the excited triplet state, a process called intersystem crossing. This transition with-
draws the molecule from the absorption-emission cycle and as the triplet state is rela-
tively long-lived with respect to the singlet state it is chemically more reactive. Thus 
excited molecules have a much longer timeframe to undergo further chemical reac-
tions with components in the environment that are the basis for bleaching reactions. 
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Usually the systems can be described in terms of a system of partial differential 
equations (PDE)[9], [5] and to develop the geometry is very useful to use a very 
popular procedure of finite element methods. By doing this we can define geometries 
and the initial conditions.  

The in-vivo fluorescent images have offered an important new insight into nuclear 
architecture and function. The photo bleaching process is very important because it 
can exhibit the biophysical properties of nuclear proteins in intact cells, especially the 
dynamic part. 

The diffusion process stays at the base of the protein movement; we have to bear in 
mind that the high mobility is a general feature of nuclear proteins[1],[7],[6]. The 
dynamics of a transcription factor, mainly the glucocorticoid receptor (GR) were in-
vestigated with photo bleaching method. 

 

Fig. 1.  Glucocorticoid Receptor marked with GFP expressed in a cell nucleus 

The excited state has a sufficient long lifetime so that the molecules can achieve a 
thermally equilibrated lower energy excited state by converting the excess vibrational 
energy to heat and exchanging it with the environment. The Kosha’s rule claims that 
the fluorescent emission will generally occur from the lowest excited singlet state. 
Respecting the Stokes shift the energy of the emitted photon will be less than that of 
the exciting photon and the wavelength is shifted to longer values. 

The simplest way to form an image is to use the super positioning algorithm. So we 
can consider to have an infinite number of point sources, blurred individually. As al-
ready known a real optical system produces a small, blurred spot known as Airy disk. 

In conclusion the response of the optical system in mathematically terms a convo-
lution process that consists of the object intensity and the point spread functions PSF 
( x,y). 

I(x,y)=

ydxdyxOyyxxPSFyxOyxPSF ′′′−−=⊗ ∫ ∫
+∞

∞−

+∞

∞−

),(),(),(),( ''' .                 (1) 

)()(),( yxyxPSF δδ= .                                                                          (2) 
 

The object intensity is directly mapped to the image intensity. The resolution of 
such a system depends upon NA and the wavelength. Very important for these cases 
is also the Rayleigh criterion for lateral resolution that is given by the relation: 
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The axial resolution for a confocal configuration that is used in this case: 
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We have the illumination intensity profile given by the laser beam so we have to 
deal with a Gaussian profile; 
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Bearing in mind the above considerations we can understand why in FRAP ex-
periments is very common to consider lens of relatively low NA with an almost cy-
lindrical illumination profile. 

The fluorescent recovery after photo bleaching is a method that makes the meas-
urement of molecular dynamics possible; it consists of introducing a rapid swift away 
from the stady-state distribution without disrupting the actual concentration of the 
molecule under study. This can be achieved by applying a high-powered focused laser 
beam for a very short time. This phenomenon will determine a photo bleaching proc-
ess inside the region of interest. After a short period of time the fluorescent molecules 
will occupy the remaining place and we can study the dynamics. The major process 
that is very interesting, including for the mathematical simulations is represented by 
the FRAP recovery curve. 

During the photo bleaching process, a significant fraction of the fluorescent protein 
is made non-fluorescent. This reduces the theoretical maximum intensity that the 
photo bleached region may recover to from its initial intensity after bleaching. We  

 

 

Fig. 2.  FRAP recovery curve�
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have to take into consideration the fact that during the acquisition the cell is also ex-
posed to many iterations of laser illumination and that may be traduced by the fact 
that a small percent can reach the photo bleaching threshold. Using the experimental 
data we can approximate that is about 10% because of the photo bleaching and 5% 
during the acquisition as can be seen in Figure 2. The main and the most useful 
method of normalization is the Phair and Misteli. 

If we consider the ∞F  the assimptote, 2/1τ  the time of diffusion that contains in-

formation about the protein mobility, 0T - total intensity of the fluorescence, 0I  the 

total intensity of the signal before starting the photo bleaching. 

                                             F(t)=
)(

)(

0

0

tTI

TtI
                                                    (6) 

                 And the mobile fraction 
01

0

FF

FF
R

−
−= ∞                                                (7) 

2/1τ  as being the half between the F0 and ∞F . 

3   Mathematical Model 

We will use the Axelrod model which is valid for circular bleach spots generated by a 

stationary Gaussian laser beam [3]. In this case we consider
2/1

2

4τ
ω=D , ω is half 

width of the laser. In this way we can obtain information about binding affinity. 
For a better mathematical simulation we presume   the structure is immobile on the 

time scale of the FRAP experiment and spatially homogeneously distributed. 
The diffusion process is very well described by the Fick’s lows [6]: 

                                                 
cD

t

c

cDJ

2∇=
∂
∂

∇−=
G

                                               (8) 

We have also to take into consideration that the expression of D is given by the 
Stokes-Einstein equation: 

                                                          
nR

kT
D

πη6
=                                               (9) 

where nR  represents the hydrodynamic radius of the particle.                  

One assumption that has to be mention is the fact that T is considered constant dur-
ing the experiment. The diffusion coefficients are depending strongly on the environ-
ment medium e.g. GFP as described below in Figure 3. 
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Table 1. With coefficients of diffusion 

Medium D[ μ m2s-1] 

H2O 87 
Cytoplasm 25 
Togged glucocorticoid 9.2 

 
As can be seen above it is a direct relation between the diffusion coefficient, mass 

and the hydrodynamic radius: 
3/11 −− ∝∝ MRD                                                  (10) 

There is one important thing that we have to consider to understand the phenom-
ena, when a marker is added we don’t modify in any way the concentration of the 
proteins. FRAP only induces a concentration smaller or higher for the marker agent. 

The kinetics of the reactions is composes from many classes; we can consider as 
possible one single binding or multiple bindings. We will consider only the simplest 
possibility and this is the one binding. This implies of course also one second order 
reversible reaction. We can describe mathematically the process as: 

CSF
on

off

k

k
⇔+ ,                                                      (11) 

where F represents the proteins, S the vacant binding sites and C – the bound com-

plex; onk and offk are two parameters that measures the affinity of the proteins to 

form new structures. As usually 

on
d k

1
2/1 == ττ                                                       (12) 

and the time of binding is  

off
b k

1=τ                                                           (13) 

The presumptions are that for a offk higher we are dealing with a protein that releases 

quickly after binding while for a onk big we realize that the protein has a very short 

diffusion time; it forms very easy a bound complex. 
To describe a complete system we shall write the equations: 
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In same cases is very useful to consider the diffusion of the bound complex and 
that of the vacant binding as being 0; also although bleaching changes the number of 
visible free and bound molecules, that meaning P and C it does not change the num-
ber of free binding sites so s is constant during the photo bleaching process. In this 
case our system becomes: 
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If the system is in equilibrium then there are no changes of the concentrations with 
respect of time so we can write the system: 
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In the case of more binding states model we may consider a super positioning of 
more one-binding states.The next step we should consider is the writing of the bound-
ary conditions; the initial values are defined by the photo bleaching process; mainly 
we have Newmann conditions because during the time scale of the experiment there is 
no flux of fluorescent biomolecules into or out of the nucleus and the membrane acts 
as a diffusion barrier. 

In order to compare the results from a simulation to the results from an experiment 
it is necessary to transform the calculated distribution of the fluorophore to a fluores-
cence intensity image as seen by the microscope. 

We have also a very important space independent relation between the concentra-
tion of fluorescent molecules and the fluorescent intensity. 

If we have )(tF at t ≥ 0 and a stationary laser beam with a nanoscanning 

microscope then  

∫∫
Ω

+= dxdytyxctyxftxIqtF d )),,(),,()(,()(            (17) 

over the bleached spot Ω . q is a constant factor that takes all relevant factors concern-

ing illumination and light collection into account; by ),,( tyxf we understand  the 

concentration of the free proteins and by ),,( tyxc the concentration of bound proteins. 

As mention before we will consider samples with z<<x and z<<y so we can have 
2D geometries. The image formation can be mathematically be described by the con-
volution of each point and its spread function [9]. 
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If the size of the bleach spot is considered small relative to the size of the fluores-
cent area then the nucleus can be considered as infinite sized. The fluorescence inten-
sity recovers to the initial pre-bleach value so some measurable fraction of the  
fluorescence will be lost during the bleaching. The infinite sized nucleus yields the 
boundary condition that  

eqCtrc =∞± ),(                                                (18) 

for all times. 
The analytical solution is calculated by the application of the Laplace transforma-

tion. This leads to the new set of differential equations, a Bessel set. The mathemati-
cal expressions of the FRAP process becomes: 
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w- radius of the bleach spot 
I1, k1 are the modified Bessel functions of the first and second kind. 
p- Laplace variable 

If we take into consideration the normalization then the fluorescence intensity be-
longs to the interval [0,1] and we may write the system: 
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There are many different scenarios for one binding model: 

• Timescal with 
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• Pure diffusion domninant, where binding has no influence  
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• Effective diffusion 2/1ττ <<d  
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)/(1 *
offon

f
eff kk

D
D

+
= , we can talk in this case about the slower movement of the 

proteins due to the binding events. 

