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Preface

This volume contains the papers which were selected for presentation at the second Bioin-
formatics Research and Development (BIRD) conference held in Vienna, Austria during
July 7-9, 2008. BIRD covers a wide range of topics related to bioinformatics. This year
sequence analysis and alignment, pathways, networks, systems biology, protein and RNA
structure and function, gene expression/regulation and microarrays, databases and data
integration, machine learning and data analysis were the subjects of main interest.

The decisions of the Program Committee are based on the recommendations of at
least three, up to five, reviews for each paper. As a result, 30 of the 61 submitted con-
tributions could be accepted for the conference.

We were happy to have three invited talks presented by experienced researchers
providing visitors with a good overview but also some very important insights into the
fascinating domain of bioinformatics. Abstracts and more information on these talks
are provided in the conference program as well as at the conference site.

In the second part of this volume the selected contributions of the two workshops
which were held in parallel to the main conference are presented: Workshop on Dy-
namical Aspects of Perturbation, Intervention and Transition in Biological Systems —
PETRIN 2008 and Workshop on Algorithms in Molecular Biology — ALBIO 2008

Poster presentations of the BIRD conference are in the companion proceedings
published by the Trauner Verlag, Linz.

The second BIRD conference was a successful continuation of this new conference
series, which started last year in Berlin. First of all the editors want to thank the au-
thors, whose work made this volume possible. Then we want to thank the invited
speakers, Rudolf Freund, Peter Schuster, Tom Slezak.

We especially thank the Program Committee members, who ensured the high qual-
ity of the conference and the publications in this volume, provided their experience
and expert knowledge, and invested time to select the best submissions. We thank the
Web administrators (A. Anjomshoaa, A. Dreiling, C. Teuschel), who took care of the
online submission process and registration.

Most of all we wish to express our gratitude to Gabriela Wagner (DEXA Society),
who managed the conference, which includes organizing the submission and the re-
view process, setting up and coordinating the decisions of the Program Committee,
being responsible for the final paper versions, planning and supervising the technical
program schedule including the banquet, taking care of the editorial and printing is-
sues, and much more.

July 2008 Robert Murphy
Roland Wagner

Josef Kiing

Michal Linial

Kristan Schneider
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Workshop on Algorithms in Molecular
Biology — ALBIO 2008

Computational molecular biology has emerged from the Human Genome Project as an
important discipline for academic research and industrial application. The exponential
growth of the size of biological databases, the complexity of biological problems and
the necessity to deal with errors in biological sequences result in time efficiency and
memory requirements. The development of fast, low-memory requirements and high-
performances algorithms is thus increasingly important in computational molecular
biology.

Papers presented in this workshop deal with algorithms that solve fundamental
and/or applied problems in molecular biology, that are computationally efficient, that
have been implemented and experimented on simulated and/or on real biological se-
quences, and that provide interesting new results.

Mourad Elloumi

Program Committee

Mourad Elloumi, University of Tunis, Tunisia, (Chair)

Sami Khuri, San José State University, USA

Alain Guénoche, Institute of Mathematics of Luminy, Marseille, France
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Workshop on Dynamical Aspects of Perturbation,
Intervention and Transition in Biological
Systems — PETRIN 2008

Important aspects in information theory and control theory appeared by studying the
behavior of biological systems. The classical control loop is a good example present-
ing the methods used by biological entities for controlling certain functional parame-
ters in different circumstances. The further development of control theory and of dy-
namical models led to important achievements in the study of evolutionary processes.
However, some modern aspects in physics (quantum theory) and mathematics (wave-
lets, fractal theory) imply a more profound approach of transitions and short-range
phenomena both in materials science and in natural (biological) systems.

The mathematical formalism of impulsive systems tries to use the rigorous aspects
from continuous systems formalism as well as the wide range of applications of discrete
systems formalism. They were introduced due to the fact that many evolution processes
are characterized by the fact that at certain moments of time they are subject to short-
term perturbations (having the form of external impulses). It is known, for example, that
many biological phenomena involving thresholds, bursting rhythm models in medicine
and biology, optimal control models in economics, and frequency modulated systems
present impulsive effects. Thus impulsive differential equations (involving impulse ef-
fects) can describe the evolution of many scientific and technical phenomena.

Yet the study of such abrupt changes must be completed with logical, mathematical
and technical aspects connected with the moment of action of such impulsive external
commands.

To model such changes (transitions) in an accurate manner, specific dynamics on
limited time interval is required. It must be taken into account that bioinformatics
should join together both statistical aspects (well known in natural sciences from
thermodynamics theory and quantum theory) and deterministic aspects (describing the
evolution of systems by differential equations, similar to classical mechanics). As
particular aspects for biological systems, aspects connected with the so-called free-
choice (for human systems) and external intervention (for human and biological sys-
tems) should be added . This implies the use of accurate dynamics of perturbations,
intervention and transition in multi-scale systems, for deterministic aspects and sto-
chastic aspects to be merged into a unitary model of the Proper Time of Intervention
(a very useful concept for human action).

The Workshop on Dynamical Aspects of Perturbation, Intervention and Transition
in Biological Systems is intended to emphasize the necessity of joining together de-
terministic and stochastic methods in an accurate multi-scale approach for modeling
perturbations, transitions and interventions in biological systems.



XVI Workshop

The PETRIN 2008 Workshop represented a major scientific event organized by the
Group for Interdisciplinary Science, Romanian Commission for UNESCO.

Program Committee

Sterian Paul - Politehnica University, Bucharest, Romania
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A Tree Index to Support
Clustering Based Exploratory Data Analysis

Christian Martin and Tim W. Nattkemper

Technical Faculty
AG Applied Neuroinformatics
Bielefeld University
{christian.martin, tim.nattkemper}@uni-bielefeld.de

Abstract. In microarray data analysis, visualizations based on agglomerative
clustering results are widely applied to help biomedical researchers in generating
a mental model of their data. In order to support a selection of the to-be-applied
algorithm and parameterizations, we propose a novel cluster index, the tree index
(TI), to evaluate hierarchical cluster results regarding their visual appearance and
their accordance to available background information. Visually appealing cluster
trees are characterized by splits that separate those homogeneous clusters from
the rest of the data, which have low inner cluster variance and share a medical
class label. To evaluate clustering trees regarding this property, the TI computes
the likeliness of every single split in the cluster tree. Computing TIs for different
algorithms and parameterizations allows to identify the most appealing cluster
tree among many possible tree visualizations obtained. Application is shown on
simulated data as well as on two public available cancer data sets.

1 Introduction

In modern biomedical research, the number of experiments and studies using microar-
ray technology keeps continuously increasing [1I2]. Microarray data is usually char-
acterized by a high dimensionality (many genes), few data points (few samples or
experimental conditions), a low signal-to-noise ratio, outliers, and missing values mak-
ing many standard statistical test methods applicable only to a limited extend.

In the following, we consider the general task of exploratory data analysis of a
preprocessed microarray data set X = {xy,...,xq} of d biological samples. When
exploring this microarray data, the analysis very often includes unsupervised cluster
algorithms. Unlabeled data is divided into natural groups, which may correspond to
particular macroscopic phenotypes or functional categories. The cluster algorithms can
be classified as hierarchical, partitioning and density-based methods [34/3].

Agglomerative clustering is the basis for most visual data mining tasks in
microarray applications, since in the cluster tree (alias dendrogram) the intrinsic hi-
erarchical cluster structure of a data set is visually accessible at once. Most recently,
normalized cuts (8], a spectral clustering approach has also been applied to microarray
data [9/10]. One problem in clustering based exploratory data analysis is the variability
of the cluster result dependent on the applied cluster algorithm and parameterizations
(preprocessing of the data, (dis-)similarity measure). There is hardly any consensus