• Reaction dominant meaning that the diffusion is very fast compared 
to both the binding reactions and the timescale of the FRAP ex-
periment: 
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So the behavior of the system is mainly determined by the binding rates. 
If we presume the particle is supposed to diffuse very rapidly between two traps 

then we can use a standard Levy law time [2], [4]-from this point the time τ  the par-
ticle stays in a trap is supposed to have very strong fluctuations which can give rise to 
anomalous diffusion pattern. 

The mathematical expression that describe the Levy law time is: 

         
10 )1(

)( ++
= ατ

ατP                                                                                    (25) 

α  being correlated with the sub diffusive behavior. For long times 
αttr >∝< )(2  and for 1<α  we can talk about a Green function: 
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Where )1(/ αα −Γ= DD                                                                                      (27) 

Where w and k are the conjugated variables of position r and time t, where kk = . 

We make the change αtrx /2= and for a  higher x we can approximate the in-
verse transformation via a saddle point method. 

 The general solution of this type of anomalous diffusion process is then: 

     ∫ ′′−′= rdtrxgrrtr 2
0 )),(()(),( ρρ                                                             (28) 

)exp(),( xcsttrg ′−∝                                                                                   (29) 

ρ  represents the probability density to find the particle at the point r at instant t 

and 0ρ in its initial state. As the green function is a bell-shaped fast decreasing func-

tion, one approximates it by a gaussian shape with the exact dispersion, 
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)/()sin( παπαα DD =   (30) which can be calculated. This permits to construct an 

analytical expression of the fluorescence recovery using standard properties of Gaus-
sian functions. Starting from Axelrod [3] initial density as it is immediately after a 
Gaussian laser beam profile extinction indeed: 

))2exp(exp()(
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2

0 R

r
Kr −−=ρ                                             (31) 

Where K –photobleaching constant, depending on experimental conditions and us-
ing the standard properties of the Gaussian shape in the convolution operation, one 
can obtain the FRAP signal: 
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The function can be used to fit the experimental data and to compare the experi-
mental with the Monte Carlo simulations. 

Nevertheless we intend to use the Virtual Cell program to verify one more time the 
data as seen in figure 3. 

 

Fig. 3 Simulation in VCell regarding the FRAP process 

4   Conclusions 

The development of numerical simulation and the use of virtual free programs can 
accomplish a very important role regarding the formation of new scientist; also im-
plies few financial results and may open new paths of research.  
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Matlab and FEM programs have proven an extraordinary ability to simulate so 
complex phenomena as the interaction of laser with biological molecules; more than 
the real set-up these simulation programs allows a very large domain of boundary 
conditions, species and processes. A more physiological version dedicated to the bio-
imaging and biophotonics is represented by V Cell a very simple program that simu-
lates the labcell. It is very helpful also that the researchers and the tutorials are made 
public so you can start an adventure in this wonderful field: the living.  

The importance of the kinetics and the dynamics of different biological species is ex-
tremely important considering only the medical applications, eg. was observed that the 
main characteristic that distinguishes anomalous from normal diffusion is the behavior 
of the mean squared displacement (MSD) as a function of time. For normal behavior the 
MSD grows linearly with time while for an anomalous process it grows sublinearly.  

The results we want to test covers especially the diffusion of proteins in cells 
where fatty acids are present and how their amount can affect the FRAP process. 
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Control of the Lasers Dynamics by Pumping

Modulation for Biophotonics Applications
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Abstract. A study of the opportunities offered by the fiber laser out-
put for optical coherent stimulation is performed. The investigation is
based on the strong nonlinear behavior of the pump modulated laser.
The two-mode laser enhances the variability range of the output includ-
ing the state of polarization of the laser field. This is expected to have
applications in neural stimulation.

Keywords: Optical fiber laser, nonlinear dynamics, optical stimulation.

1 Introduction

Optical fiber lasers were invented in 1963 by Elias Snitzer [1,2] and they were at-
tractive for the large gain [3] and the possibility of enlarging the number of laser
wavelengths emitted in the continuous-wave regime. These lasers used single-
mode laser diode pumping and delivered tens of milliwats output. In 1990, the
first watt-level (4 W) erbium-doped fiber laser output was reported and this be-
came the starting point for a rapid progress in the fabrication of fiber lasers. The
years to come are expected to bring a larger growth rate for fiber lasers in com-
parison to other types of lasers. Single-mode fiber lasers with power up to a few
kW and multi-mode fiber lasers of a few tens of kW are now available. Besides
the industrial and telecommunication applications, fiber lasers have become im-
portant in medicine [4,5,6,7], for microsurgery, optical coherence tomography, or
skin resurfacing.

Fiber laser technology offers now several benefits to the user which will deter-
mine an increasingly replace of other already used lasers in medical applications.
A fiber laser has a high electrical efficiency, there is no requirement for chilling,
it is maintenance free during the entire lifetime (no need of flashlamps or diodes
replacement), it is compact and the system complexity is reduced. A laser beam
furnished by a fiber laser can reach a diameter of a few micrometers which is
advantageous in microsurgery for the quality of the cuts, a faster incision, and
a faster excision.

The paper deals with the the erbium-doped fiber laser that operates at
1.55μm. For medical applications this wavelength is important due to the exis-
tence of a water absorption peak near his wavelength, at 1.44 μm, while the most

M. Elloumi et al. (Eds.): BIRD 2008, CCIS 13, pp. 556–562, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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important two peaks are at 2.94 μm and 1.94 μm, respectively [8]. For the low
level laser terapy, the single-mode and collimated laser beam at this wavelength
can create a precise skin resurfacing in a nonablative way [5] elliminating the
disadvantages of the CO2 laser use. In neural stimulation [9,10], the fiber laser
is a candidate for its infrared coherent radiation.

For improved laser beam characteristics or versatility in their choice we pro-
pose pumping modulation of the laser, thus taking advantage of the nonlinear
laser dynamics. The modulation is easily performed through direct modulation
of the injected current in the semiconductor laser that pump the fiber laser.
A continuous or discontinuous change of the laser output parameters like pulse
repetition rate, pulse height and shape, sequences of various pulses can be easily
obtained through a change in the modulation depth or frequency of modulation.

Despite the multimode operation, a clustering effect makes it possible to treat
a fiber laser dynamics in terms of one or two laser modes [11,12,13,14]. The
laser models are based on the rate equation approximation and emphasize the
nonlinear dynamics even near the laser threshold.

2 The Single-Mode Laser Model

The erbium-doped laser emitting around 1.55 μm (4I13/2 → 4I15/2 transition) is
a three-level system [3] (Fig. 1). Er3+-ions at a concentration N0 are pumped
from level 1 (4I15/2) to level 3 (for example 4I11/2, 980 nm above the ground
state); we denote Λ the probability of an ion in state 1 to be pumped in unit time
to state 2. The level 3 is fastly depopulated through a non-radiative transition
on the upper laser level 2 (4I13/2) which is metastable with the lifetime τ2 =
10 ms [11]. The letter σ in Fig. 1 denotes the absorption cross section in the
laser transition. In the rate equation approximation, the laser dynamics by two
coupled differential equations, one for the population inversion and the other for
the laser intensity:

dn

dt
= 2Λ− 1

τ2
(1 + n)− 2σnI, (1)

dI

dt
= −1

τ
I + σN0nI. (2)

The dependent variable n is the difference of the occupation probability of level
1 and 2, respectively, and I is the photon density inside the laser cavity. The
photon lifetime in the laser cavity is τ . Note that parameter σ in the above
equations is the absorption cross-section times light speed.

Laser action takes place for Λ > Λth, where the threshold pumping parameter
is

Λth =
1

2τ2

(
1 +

1
σN0τ

)
, (3)

and the laser intensity in the stationary state increases linearly with the pumping
strength above threshold:

Ī = N0τ(Λ − Λth). (4)
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Fig. 1. Er3+-ion energy levels implied in the laser effect

For modulation purposes, the linear responce of the laser to the input pumping
is analyzed. The transfer function for the frequency f defined as [15]

H(f) =
δI

δΛ
(5)

shows a sharp peak (Fig. 2) for the resonance frequency

fr =
1

2π

√
2σ

τ
Ī − 1

2

(
1
τ2

+ 2σĪ

)2

≈ 1
2π

√
2σ

τ
Ī =

1
2π

√
2σN0(Λ− Λth), (6)

which is some tens of kilohertz.
The efficient pump modulation is performed for frequencies around the value

fr. We consider the parameters used in Fig. 2, a relatively low pumping strength
factor Λ/Λth = 1.5 and investigate the laser output for a modulation frequency
f = 0.85fr. Some temporal dynamics are shown in Fig. 3. We notice that the
linear behavior of the laser considered in Fig. 2 is valid only for small modulation
depths [Fig. 2(b)]; the nonlinearity is first responsible for creation of short pulses
[Fig. 2(c)] and then for bifurcations with period doubling [Fig. 2(d,e)] and finally
chaotic pulses are reached [Fig. 2(f)]. All such dynamics can be obtained by
sweeping an electrical physical quantity.