M. Elloumi et al. (Eds.): BIRD 2008, CCIS 13, pp. 1 2008.
(© Springer-Verlag Berlin Heidelberg 2008
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about how to choose these [T1/12]. This results in an enormous number of potential
visual displays for one data set leading to the confusion of the biomedical researcher.
It is common practice to test different algorithms and parameterizations and to select
the cluster result which seems to be the most appropriate according to one’s knowledge
and anticipations. Thus, an analytical and objective evaluation of cluster results would
help to identify the algorithm and parameterization that yield objectively reasonable
cluster results. Cluster indices assess the quality of a clustering by evaluating the data
inside the clusters and by quantifying the amount of global structure captured by the
clustering. Cluster indices can be grouped into internal and external ones [T1I13]. In-
ternal indices evaluate the quality of a cluster by using only intrinsic information of
the data. They use the same data which has been used by the cluster algorithm itself.
The following internal measures have been developed: Goodman-Kruskal Index [14],
Calinski Harabasz Index [13)], Dunn’s index [16]], C-Index [17], Davis-Bouldin index
(18], Silhouette index [19)], Homogeneity and Separation [20], and Index I [21]]. Most
of these measures have already been successfully applied to microarray data [22]], and
are integrated in software packages for analysis of gene expression data [23124].

More recently, external indices have gained a remarkable popularity to evaluate re-
sults of various cluster algorithms. External evaluation is based on the assumption that a
real class label or category (gold standard) is known for each element. The cluster result
which best reflects both the internal structure and the preset categories, obtains the high-
est score. The label can be a particular macroscopic phenotype, a functional category or
any other category of interest. An important statistical measure is the Rand Index or
the adjusted Rand index [26], measuring the similarity between two partitions that are
the clustering and the external label. A further improvementis the weighted Rand index,
proposed and applied on microarray data [27]. Furthermore the following indices are
proposed in the bioinformatics literature: The cumulative hypergeometric distribution
is used to compute a p-value measuring the probability of observing at least a certain
number of genes of the same annotation in a cluster [28129]. The biological homogene-
ity index (BHI) is proposed, measuring the fraction of genes with the same annotation
in one cluster, and the biological stability index (BSI) measuring the stability of cluster
results in a leave-one-out approach [30]. Clusterings of genes are compared using the
concept of mutual information [31]]. ANOVA is applied to measure the accordance of
the clustering to a linear combination of a binary vector specifying the membership to
functional categories [[12]. Finally, a figure of merit (FOM) is proposed to evaluate a
clustering obtained by a leave-one-out approach [32]]. The left out sample is used as
external label for validation.

A drawback of all indices proposed so far is that they all work on results obtained by
partitioning methods. The data must be clustered in k groups, whereas k£ must either be
estimated beforehand or during the cluster evaluation process. Hierarchical cluster trees
are usually evaluated by cutting the tree at some level yielding % clusters. Even though
an evaluation of a hierarchical cluster tree applying traditional indices (for partitions)
at any level of the tree is imaginable, the development of a stable and unbiased index
for trees is not straight-forward. In this paper we propose a novel external cluster index
for cluster trees, the tree index. It is optimized to identify the algorithm and parameteri-
zation (preprocessing of the data, (dis-)similarity measure), yielding the clustering that
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Fig. 1. The first splits of four different cluster trees are shown. In an optimal cluster tree the data is
divided into homogeneous clusters at the very first split (a). Usually such an optimal cluster tree
cannot be generated for real data. An appealing cluster tree is rather characterized by many (here:
two) splits inside the cluster tree each dividing a heterogeneous cluster into almost homogeneous
subclusters (b). The purer and larger the subclusters in a split, the cluster tree is well (b) or not
well (¢) suited for a visual datamining task. A degenerated cluster tree (d) separating only single
elements from the rest of the data in each split if of a lower quality.

is best suited for visualization. In biomedical applications, microarray data is usually
analyzed in combination with additional variables, like clinical data or tumor classifi-
cations. Thus we measure the usefulness of a tree visualization according to an external
class label. For demonstration, the index is applied to cluster trees created by agglomer-
ative clustering and normalized cuts on simulated data as well as on two public available
cancer data sets.