3 The Two-Mode Laser Model

The starting point for the extension of the single-mode model of the fiber laser
[Eqs. (1,2)] to a two-mode model is the addition of the other state of polarization
for the laser field. Under the same conditions, laser equations write now

dn1

dt
= 2Λ− 1

τ2
(1 + n1)− 2σn1(I1 + βI2), (7)

dn2

dt
= 2γΛ− 1

τ2
(1 + n2)− 2σn2(βI1 + I2), (8)

dI1

dt
= −1

τ
I1 + σN0(n1 + βn2)I1, (9)
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Fig. 2. Transfer function of the fiber laser described by Eqs. (1) and (2) and its depen-
dence on pumping strength. N0 = 5 × 1024 m−3, σ = 1.6 × 10−16 m3s−1 and τ = 10 ns
[11].

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3. Temporal dynamics of the single mode fiber laser sinusoidally pumped (a) at a
frequency near the resonance frequency and the modulation depths: (b) 0.05; (c) 0.10;
(d) 0.30; (e) 0.38; (f) 0.41
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dI2

dt
= −1

τ
I2 + σN0(βn1 + n2)I2, (10)

where subscripts 1 and 2 refer to the two modes. The parameter γ takes into
account the anisotropy in pumping the two modes and β is the cross-saturation
parameter. Taking mode 1 as the dominant one, γ < 1; we consider below β = 0.5
and γ = 0.85 [12]. Beside the stationary solution of the dominant mode and that
with both modes on, the coupling of the two modes can result in self-pulsations
as a result of a Hopf bifurcation [16] as pumping parameter surpasses a critical
value.

For pumping modulation it is important to know that the two-mode laser
system contains two eigenfrequencies. One has been encountered in the case of
the single-mode laser; the other one appears due to the coherent interaction of the
two laser modes. They can be observed in the laser response to a step-function
pumping (Fig. 4): the dominant mode relaxes at the frequency characteristic
to the single-mode laser (high frequency), to the small amplitude laser field
is associated the low frequency, and the total laser field relaxes at the high
frequency only.

Pumping modulation of a laser with two fields of orthogonal polarization
states offers multiple output variants (Fig. 5, Fig. 6). The shape of the pulses,
their sequence, or height can be manipulated using the additional tool of a
polarizer that retains one state of polarization if necessary.
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I 2

Fig. 4. Relaxation oscillations of the modes 1, 2, and total laser intensity. The laser is
pumped at a level twice compared to threshold level for the single mode laser. Photon
lifetime is τ = 200 ns and the other parameters are given in text.
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Fig. 5. Pumping modulation of the two-mode laser. The frequency of amplitude mod-
ulation is 45 kHz and the modulation depth is 0.25. The other parameters are identical
to those used in Fig. 4. The unity for laser intensity is arbitrary.
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Fig. 6. Pumping modulation of the two-mode laser. The frequency of amplitude mod-
ulation is 45 kHz and the modulation depth is 0.62. The other parameters are identical
to those used in Fig. 4. The unity for laser intensity is arbitrary.
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4 Conclusion

As a member of the class B lasers, the single-mode fiber laser delivers a constant
output under constant pumping. The nonlinearity of the dynamical system can be
exploited under modulation at a frequency near the system resonance frecuency
(Fig. 2) and this can be the appropriate method in reaching a large variety of out-
put pulses easily controlled. If the laser has two modes, for a constant pumping
the output is constant or self-pulsations takes place at sufficiently large pumping
levels. Moreover, two modes of orthogonal polarization states makes it possible
the selection of the output polarization state needed in optical stimulation.
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Abstract. A distributed feedback (DFB) multiple quantum well
(MQW) InGaAsP-InGaAs laser for use in biological and medicine in-
dustry is investigated. The laser is amplitude modulated and its output
features (height, shape and rate of pulses) are investigated in terms of
the frequency of modulation and modulation depth. It is proven a large
variety of outputs as a result of the nonlinear behavior of the laser.

Keywords: Multiple quantum well laser, optical stimulation, nonlinear
dynamics.

1 Introduction

The new generation of lasers, quantum well (QL) lasers [1,2], have a number of
practical advantages starting from the control of output energy, wavelength and
better tuning. Also, the compact size allows a better manipulation. Additionally,
the energy necessary for excitation is the electric current; compared to other
types of lasers (CO2, for instance), QW lasers have a more efficient conversion
of the pumped current into the laser beam. The laser physical equations allow
a more precise design with smaller construction errors. Nowadays it is proven
the fabrication of QW lasers with a wavelength from far infrared to ultraviolet
region of the spectrum. This is essential for the conventional laser replacement
with a QL laser emitting the same wavelength. This type of laser can work in
the continuous wave regime or a pulsatory one, that is why QL lasers can be
used in a widespread range of medical interventions [3,4,5,6,7,8,9].

Semiconductor lasers are used mainly in laser mobile systems with applica-
tions in eye operations. Moreover it can be used in dermatological applications
for treatment of different skin affections or hair obliteration.

Nowadays, modulation of semiconductor lasers is widely used in fiber optics
links [10]; a RF or microwave signal is modulated onto the laser beam either
directly or externally. We propose the modulation use in medical applications in
order to achieve shaped laser pulses in the microwave domain. These pulses can
be obtained directly modulating the laser. In the linear regime of modulation,
the shape of the modulating signal is preserved in the laser output. As the
laser is mathematically described by nonlinear equations, it is quite easy to
reach a nonlinear modulation regime. We prove that a continuous change of one
parameter can give outcomes of a large variety, thus having a simple method

M. Elloumi et al. (Eds.): BIRD 2008, CCIS 13, pp. 563–570, 2008.
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in achieving very different and reproductible laser outputs required in medical
studies [11,12].

2 Physical Model

2.1 Rate Equations

We discuss a single-mode MQW laser with no noise [13,14]. The laser is char-
acterized through the photon density S in the optical volume, the density of
carriers N in the active volume V , and the density of carriers NB in the bar-
rier volume. The rate equations can be written in the form of the three coupled
first-order differential equations

dNB

dt
= Γq

I

eV
− NB

τc
+ Γq

N

τe
, (1)

dN

dt
=

1
Γq

NB

τc
−
[

1
τn(N)

+
1
τe

]
N − vgG(N, S)S, (2)

dS

dt
=
[
ΓvgG(N, S)− 1

τp

]
S + ΓβBN2. (3)

The rate of change for the barrier carriers is determined by the injected current
I, carrier capture by the active layers, and carrier escape from the active layers.
In Eq. (1) e is the magnitude of electron charge, Γq is the fraction of MQW laser
well occupied by the QL’s, τc is the capture time of carriers, and τe is the escape
time of carriers from the QW’s. The rate of change for the carriers in the QW’s
is caused by carrier capture from the barriers, losses in the QW’s, carrier escape,
and stimulated recombination in the optical resonator. The carrier lifetime τn(N)
is

1
τn(N)

= A + BN + CN2, (4)

where A is the carrier non-radiative recombination rate, B is the bimolecular
recombination rate, and C is the Auger recombination constant. In Eq. (2), vg

is the group velocity of light, and G(N, S) is the optical gain modeled by

G(N, S) =
G0

1 + εS
ln

N

N0
. (5)

In the above, G0 is the gain constant, ε is the gain compression factor, and N0

is the transparent carrier density. Finnaly, photon density change is caused by
stimulated emission, losses, and spontaneous emission into the laser mode. Γ is
the mode confinement factor, τp is the photon lifetime, and β is the probability
of spontaneous emission into the laser mode.

The total laser power is

P = ηd
1
τp

V

Γ

hc

λ
, (6)

where λ is the wavelength of the laser and ηd is the differential quantum efficiency
[10].
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Typical parameter values of a DFB InGaAsP-InGaAs MQW laser are consid-
ered [14]: λ = 1.53 μm, V = 5.1 × 10−17 m3, Γ = 0.22, Γq = 0.66, τp = 1.3 ps,
β = 10−6, vg = 7.5 × 107 ms−1, G0 = 141107m−1, N0 = 2.41 × 1024 m−3, ε =
3.24×10−23 m3, τc = 20 ps, A = 108 s−1, B = 10−16 m3s−1, C = 3×10−41 m6s−1,
τe = 191 ps, η = 0.2.