2 Methods

We consider a preprocessed microarray data set with d samples (for instance derived
from d tissue samples) of g genes, X = {xi,..., X;,...,Xq},dimx; = g. Based
on some background information, one out of x possible external labels or categories
¢; € {C1,...,C}is assigned to each sample x; (for instance C; = tumor classification
of the tissue). In contrast to classification, we use the data labels to tune our visualiza-
tion and not to predict a class for a new sample. Let us now assume that X has been
clustered by some hierarchical agglomerative or divisive cluster algorithm yielding a
cluster tree (Fig. ). To characterize the features of a cluster tree that allow efficient
visual data mining, we consider the tree as a result of a statistical process. In the ideal
case, the data is divided into homogeneous clusters at the first split (Fig. [Th). Usu-
ally such an optimal cluster tree cannot be generated for real data. In a more realistic
scenario an appealing cluster tree is characterized by many splits that divide a heteroge-
neous clusters into nearly homogeneous subclusters (Fig.[Ib). The purer and larger the
subclusters in a split, the more interesting they are, since each of them is defined by a
clear pattern of variables that separate it from the rest of the data. Cluster trees with het-
erogeneous subclusters (Fig. [[k) or degenerated cluster trees (Fig.[Id) separating only
single elements from the rest of the data in each split are of lower visual quality. When
considering the splits of a cluster tree from a statistical point of view, the probabilities
of the splits permit to distinguish between cluster trees of different qualities. Obviously,
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Fig. 2. In the r-th split, a cluster with N = 10 elements belonging to x = 3 categories is split
into [ = 2 subclusters, each containing m, elements with m; elements belonging to category
C». In this split a completely homogeneous cluster is separated from the rest of the data. From a
statistical point of view this event is rather unlikely resulting in a high splitting score for the r-th
split.

a cluster tree of high quality is characterized by many unlikely splits, separating large
homogeneous clusters from the rest of the data.

We now introduce the free index, which is based on the evaluation of probabilities
of every single split in a cluster tree. Clusters, also homogeneous ones, are always
split until only singleton clusters are left since the label is not considered during the
clustering process (Fig. P)). In a first step a splitting score is computed for every single
split in the cluster tree based on the probability of the split. In a second step, all splitting
scores are combined to compute the final tree index.

Step 1: Looking at the r-th split (the splits are numbered arbitrary), a cluster with N
elements is split into [ (usually / = 2) smaller subclusters (Fig.2)). The elements of the
main cluster belong to x different categories whereas nx, A € {1,..., s} specifies the
number of elements belonging to category C,. The i-th subcluster contains m; elements
with m;) elements belonging to category C,. The primary objective is to compute the
probability of such a particular split by taking the observed distributions in the clusters
into account. It is assumed that m;, ¢ € {1,...,[} elements are drawn from the N ele-
ments by sampling without replacement. Thereby each element is drawn with the same
probability. For two categories (x = 2) and two subclusters (I = 2) the probability of
the observed distribution is given by the hypergeometric distribution.

e
()

For the general case (k categories and [ subclusters) the probability is given by a gen-
eralized form of the polyhypergeometric distribution or multivariate hypergeometric
distribution [33]]. Let M = {m;»}, n = {n,}, and m = {m;} with 1 < i <[ and
1< A<k,

p(mait, mio; N,ny,my,mg) =
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Fig. 3. Cluster trees and histograms with a high (obtained by spectral clustering, o = 1072,

Euclidean (dis-)similarity, all normalization), mediocre (obtained by complete linkage, o = 1,
eucl., all norm.), and low (obtained by single linkage, o = 1, eucl., all norm.) tree index (TI)
are shown. In all histograms, many splitting scores are close to zero. These result from less
important splits dividing small clusters. The quantity and amplitude of a few high splitting scores
characterize the quality of a cluster tree. A cluster tree with a high TI is characterized by a
histogram with some splitting scores of high amplitude (a). These splitting scores correspond to
splits inside the cluster tree that divide clusters in large and nearly pure subclusters. A cluster
tree with a mediocre TI is characterized by a histogram with some splitting scores of a middle
amplitude (b). These splitting scores correspond to less important splits inside the cluster tree that
divide clusters in less larger and less purer subclusters than observed in the cluster tree with the
high TI. A cluster tree with a low TI is characterized by only a very few splitting scores of low
amplitude (¢). Such a degenerated cluster tree consists of many splits separating only one single
element from the rest of the data.