2.2 The Stationary State

Solving Eqs. (1)–(3) for the stationary state (dNB/dt = dN/dt = dS/dt = 0), we
find one stationary solution; its dependence on the driving current is seen in Fig. 1.
The sudden rise in S marks the position of the laser threshold; it is given by

Nth = N0 exp(1/ΓvgτpG0) and Ith = eV (A + BNth + CN2
th)Nth. (7)

Above threshold the photon density and laser power are

S =
Γτp

eV
(I − Ith) and P = ηd

hc

eλ
(I − Ith). (8)

The stationary state is attained through relaxation oscillations (Fig. 2). To
find out an approximate formula of these oscillations, a small deviation from the
stationary state is considered. In the linear approximation one gets

fr =
1

2π

√
ΓvgG0

eV N0 exp(1/ΓvgτpG0)
(I − Ith). (9)
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Fig. 1. Laser physical variables, NB, N , S and P , in the stationary state, versus the
injected curent
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Fig. 2. At t = 0 the laser switch is turned on. After some relaxation oscillations, the
stationary state is reached. The injected current is I = 25 mA.
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Fig. 3. Transfer function of the MQW laser in the linear approach. Parameters are
given in text.

2.3 Transfer Function

Many applications of semiconductor lasers use modulated semiconductor lasers.
In the direct modulation case, the injected current in the laser is

I = IDC + IRF sin(2πft), (10)

where IDC is the dc bias current, IRF – the amplitude of modulation and f –
the frequency of modulation. The transfer function is defined as [2]
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Fig. 4. Bifurcation diagram of the MQW laser for IDC = 25 mA and the frequency of
modulation (a) 2 GHz, (b) 3 GHz (c) 4 GHz, (d) 6 GHz (e) 7 GHz, and (f) 8 GHz

H(f) =
δS

IRF
. (11)

In the linear approximation the calculus is easily performed; Fig. 3 shows the
transfer function for three dc input currents. The function is maximum for f
equal to the relaxation frequency [Eq. (9)]. In the next section we write IRF =
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mIDC, with m the modulation index and the analysis is not limited to the linear
case (0 < m ' 1).

3 The Modulated MQW Laser

Equations (1)–(3) are integrated using a fourth order Runge-Kutta method in
MATLAB. As we are interested in the asymptotic dynamics, transient dynamics
is everywhere discarded.

Figure 4 presents some bifurcation diagrams of the output power versus the
modulation index m for frequencies around the relaxation frequency (IDC is
fixed). In the vicinity of fr there are bifurcations with period doubling and
reverse bifurcations [15]. The number of bifurcations decreases as the modulation
frequency goes away from fr and finally no bifurcations appear. Besides, a larger
modulation is required to initiate the bifurcations.

Figure 5 shows a bifurcation diagram for IDC = 30 mA and f = 7 GHz. Some
typical temporal dynamics and evolutions in the plane N−P are given in Fig. 6.
At small indices of modulation the linear regime is satisfied (m = 0.1 in Fig. 6).
Before the first period doubling bifurcation point, the output takes the shape of
short pulses (not showed) with the period T = 1/f . In the period doubling range
of m, we show a period 2T dynamics (m = 1) and a 4T one (m = 1.8). After the
accumulation point of the period doubling bifurcations, a chaotic deterministic
dynamics settle down (eg. m = 2.3). At the exit from this region we find a period
3T dynamics ((eg. m = 2.7). The discontinuous jump in Fig. 5 at m ≈ 2.6 is a
clear indication that multistability occurs there. This can be proven for example
by tracing the bifurcation diagram for decreasing modulation index.
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20
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W

Fig. 5. Bifurcation diagram of the MQW laser for IDC = 30 mA and the frequency of
modulation f = 7 GHz
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m=1

m=1.8

m=2.3

m=2.7

Fig. 6. Temporal evolution in 40 periods of modulations (left) and the corresponding
phase portraits in the plane N − P (right) for some dynamics from Fig. 5

4 Conclusion

The nonlinear dynamics of a MQW laser with direct modulation is characterized
in some details. Even if such nonlinear phenomena can be obtained with other
types of lasers, semiconductor lasers are unique in the time scale (nanosecond) for
such phenomena. This is essential for biostimulation applications characterized
by such short relaxation times.

The model presented [Eqs. (1)–(3)] make use of the rate-equation approxima-
tion. For more complete treatments a master equation approach is required [16].
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Abstract. In order to check if the Fractal theory could be a useful tool for some 
quantitative descriptions of the fracture parameters, the present work studied 
diferent theoretical models. The possibility of using different theoretical models 
(e.g. the Bazant's Size Efect Law (SEL) [1], the Modifed Size Efect Law [2, 3] 
and the Carpinteri's MultiFractal Scaling Law (MFSL) [4] wich have been  
already confirmed for the fracture parameters of concrete specimen, and the 
compatibility of some of the above studied theoretical models relative to the 
experimental data, using certain recent procedures to study the global and local 
compatibility have been analysed. The fracture parameters can be considered as 
main quantities for computational procedures for modeling the fracture of a cer-
tain ensemble (a suddenly emerging phenomena). In the next phase, the ther-
moelastic generation of ultrasonic perturbations in titanium implant material 
coated with hidroxiapatite was analyzed (using computer simulation) so as to 
find similarities with material properties as fractal dimensions. The algorithm, 
the numerical analysis has taken into account three main physical phenomena: 
the absorption of electromagnetic energy in substance with heat generation; 
thermal difusion with electromagnetic energy based heat source and elastody-
namic wave generation by thermoelastic expansion. 

1   Introduction 

The applications in Physics of the mathematical theory of the ideal fractals [5] need a 
good understanding of this concept, from the physical point of view. 

A frst attempt in this direction was done recently by M. Rybaczuk and W. Zielinski 
[6], the presence of measurement errors being presented in [7]. In frame of their well-
known paper [11], B.B. Mandelbrot and his collaborators claimed that the value of 
(the fractal dimension) D decreases smoothly with an increase of the impact energy 
and D is shown to be a measure of toughness in metals; moreover, Mandelbrot stated 
[12] that the frequent use of numbers by physicists is a mistake and it would be better 
if they could focus mainly on the study of plots. Taking into account that for high 
accuracy of the experimental data, the theoretical relations are not more compatible 
with these experimental data, even for high values of the correlation coefcient, and 
using the existence for concrete of several experimental data [3], [14] referring to the 
size dependence of the fracture parameters, as well as of some (multi)fractal descrip-
tions of these efects (see also [7], [8] and [9]), this work will start by presenting a 
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numerical analysis of these existing experimental data, as well as of the compatibility 
of the multifractal and similitude expressions of the fracture parameters relative to the 
analyzed experimental results. 

2   Experimental Data for the Size Dependence of Fracture 
Parameters of Some Concrete and Rock Specimen and for Some 
Titanium Implant Coated with Hidroxiapatite  

The study of the compatibility of some theoretical relations relative to the analyzed 
experimental data needs the previous elimination of the rough errors. This was per-
formed using the Chouvenet's criterion [15], and eliminating the individual values 
whose absolute values of the reduced errors were larger than the Chouvenet's thresh-
old. The use of this procedure to the study of the numerical values of some fracture 
parameters [3], [14] pointed out that some individual values of the critical strain cor-
responding to some specimens of size equal to 20cm of dry and wet concrete [3], 
respectively are roughly erroneous. After the elimination of these individual values, 
the mean values were recalculated for the compatible individual values. The obtained 
results corresponding to the tensile strength Ts(MPa), critical strain (deformation) 
w(fm) and to the fracture energy Gf(N=m) for specimens of diferent natures (materi-
als) and sizes were synthesized in the following tables; they present the average val-
ues corresponding to some existing experimental data concerning the main fracture 
parameters of some concrete and rock specimens, respectively. 

Table 1. Material: Concrete 

 
 
Because the studies [13], [14] point out a considerable curvature of the plots for 

certain logarithmic representations, some semiempirical expressions of the tensile 
strength and of the fracture energy have to be obtained (which difer to that of Bazant 
[5], [6] and to those of Carpinteri [7], [8]). 

3   Obtained Results 

The obtained results concerning the compatibility of the (multi)fractal (Carpinteri's) 
expressions and of the classical elasticity theory (Bazant's) expressions of the  
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Table 2. Material: DRY Concrete 

 

Table 3. Material: WET Concrete 

 

Table 4. Material: TITANIUM IMPLANT COATED WITH HIDROXIAPATITE 

 
 

size-efects presented by the tensile strength Ts, the fracture energy Gf and by the 
critical strain w relative to the existing experimental data are synthesized in frame of 
next table. The analysis points out: a) the local incompatibility of the studied theoreti-
cal models with the experimental data (TM/ED) corresponding to the tensile strength 
of the Titanium implant material hidroxapatite coated for 3 or 4 sizes (from the 6 
studied ones) of the studied specimens, the Carpinteri's expression being though 
somewhat more accurate, b) the compatibility TM/ED for Dry Concrete specimens, 
the Bazant's description being somewhat more accurate, c) the compatibility TM/ED 
for Wet Concrete, but with strange (negative) values of the characteristic lengths, d) 
the compatibility TM/ED for Gf, with somewhat better accuracy and physical mean-
ing of the values of the characteristic lengths obtained by means of Carpinteri's model 
for the Titanium implant material hidroxapatite coated and Dry Concrete specimens,  
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Table 5. 

 
 

e) the compatibility TM/ED for Gf, with somewhat equal accuracy of both studied 
models for the Wet Concrete, f) the compatibility TM/ED with somewhat better accu-
racy (excepting the van Vliet's results for Dry Concrete) of Bazant's type description 
of w(b). 

In this table Sp(Ref.) represents Specimen (with Reference written into brackets), 
Rs dm represents Range of sizes in dm (with Theoretical model written into brackets), 
Rfd represents Range of fractal dimensions, Rev I represents Ratio of extreme values 
of Increment, Ts (in MPa) represents tensile strength and Lch (in dm) represents the 
characteristic length the characteristic lengths obtained by means of Carpinteri's 
model for the Titanium implant material hidroxapatite coated and Dry Concrete 
specimens. 

The accomplished study allows the obtainment of the following conclusions: 

a) despite of its fruitful qualitative contribution (which allowed the derivation of 
Carpinteri's relations) of the Fractal Theory to the description of the size efects on 
fracture parameters, itself this theory cannot ensure always accurate results concern-
ing the fracture parameters corresponding to specimens of diferent dimensions, b) it 
seems that the fractal character of fracture surfaces and the (classical) elasticity theory 
implications on the size-efects of fracture parameters represent cooperative processes, 
the most accurate descriptions implying (generally) contributions of both these factors. 

4   Ultrasonic Waves, Generated by Heat Sources 

Short ultrasonic pulses can be induced in solids using a range of techniques, most of 
them being direct contact procedures. In other words, the excitation device has to be 
placed directly onto the surface of a certain solid body. However, using laser energy 
based thermoelastic expansion of the substance [22], [23], the disadvantage of direct 
coupling is eliminated. In essence, a strong and short time volumic dilatation appears 
if a narrow and short duration beam of light, having high enough power density in its 
transversal section, hits a solid surface belonging to a TDI HC object. The laser en-
ergy, absorbed within the penetration depth is transformed in heat, which in its turn 
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leads to an increase in the temperature of the irradiated portion of substance. The 
quick dilatation that follows is in fact the source of a high frequency elastic perturba-
tion which propagates inside and onto the separation surface of the investigated object 
[24], [25]. 

The thermogeneration of ultrasound relies on an equation that makes the connec-
tion between the source time dependent thermal gradient and the generated elastody-
namic feld is needed. Secondly an equation that associate the thermal gradient with 
the laser generated heat distribution, Q(r; t), inside the TDI HC object, is required. 
This connection is made by the thermal difusion equation. The only unknown that 
remained to be expressed in a mathematical form is Q(r; t) which depends on the 
particular property of the radiated material. The heat distribution can be considered as 
having an exponential decay rate with the depth in substance, according to 

            

(1) 

or can be represented as a test function - for example the bulk-like function 

                         

(2)

 

or a practical test function. Unlike test functions, practical test functions can be repre-
sented as solutions of diferential equations as 

                                        

(3) 

(generating a function similar to the bump-like function). Yet such practical test-
functions possess only a fnite number of continuous derivatives on the whole real 
axis. 

Numerical simulations for an usual medium which receives a laser pulse with pa-
rameters: t0 = 10ns;Q0 = 1x1015W=m3 show a thermoelastically generated ultrasonic 
pulse traveling inside the structure with a speed less than 1cm=s. 

This velocity corresponding to a certain axis can be put in correspondence with 
characteristics of material (characteristic length of fractal structure, for example, as 
was shown in previous paragraphs). However, such generalization procedures must 
fulfll certain requirements which are studied at this time moment by the working team: 

a) the possibility of establishing time relaxation constants for explaining propaga-
tion patterns of sound and ultrasound waves (or other type of vibrations) inside the 
structure 

b) the accuracy of measuring methods for propagation patterns inside materials (for 
selecting the proper theoretical model using measuring methods of higher accuracy) 

c) the possible implementation of specifc computational architecture based on par-
allel computing, with many computing units (corresponding to a granular component 
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of the material) connected in greater computing units (corresponding to medium size 
component of the material) and with the same type of connections implemented at a 
large scale, according to fractal laws. 

5   Some Elements on the Physical Similitude and Fractals Theory 

For a rigorous connection between propagation patterns and the structure of material, 
we must search for the relaxation time constants (for electromagnetic or acoustic 
phenomena) as related to the fractal structure of the material. In order to do this, some 
elements of physical similitude and fractal theory must be taken into account. 

Unlike the mathematical systems (geometrical fgures, symmetry groups, poly-
nomes, etc), whose elements are determined by a given (specifc) number nU of 
uniqueness parameters, the number Ui of uniqueness parameters corresponding to a 
physical state (or process) depends on the required accuracy, increasing with the accu-
racy level. If the physical dimension of a parameter specifc to the studied state (or 
process) is: 

                                             

(4) 

then 2 states (or processes) S', S" are named similar if the values of the parameters 
[Ui]; i = 1::n and P corresponding to these states fulfll the relation: 

                                      

(5)

 
Some of the uniqueness parameters could be similitude criteria, i.e. non dimen-

sional parameters: [s] = 1 , with equal values: s0 = s" in all similar states or processes. 
In the macroscopic Physics, the similitude indices fi are integers or semi-integers, 
very seldom intervening other rational values. In order to explain the rather strange 
similitude indices intervening in the description of turbulent ows parameters, Kolmo-
gorov proposed a hierarchical structure of vortices, the energy being injected frstly in 
the largest vortices and transferred in a cascade from the larger to the smaller vortices, 
up to the smallest ones, where the energy is dissipated. This hypothesis was strength-
ened by the contributions of Mandelbrot. Taking into account that (for samples of 
diferent sizes) it is difcult to have exactly equal values of all uniqueness parameters 
(excepting the sample size), in order to fulfll the classical relation: 

                                                      

(6)

 
(with a non-rational similitude index D, called the fractal dimension of the fractal 
theory), it results that the physical applications of the fractal theory correspond to the 
prevalence (dominance) of the size (length) uniqueness parameter. If for diferent size  
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domains, the values of D belong to a set (discrete or continuous) of real numbers, the 
corresponding physical structure is called multi (poly)fractal. In the last years, there 
were published several identifcations of multi (poly)fractal structures, as those corre-
sponding to: the fracture surfaces of metals, (ii) fracture surfaces of concrete speci-
men, (iii) several parameters of disordered and porous media, aggregates, polymers 
and membranes , (iv) electrode surfaces (of fractal dimension. We have to underline 
that even some classical equations of the relaxation phenomena could reect some 
fractal structures. E.g., the well-known relations of Cole-Cole for dielectrics, and 
Mikami for magnetic materials, 

                       

(7)

 
can be obtained starting from constitutive equations as: 

                           

(8)

 
using fractional derivatives. In order to explain the appearance of both the frequency 
power laws and fractals, we will mention here also some theorems of the physical 
similitude: a) the number nis of irreducible similitude numbers (criteria) correspond-
ing to a state (or process) of a physical system is equal to the diference between the 
number nU of independent uniqueness parameters and the number naF of the active 
fundamental physical quantities, and b) every physical law or relation can be ex-
pressed by means of some similitude numbers (criteria) and only by means of simili-
tude criteria (Federman's theorem). 

The time constants corresponding to relaxation phenomena can be observed as 
time constants for transient phenomena when external pulses are applied or generated 
at the material surface; an accurate measurement can't be achieved without using a 
great amount of energy received on a very short time interval, and ultrashort high-
energy laser pulses are the best choice. 

6   (Multi)Fractal Scaling and Frequency Power Laws 

The fractal distribution of the main parameters (area, perimeter) of the slit islands (of 
steel, surrounded by nickel) of the fracture surfaces was pointed out for some steel 
specimen plated with electroless nickel. Assuming a similar fractal distribution of the 
grains of some ferrimagnetic materials, the efectively occupied (by grains) part of a 
volume V = l3 being V f = l3�d (where d is the corresponding fractal decrement), it 
results that the magnetic energy stored in a such material is: 

                                        

(9) 
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That is why we can compare the main parameters of the parabolic correlations: 

                

(10)

 
corresponding to multifractal scalings of some microstructural parameters of certain 
alloys (steel) and of some ferrimagnetic materials, respectively. A study of the ex-
perimental results shows a multi-fractal grains size dependence of the apparent per-
meability of some Mn-Zn ferri-magnetic materials, somewhat similar to that reported 
for some steels. 

Both the electromagnetic waves dispersion and the elastic waves propagation can 
be described by means of the 6 uniqueness parameters: specimen size D, microele-
ments (grains, inclusions, cracks, pores, etc) size d, characteristic (wave phase, oscil-
lations) velocity v and frequency f, the density f and the dynamic viscosity f of the 
medium. Because the above indicated phenomena have a dynamical character (with 3 
active fundamental quantities), it results that the number of irreducible similitude 
criteria for the above processes is: nis = 6 � 3 = 3. 