p(M; N,n,m) = 1= 2)

[T5=; na!
p(M; N,n, m) decreases with the size of the cluster that is split and with the homo-
geneity of the subclusters. The probability reaches its maximum if the distribution in a
given cluster correlates to the distribution in the subcluster, indicating a random split.
We define the splitting score S,. of the r-th split by its negative logarithmic probability.

Sy(M; N;n,m) = —Inp(M; N,n, m)

K l K
lnN!—ZlnnA!—Z (lnmﬂ—Zlan!> 3)
A=1

i=1 A=1
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A splitting score of a given cluster reaches its minimum if the distribution in the cluster
correlates to the distribution in the subclusters. The splitting score increases with the
size of the cluster that is split and with the homogeneity of the subclusters. Thus splits
at higher levels in a cluster tree dividing larger clusters are generally capable to produce
higher splitting scores. Splits at lower levels in a cluster tree divide clusters containing
only few elements. This results in many splitting scores close to zero, since most of
the splits are located in the lower part of a cluster tree. A split dividing a homogeneous
cluster always has a splitting score of zero. Therefore the splits inside homogeneous
clusters are of no importance for the further computation of the tree index.

Step 2: The set of all splitting scores enables to distinguish between cluster trees
of different qualities. Independent of the internal structure of the cluster tree, the sum
of all splitting scores is constant. Many splitting scores are zero (splits of homogeneous
clusters) or close to zero (splits of small clusters). For illustration cluster trees of a high,
mediocre and low quality are presented in Fig.[3l

A cluster tree of low quality is characterized by mostly low splitting scores and a
very few high splitting scores (Fig.Bk). A cluster tree of high quality has considerably
more high splitting scores (Fig. Bh).

To combine the complete set of splitting scores to a parameter-free index, we propose
to use the standard deviation of splitting scores to capture the quality of a cluster tree,
by defining the tree index (TI) by:

1 & 2 I .
TI = R;(ST—S),withS:R;ST, ©))

and R the number of splits in the cluster tree. Usually S is close to zero because many
S, are close to zero. Thus, the quantity and amplitude of high S, basically determines
the index. The higher the index, the more appealing is the corresponding cluster tree
display.

3 Results

For illustration, the tree index is applied to cluster trees obtained from simulated data
and two public available cancer data sets.

3.1 Simulated Data

Our artificial data set C consists of five classes, each containing b = 8 items that are
scattered around their class centers with normally distributed noise (¢* = 0.1):

5
C = UC“ with C; = {(Xj,Cj), X EN(IJ@’O'*)’ C; = (3 .7 S [lvb]}7 (%)

i=1

whereas (x;,c;) comprises a two-dimensional data point x; and the corresponding
label c;. The class centers are given by p = (2,2)% o =(5,2)% p3=(3,10)% s =
(50,2)% and ps5 = (50, 4)% meaning that C; and Cy as well as C4 and Cs are grouped
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close together, with a large gap between the two groups, whereas Cs is located in the
further vicinity of C; and Cy. Now, additional normally distributed noise o € [0.1, 100]
is added to each point in the data set C to create a perturbed data set D, :

D, = {(Xj + 15, cj)7 X EC? nj EN(O’J)} (6)

Four such data sets Dy 1, Di.12, Dg.32, and Dgg.1 are shown in Fig.[dh). Their corre-
sponding hierarchical cluster results are displayed below (Fig.db). Fig. k) displays the
corresponding scores of the four experiments. It can be seen that the number of high
splitting scores decreases as noise increases. The four experiments of Fig. ) to c) are
integrated in Fig. [dd), where for each o, the experiment is repeated 50 times, and the
computed TIs are displayed in Box-and-Whisker plots. The fact that the TI decreases as
noise increases makes the TI a reliable index to measure how well the label is reflect-
ing the structure of the clustered data and how well a specific cluster tree is suited for
visualization.