These irreducible similitude criteria can be chosen as: D=d; fD=v; fdv=f. From the 
Federman's theorem of the similitude theory, it results that any other physical parame-
ter (similitude criterion) can be expressed as a function of (only) irreducible criteria: 

                           

(11) 

According to Barenblatt's theorem, if f is a self-similar (and diferentiable) function, 
so that f(x2=x1) = f(x2)=f(x1), then f(x) = xn1 , where n1 = f0 

                                

(12) 

This explains the concomitant appearance of: (i) frequency power laws (of flicker 
noise, particularly): P = fn3 , (ii) size efects relative to the microstructure elements 
sizes, (iii) size efects relative to the specimen dimensions. The concomitant presence 
of some frequency power laws and of the fractal scaling seems to indicate the appear-
ance of some self-organized criticality states; it allows us to determine the fractal 
parameters of the material using also a set of measurements based on frequency 
power laws. This requires the use of continuous waves inside the material (instead of 
pulses) and a good intensity and frequency stabilization for the laser source. 

7   Conclusions 

This paper has presented an analysis of compatibility with experimental data of fractal 
descriptions of the fracture parameters for materials as concrete, wet concrete and 
titanium implant material hidroxapatite coated. The diferences between predicted 
values according to certain theoretical models and experimental data were analyzed, 
being pointed out the fact that this aspect requires better theoretical and experimental 
methods. Then it was shown that major advances would be achieved if the fractal 
methods for spatial structure of materials would be replaced by four-dimensional 
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fractal models able to predict also the propagation patterns of sound and ultrasound 
waves (or other type of vibrations) inside the structure. 

By comparing the experimental patterns (an example being the heat generated ul-
trasound pulses in a TDI HC medium, difering to the rocks presented in frst paragraph 
- electrical and optical insulating materials, and difering also to conductors where the 
small penetration depth, characteristic to conductors, acts as a singularity similar to a 
short impulse, leading to a very broad spectrum and to a great number of coefcients 
afecting the accuracy of numerical simulations) we can check the validity of theoreti-
cal models. For a better accuracy, specifc computational architecture based on parallel 
computing (with many computing units - corresponding to a granular component of 
the material- connected in greater computing units corresponding to medium size 
component of the material and with the same type of connections implemented at 
large scale, according to fractal laws) should be implemented. 
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VEMS-TM – A Management Infrastructure

Trandafir Moisa and Cristian Morarescu
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Abstract. Virtual Enterprise Management System (VEMS-TM) is an
Internet workspace that allows users to share and manage community in-
formation associated with projects and other enterprise activities. This
web based workspace runs on top of a work and document flow man-
agement engine, able to automatically/manually enact project tasks and
to manage and monitor them and their related information. In this ap-
proach VEMS is used as an elearning infrastructure for lab work.

1 Introduction

In a world where time to market means everything, efficient enterprise-wide
project management for software system engineering is critical. VEMS-TM is
focused on providing Internet/Intranet communication and collaboration solu-
tions to the virtual enterprise. VEMS-TM delivers integrated, scalable software
project and document management solutions for the entire enterprise. VEMS-
TM Virtual Community workspaces, allow organizations to quickly assemble a
project team from one end of the globe to the other and manage the communi-
cations and collaborative activities that drive the specifications, design, devel-
opment and delivery of their products and/or services. Through the use of these
communities, we are committed to offering the most comprehensive project and
document management software and services to meet the requirements of every
level of an organization, from the front-line project managers and engineers to
the administrative and executive teams. Our solution is instantly deployable and
teams can set up software projects and begin collaborating in minutes indepen-
dent of time or location and with little or no training required.

2 VEMS-TM Architecture Overview

VEMS provides the means that make program and project success a reality, help-
ing organizations around the world bridge the gap between cultural, language
and technological boundaries enabling these organization to innovate, communi-
cate, collaborate, negotiate, and interact. VEMS is helping to create horizontal
and vertical project communities in a virtual workspaceproviding the a place to
get work done.

Community Management: One of the greatest challenges of an organization is to
organize and get a global prospective of projects in progress. VEMS enables the
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Community Administrator to build “Virtual Hierarchical Structured Commu-
nity Workplaces”. VEMS provides the functions to group organize and manage
projects, customers and suppliers more effectively. VEMS has a robust User
Management and Access Rights tool that let the responsible persons to set up
payment rates per every individual user according to skills and experience on a
project bases. VEMS gives the organization better flexibility and control on who
gets in, who sees what and what tools they have the right to use.

Project Management: VEMS provides: Project Planning, Reports, Issue Manage-
ment, Change Management, Test and Error Management, Deployment and Main-
tenance, Notifications and much more. VEMS also incorporates advanced Project
Tracking tools like Critical Path Analysis, Project Estimating, Time Reporting,
Gantt Analysis, EVA, Milestones and tasks behind schedule or over budget noti-
fications. VEMS keeps top priority items in your To Do list. VEMS provides in-
tegration with other commonly used project planning tools by allowing users to
import and export files from MPX, TXT, RTF and other standard formats.

Document and Workflow Management: Every organization has its own business
practices and preferred methods of project control. VEMS enables the creation of
custom workflows for handling a multitude of processes and document types such
as: Proposals, Statements of Work, Functional Specifications, High Level Design,
images, faxes, and others. Users can define workflows unique to the organization
or the project and set up multiple dispatchers for handling and distributing
the information to various destinations. Along with a robust Windows Explorer
style Document Management tool with access rights and version control, VEMS
ensures the right process for the right task at the right time all the time!

Communication Management: Communication and Collaboration are critical in
every project VEMS provides robust and comprehensive communication tools
like: Message Center, Discussion Forums, Integrated Project Navigator, Instant
Project Messenger and User defined notifications. So no matter where you are in
the world, or what method of communication you prefer, VEMS offers the tools
to ensure fast and accurate communication with your project teams.

Quality Management: Standards are constantly changing, but one thing that is
constantly needed is a quality assurance management system. VEMS integrates
the standards and documents of the global recognized quality standards of IS0
9000 (Products and Services), ISO 14000 (Environment), ISO 18000 (OHSMS
Employee) and CMM (Software Development). VEMS provides over 120 docu-
ment templates to use and customize for implementing a quality system. VEMS
extensive CMM reports cover: Progress, Effort, Cost, Quality, Stability, Com-
puter Resource Utilization and Training. So whether you are looking to become
ISO or CMM certified, or to maintain an existing certification the VEMS Qual-
ity Assurance Management system provides the tools, documents and means to
be successful in your quality objectives. VEMS is a web based, system for use
within any project driven, document intensive and quality assured organization.
VEMS provides tools that reach far beyond the basics of Project Management
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creating an advanced Community environment of communication, collaboration,
planning and control.

3 Software System Lifecycle Structure Covered by
VEMS-TM

VEMSTM provides IT companies or IT departments with the functionality to
define and improve their process and quality system based on ISO 9001/9000-3
standards and the CMM model. Our quality system embedded in the current
version of VEM provides the environment to manage organizations’ activities in
compliance with CMM level 4 and some reports for CMM level 5.

We are developing the next version of VEMSTM to include all premises of a
total management system or specified in ISO 9000, ISO 14000 and ISO 18000
standard series, as well as full compliance with CMM level 5 for software industry.

It is our objective to promote VEMSTM in the global market. Developed as
a project management tool and quality system implementation, VEMSTM has
been identified as a powerful enterprise management system for corporations
where community management, work and document flow management, project
management, quality and knowledge management are key needs.

The final goal of VEMSTM is to provide the appropriate tools to define and
implement a set of unified system documents, the document work flow function-
alities which cover the three quality systems: products and services (ISO 9000),
EMS (ISO 14000) and OHSMS (ISO 18000).

In addition to this, VEMSTM provides IT organizations/departments the
environment for: - Organization Process Focus - Organization Process Defini-
tion - Training Program - Integrated Software Management - Software Product
Engineering - Intergroup Coordination and Peer Reviews VEMSTM covers the
entire system life cycle procedures starting with project feasibility, contracting,
project initiation, project planning, system design, system development, system
testing and ending with system deployment (Fig. 5). These are grouped into 3
main phases: Research and Development (CPAF- Cost Plus Award Fee), Pro-
duction (FFP- Firm, Fixed Price) and Maintenance (LOF-Level Of Effort).

Each phase contains stages of the system which are Proof of Concept and Elab-
oration for the Research and Development phase, Construction and Deployment
for the Production phase. Each stage might be completed through a couple of
iterations that ends up with: - Conceptual Prototype for the Proof of Concept
stage, - Architectural Prototype and Architecture Baseline for the Elaboration
stage, - System Releases for the Construction stage, - System Deliveries for the
Deployment stage.