In order to demonstrate the applicability to larger data sets that are more realistic
in real-world applications and to address the issue of scalability of the tree index, the
experiment is repeated with b = 60 items for each class, resulting in a data set of 300
items. The Box-and-Whisker plots in Fig. |3 indicate that the TI produces qualitatively
similar results compared to the data set with 40 items in Fig. @l Uniquely the TI’s
amplitude is affected by the number of items in the data set.

3.2 Real-World Data

By applying the TI on real-world data sets, we simulate the scenario where a biomed-
ical researcher is looking for the most appropriate algorithm and parameterization to
visualize the cluster structure in the data.

The first data set is the breast cancer data set of van de Vijver et al. which is an
extension to the study of van’t Veer et al. [35]]. For each of the 295 subjects in the study,
24496 genes are analyzed and clinical data is available. In our study the clustering of
subjects is performed on logarithms of ratios of a set of 231 marker genes identified by
van’t Veer et al. [35]]. The logarithms are either scaled to [—1, 1] (all normalization) or
they are scaled separately to [—1, 1] for each gene (single gene normalization). The data
is separated into two classes of those tumors that develop metastasis and those which
do not. We use this information as the external label (C;) since the user seeks for groups
of cases that have a similar genetic profile and are in the same tumor class.

The second data set is the multi-class cancer data set of Ramaswamy et al. [36]
containing 288 subjects and 16063 genes. The data is separated into 22 different cancer
types that are taken as external labels (Co, . . ., C21). Thereby it is assumed that there is
a correlation between the cancer type and the microarray data.

In order to create a large range of possible tree visualizations, two different prepro-
cessings are applied (all and single gene normalization), and two different (dis-) similar-
ity measures with five different scaling factors (see next paragraph) are used. The data
set is clustered by the normalized cuts algorithm [8]] applied in a hierarchical manner
and by five variants of hierarchical agglomerative clustering (single linkage, complete

! Downloadable at http: / /www.rii.com/publications/2002/nejm.html
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Fig.4. Four perturbed data sets Do.1, Di.12, De.32, and Dsg.1 are shown in a). Their cor-
responding hierarchical cluster results are displayed below (b). In by) the five classes are well
separated. In a first step, the items of each class are grouped together (i). Then the classes C;
and C» (ii) as well as C4 and Cs (iii) are linked to each other, followed by Cs that is linked to Cy
and C2 (iv). As noise increases, C1 and C2 (v) as well as C4 and Cs (vi) cannot be separated any
more by the cluster algorithm (b2). With a further increase of noise, Cs (vii) melts with C; and Ca
(bs), but C1,C2 and Cs are still separated from C4 and Cs (viii). Finally, with very high noise, an
identification of the original classes is not possible any more (by4). ¢) displays the corresponding
scores of the four experiments. It can be seen that the number of high splitting scores decreases
as noise increases. The four experiments of a) to ¢) are integrated in d), where for each o, the
experiment is repeated 50 times, and the computed TIs are displayed in Box-and-Whisker plots.
Obviously, the TI decreases as noise increases. (ix) marks the position of the perfect separation
of the clusters, (x) the position where C; and Cz as well as C4 and Cs are combined in one cluster.
(xi) marks the position where C3 cannot be separated from C; and C2 any more and (xii) indicates
a complete random clustering.
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Fig.5. The TI is applied to our simulated data set of 300 items. The Box-and-Whisker plots
indicate that the TI produces qualitatively similar results compared to the data set with 40 items.
Uniquely the TI's amplitude is affected by the number of items in the data set.

linkage, average linkage, Centroid, Ward). This results in a total of 2 X 2 x 5 x 6 = 120
cluster results. The cluster tree with the highest tree index is selected for final visual-
ization.