Through the whole system lifecycle, the process is based on activities like:
Planning, Analysis, Architecture, Design, Implementation, Integration
and Test/Assessment. When a customer requests CST to build an application
system, the customer gives some notion of what the system should do. Thus,
the purpose of the proposed system is to meet the customer’s requirements. A
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functional requirement document is a feature of the system describing all or
some aspect of the system and how it is capable of performing. Although the
focus is to determine the nature of the customer’s problem, there are two pur-
poses in this stage. On one hand, the requirement analysis yields a functional
specification document. Written in terms that the customer can understand, the
functional requirement documents everything the customer expects the system
to do. This may not be a technical document to be used by system designers.
Usually, the technical counterpart of the functional specification document, used
by the system designers, is also formed in this stage. In many situations, the re-
quirements from a customer are ambiguous in terms of a technical view. So,
the functional requirements need to be specified carefully by our teams together
with our clients and VEMSTM enables a very good infrastructure to accomplish
all these by means of the communication and document repository modules.

It is the transformation of the problem provided by customers into a func-
tional system. The most important task in system design is to set up the system
architecture. There are two parts, high level design and detailed design system.
The high level design answers what the system will do for customers. The low-
level design explains the system to hardware and software experts who will then
implement the system. Writing the code is an extension of the design process.
Writing code is straightforward, because all the difficult decisions should already
have been made during design. During the production phase, we are very careful
with the testing process at system, integration and unit level.

For many software systems, coding does not mean the end of the developer’s
job. If errors are discovered after the system has been accepted, a maintenance
team fixes them. In addition, the customer’s requirements may change as time
passes, and corresponding changes to the system must be made. Thus, mainte-
nance can involve different personnel: analysts who determine what requirements
need to be added or changed, designers who determine where in the system design
the change should be made, programmers that implement the changes, testers
who make sure that the changed system still runs properly, and trainers who
explain to users how the change affects the use of the system.

VEMSTM is an online collaborative business management system and Inter-
net workspace that allows you to communicate, share, manage and distribute
information associated with projects and their related tasks or with enterprise
activities. The core part of VEMSTM consists of an automated workflow engine
that is configurable by the user via a graphical toolkit. Based on this graphical
description of the workflow, the engine automatically creates tracks and moni-
tors tasks and their related actions and documents. The engine can work totally
independent, the only user intervention being for performing the actions required
by task description or for monitoring the other user activities. Besides this au-
tomatic behavior of the engine, the user can manually control it by adding new
tasks, change assignments, forcing task completion etc.

The test and error management feature provides means to manage errors and
issues occurred during the testing activities, allowing for development of the test
cases and test suites during design time, posting of errors during testing time
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and error solving during debugging time. The testing documentation includes
system/acceptance test cases, integration test cases, and unit test cases. These
documents are produced at design time and they are grouped in test suites
during the testing iterations. Once a test suite is generated, the project manager
needs to schedule a task and the test suites are handed over to the testers.
Once a test case in a test suite has failed, the whole test suite has failed and
a test error document is automatically produced. Once an error document is
generated, the project manager assigns a task for solving the error. Resources
allocated to a test task or to a debug task might be automatically notified by
email. Every project defines the organizational framework to develop a system.
The system is the durable we obtain when a project is completed. The project
defines plans and monitors the actions to develop a system in all steps involved
in the system life cycle. Test and Error Management is dealing with the resulting
project artifacts we called systems in the virtual enterprise management system.
Test and Error Management provides the environment and the tools to test and
accept the system developed in the frame of a project during the system life
cycle.

The project reports management feature provides a mean for delivering
project reports like progress, effort, cost, stability, quality, computer resource
utilization and training. All these features cover chapters of the ISO 9000 and
CMM standards requirements dealing with software system development lifecy-
cle processes.

4 Software Project Management from a Training
Perspective

VEMSTM is well suited for any organization that has the production process
organized as projects, like software development projects, building construction,
hospitals, government projects, etc. More over if we assimilate a project with a
course we can use VEMSTM and the virtual workspace it provides as an eLearn-
ing tool especially for courses for ”project management”. Furthermore we can
assimilate project tasks with lessons, the project manager with a teacher and
team members with students. Home works/projects can be assigned to lessons
or to the entire course together with the corresponding terms/milestones. The
teacher/student might be notified via different channels like email, SMS, instant
messenger, etc when a certain milestone was not reached by a student. All courses
can be stored in any multimedia format in the document repository. Publish doc-
uments in any format (Word, PDF, HTML, Video...). The document repository
provides the possibility to track document changes, so that every course version
can be retrieved as the times goes by. During the course lifecycle the teacher may
change the access rights to the different course chapters according to the course
schedule. Comments can be posted on every course chapter both by student and
teacher so that the knowledge is well received by the student. The teacher has
the ability to start collaborative workflows or even projects on specific themes.
The system allows a teacher to show examples based on real life customs.
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Activities like courses, users and groups administration, agenda, documents,
announcements, forums, links, student papers, exercises, statistics, add a page
to site, link to an external site, modify course information, activate/deactivate
course components, queries can be easily achieved with VEMSTM. If we talk
to project management specific issues VEMS provides Project Planning, incor-
porates advanced Project Tracking tools like Critical Path Analysis, Project
Estimating, Time Reporting, Gantt Analysis, EVA, Milestones and tasks be-
hind schedule or over budget notifications. VEMS allows integration with other
commonly used project planning tools by allowing users to import and export
files from MPX, TXT, RTF or .CSV and other standard formats. By contrast
with two dimension time management systems which provide the user with the
’scheduled’ time as one dimension and the ’actual’ time as the other dimension,
VEMS provides the third time management dimension which is the ’estimated’
time for a project or project task. The estimation of project completion date is
done by the system, based on the percentage of completion of all tasks and the
time reports entered by the users allocated to tasks, which differentiate VEMS
from the two dimension time management systems. Based on the estimated fin-
ish time high level management reports are delivered based on the projection of
the projects behavior in the future. The first two dimensions are covered by the
basic level management systems. VEMS covers especially the third dimension
which is one of the key features of the high level management systems in order
to provide prediction to the executive management. This way the executives can
prevent issues instead and detecting and solving them. The change management
feature provides means to manage project changes to give the user better control
of project related ’changes’. It allows the user to initiate and record all ’change’
requests, to assign responsibilities and to track the change through its lifecycle.
It also allows seeing the impact of the changes in time, cost, and quality for
any given project. Another feture would be telelerning via iButton technology.
The system is web oriented so that it is easy to be interfaced with laboratory
equipment.
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Abstract. This paper shows the possibility to create the basis of a computational 
(mathematical) model for the relationship between the volume of antimicrobial 
consumption (VAC) and the frequency of antimicrobial resistance in the human 
communities, based on an analogy with oscillations and wavelets. A heuristic al-
gorithm for generating asymmetrical practical test functions (ie PTF) using 
MATLAB procedures was elaborated. Based on the fact that differential equa-
tions can generate only functions similar to test functions (defined as practical 
test functions), the invariance general properties suitable for generating symmet-
rical pulses as related to the middle of the working interval are presented. 

Then some possibilities for obtaining asymmetrical pulses as related to this 
middle of the working interval using the derivative of such symmetrical pulse 
are studied, for certain differential equations corresponding to second order sys-
tems (with unity-step input and for an input represented by a Gaussian pulse). 
Finally it is shown that we can reach an oscillating system by joining such 
working intervals and restoring the initial null conditions for a second order 
system, in an adequate manner. 

1   Introduction 

After the declaration of the 1996 World Health Assembly appreciating the antimicro-
bial resistance as a “global threat”, the Invitational EU Conference on The Microbial 
Threat held in Copenhagen, Denmark, 9-10 September 1998, delivered the renowned 
“Copenhagen recommendations” for antimicrobial resistance containment. 

Most of the sense of these recommendations is to strengthen surveillance of resis-
tance in order to curb it by quickly and appropriately modeling the antimicrobials use. 

Though there is generally recognized that the cumulated effect of increasing antim-
icrobial consumption is raising the antimicrobial resistant organisms’ proportion, estab-
lishing a precise quantitative relationship between the frequency of resistance and  
antimicrobials consumption proved difficult, both because of the lack of long lasting 
antimicrobial resistance/antimicrobials consumption data bases and of theoretical mod-
els. Some general pattern-s were yet described, e.g.: a. typically a long period of very  
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low-level resistance preceding a phase of rapid increase in frequency and a slow ap-
proach to an equilibrium level of < 100%; b. the sigmoid shape of observed longitudinal 
changes, which theory predicts under a constant selective pressure [18]. 

The consensus accepted unit to measure the selective pressure exerted by the an-
timicrobial use is the number of DDDs (Defined Daily Doses)/1,000 inhabitants or 
individuals.  

However, resistance phenomenon is not a linear and/or similar one in every organ-
ism, even in the presence of antimicrobials pressure.  

There are microorganisms known as adapting to antimicrobials by point mutations 
(e.g. Mycobacterium tuberculosis) and there are others which are surviving by trans-
ferring each others fragments of genetic material coding for resistance factors (e.g. 
Staphylococcus aureus, gram negative enteric bacteria, enterococci etc.).  

Microorganisms’ population genetics studies were addressed to help understanding 
the fine dynamics of general epidemiological trends. 

On the other hand, there are changes at the human population level, leading to 
transmission/colonization with resistant or susceptible microorganisms, pending on 
the antimicrobial treatments. For example, a patient colonized with both susceptible 
and resistant microbial genotypes (strains) treated with an antimicrobial which was 
not efficient, will further transmit to other individuals the resistant strain selected by 
the antimicrobial treatment etc. We may consequently conclude on having both direct 
and indirect effects of antimicrobial use. 

The types of resistance mechanisms have implications for the choice of antimicro-
bial therapy and the evaluation of strategies to minimize resistance and “adopting the 
individual and population level perspective informs therapeutic decision-making, 
clinical study design and public policy” [19]. Choices have to be done evidence 
based, for individual cases, but antimicrobial use policies are needed too at local, 
national and regional level.  

What becomes clear even after sketchily describing the antimicrobial resistance se-
lection/spreading complexity is the fact that we are not dealing with ergotic systems.  

To study these kinds of phenomena you need adequate mathematical models.  
The analysis of signals on limited time intervals requires often the use of adequate 

mathematical models able to generate alternating function. Using undumped differen-
tial equations of second order, able to generate signals with a certain angular fre-
quency for obtaining sine functions is a well-known option. But for obtaining pulses 
limited on certain time intervals some specific models must be set up. An alternative 
is represented by the use of test-functions, but ideal test functions can not be gener-
ated by a differential equation of evolution [1]. On the other side, a propagation phe-
nomenon for an ideal test function can not be taken into consideration as in [2],  
because we are looking for causal pulses, generated in a rigorous manner by an equa-
tion of evolution. This implies the use of practical test-functions (functions which 
possess a limited number of derivatives equal to zero at the limits of the working 
interval and which can be solutions of differential equations). Consequently we must 
study invariance properties of such equations, so as the output to be represented by an 
asymmetrical function as related to the middle of the working period. If we consider 
as working interval the time interval (-1; 1), then the middle of the interval would be 
the origin, and the condition for the output f(t) being asymmetrical corresponds to the 
condition. 
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(1)

 
Aiming to obtain such a function on the time interval (-1; 1), we have to begin by 

studying equations able to generate a symmetrical function g on this time interval [3] 
so as to find a method for translating some of their properties to asymmetrical functions; 
finally we must use Runge-Kutta equations ([4]) for studying the properties of the 
mathematical models obtained. We are looking for controlled oscillations on a limited 
time interval (unlike unstable oscillations for second order difference systems [5]). 

A first attempt would be the use of the signal which is integrated for sampling elec-
tronic or optoelectronic signals in a robust manner - using oscillating second order 
systems working on a period [6],. The filtering possibilities of such systems (as low 
pass filters) were presented in [7]. This would lead to a sine or cosine function, with 
possibilities of joining together such working intervals for obtaining a controlled 
oscillation extended in time. Yet we are looking for general differential equations able 
to generate asymmetrical pulses of different shapes (not only sine or cosine func-
tions). We may extend our analyze at wavelets corresponding to PDE [8] or to equa-
tions able to generate wavelets represented by solitary waves [9]. 

Both previously mentioned aspects could be joined together if we are looking for 
functions similar to test-functions having a shape similar to wavelets. As one may 
notice by studying [3], practical test-functions of second order possess a derivative 
with null initial and final values. By analyzing its mathematical expression on the 
whole working interval (-1; 1), we may notice that this derivative is an asymmetrical 
function as related to the middle of the working interval (considered as origin), while 
the symmetry of g function implies that its slope is asymmetrical as related to the 
origin (the same modulus and opposite sign). So we have to analyze the differential 
equations able to generate symmetrical functions g and to study the shape of their 
derivatives for different input functions. 

2   Asymmetrical Pulses Obtained as Derivatives of Symmetrical 
Functions 

As it is known, a test-function on [a, b] is a C1 function on R which is nonzero on (a; 
b) and zero elsewhere. For example, the bump-like function 

                       

(2)

 
is a test-function on [-1; 1]. 

On the other side, test-functions as the bump-like function: 

                           

(3) 

are almost equal to a constant value for 2/3 of the working period (similar to a step-
function). 
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Such functions can not be generated by differential equations of evolution;  
however, we can use differential equations able to generate a practical test-function 
on (-1; 1) (a Cn nonzero function on (-1; 1) which satisfies the boundary conditions 
f(k)(a) = f(k)(b) = 0 for k = 0; 1; :::; n and can be a solution of an initial value prob-
lem on this interval). 

The first and second derivatives of 'a are 

                                       

(4)

 

                                      

(5)

 
Considering the corresponding differential equation 

                                              

(6)

 
with initial values considered at f0 = -0:99 as 

                                       

(7)

 
it results a function f symmetrical as related to the middle of the working interval. In 
the same way the correspondence is: 

                                       

(8) 

By considering the corresponding differential equation: 

                                            

(9)

 
with initial values considered at f0 = -0:99 as 

                                        

(10) 

                          

(11) 

it results also a function f symmetrical as related to the middle of the working inter-
val. In a similar way, for the function 'b (f) we obtain the correspondence: 
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(12) 

By considering the corresponding differential equation 

                              

(13) 

with initial values considered at f0 = -0:99 as 

                                        

(14) 

                         

(15) 

we obtain a function f symmetrical as related to the middle of the working interval I. 
The shape of these outputs offers also the possibility of joining together such time 

intervals and the corresponding asymmetrical pulses so as to obtain a controlled oscil-
lation. While at the beginning and at the end of each working interval the state-
variables of the differential system are approximately equal to zero it would be quite 
easy to adjust the final values of these variables for a working interval to the initial 
values of these variables for the next working interval; thus the cycle can continue in 
a controlled manner. 

We must point the fact that an asymmetrical pulse represents in fact a test function 
for the derivative of an input signal; by multiplying an input signal with an asymmet-
rical pulse and by integrating the resulting function on the working interval, we obtain 
a result proportional to the slope of the input signal (as it can be easily checked). Thus 
a possible application would be a faster estimation of acceleration by multiplying the 
input signal corresponding to velocity (a robust method which is faster than the 
method presented in [10], based on an estimation performed over two working peri-
ods). Another application can be represented by phase-detection; by multiplying the 
alternating input signal with an asymmetrical function and integrating the resulting 
function we obtain a result proportional to the amplitude of an input sine function (a 
more robust method than the one presented in [11], where the input function is proc-
essed by a nonlinear second order system). 

Finally we have to study the output generated by a second order differential equa-
tion able to generate an asymmetrical output for an input represented by a very short 
pulse, so as to check its stability at such kind of disturbances. For this, we consider 
the differential equation: 

         

(16) 
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with initial null conditions (the external pulse being represented by a short Gaussian 
pulse received at the moment of time tp = -0:9). One may notice that a major influence 
appears at the end of the working interval, after a time interval of about 1.8 units. Thus 
the final output pulse can be considered as an acausal pulse for an external observer 
studying the input and the output of the system on the time interval (0; 1), for example. 

Unlike aspects connected with acausal traveling waves as possible solutions of the 
wave equation presented in [12] (where are no sources inside a certain string begin-
ning to move from initial null conditions), the acausal pulse generated by the previous 
equation appears with almost null conditions existing for the state variables of a 
unique system (a single point). The term almost null conditions implies the use of a 
multiscale analysis of phenomena [13]. The study have to be completed by searching 
invariance properties for a good determination of inner structure of material [14], for 
a corresponding computer program able to perform an accurate estimation of the 
corresponding parameters [15], taking also into consideration phenomena appearing 
for thin-walled materials subject to external pulses [16]. 

For rejecting the inuence of such short Gaussian pulses, we must use some low-
pass filters for delaying the moment of time when such short pulses are received by 
the processing system with about 0.2 units, so as no effect upon the output to be no-
ticed any more (the whole working interval is about 2 units). 

The computational signification of the influence of the short Gaussian pulse  
considered as an acausal pulse can be interpreted in terms of the superinfection 
mechanisms, which may result in coexistence of both types of strains (resistant and 
susceptible strains of the same microorganism) isolated from one person with resis-
tance at an equilibrium frequency lower than 100%.  

3   Conclusions 

This paper presents some methods for generating asymmetrical practical test func-
tions using MATLAB procedures (based on Runge-Kutta equations). Based on the 
fact that differential equations are able to generate only functions similar to test func-
tions (defined as practical test functions), the invariance general properties suitable 
for generating symmetrical pulses as related to the middle of the working interval are 
presented. Then some possibilities for obtaining asymmetrical pulses as related to the 
middle of this interval using the derivative of such symmetrical pulse are studied, for 
certain differential equations corresponding to second order systems. Finally it is 
shown that we can obtain an oscillating system by joining such working intervals and 
restoring the initial null conditions for a second order system, in an adequate manner. 
Results of using such asymmetrical functions for analyzing the relationship between 
the volume of antimicrobial consumption in human communities and the frequency of 
resistance (similar to [17] will be published in the future. 
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