Similarity and dissimilarity measures. Both the Euclidean distance and the Pearson
correlation coefficient are used with a scaling factor specifying the sensitivity of the
measures. The normalized cuts algorithm requires a similarity measure w;; € [0, 1] of
two expression profiles x; and x; of dimension g whereas hierarchical agglomerative
clustering requires a dissimilarity measure d;; € [0, 1]. For our studies we apply d;; =
1 — wj;. The first similarity measure is defined as

g

Wij = €xp {_N(Xi,xj) } ,with (x5, %) = Z(ffzk — )2 7)

79 k=1

and scaling factor 0. The second similarity measure is based on the Pearson correlation
coefficient [2]], which corresponds to the intuitive understanding of correlation and is
often used in the domain of microarray data analysis [7U10]]. It is defined as

1— i, . . 1 g 7 _'7i ik — X
wy — exp{— P(: ;) }  with p(x;,x;) = . Z <x ksi X ) <xngA xy)
k=1 /
)

where T; = ; > @i and s; = \/; > (wy — Z;)?. In our study we use five
different scaling factors o € {1072,1072,0.1, 1, 10}.
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Results. Results of the van de Vijver breast cancer data set are displayed in Fig. 6l The
highest tree index is obtained for complete linkage clustering, the correlation
dissimilarity measure, all normalization, and a scaling factor of 10. In the cluster tree,
the subjects are colored according to their category (metastasis or no metastasis). It can
be seen that in the very first split the data has been separated in an nearly homogeneous
cluster (many subjects without metastasis) and a heterogeneous cluster. Such a split
obtains a high splitting score and increases the tree index considerably.

Results of the Ramaswamy data set are displayed in Fig.[Zl The highest tree index is
obtained for Ward clustering, the correlation dissimilarity measure, all normalization,
and a scaling factor of 0.1. In the cluster tree, the subjects are colored according to
their category (tumor type). It can be seen that in various splits, homogeneous clusters
are separated from the rest of the data. Such splits obtain high splitting scores and are
responsible for a high tree index.

4 Discussion

Hierarchical cluster algorithms are frequently used for clustering microarray data. Dif-
ferent cluster algorithms and parameterizations produce different cluster results. The
algorithm and parameterization leading to the most appealing cluster visualization need
to be detected according to a specific external label. An appealing cluster tree is charac-
terized by splits dividing a heterogeneous cluster into nearly homogeneous subclusters
regarding externally given additional variables which are interpreted as labels.

We propose a novel index, the tree index, which is based on the probability of each
split. The tree index can identify the cluster algorithm and parameterization yielding
the clustering best suited for visualization. In our study we varied the applied clus-
ter algorithms, preprocessings and (dis-)similarity measures to create a large range of
possible tree visualizations. Since the application of cluster algorithms and the compu-
tation of the tree index are not very time consuming and can be performed automatically
for a large range of parameterizations, many more preprocessings and (dis-)similarity
measures could be tested. Other important issues like gene selection or outlier deletion
might also be considered to obtain cluster trees with even higher tree indices. The direct
analysis of the structure of the cluster tree has the advantage that — in contrast to clus-
ter indices that work on partitions — there is no need to estimate the number of clusters
or to cut the cluster tree at some level.

In step 1, the splitting scores are computed using the probabilities of the splits,
i.e. densities of the hypergeometric distribution. More robust splitting scores might be
obtained using the p—value of the hypergeometric distribution. However, the computa-
tion of the p—value of the generalized hypergeometric distribution, as needed for x > 2
categories, is not a trivial task.

In step 2, different scoring methodologies might be considered to compute the final
tree index. When combining the R splitting scores to a vector of size I?, the L,-norm
allows to define the final tree index in multiple ways. p = 2 leads to a result qualitatively
similar to taking the standard deviation. p = oo is equivalent to judging the tree’s quality
exclusively by the maximal splitting score. More complex scoring methodologies might
also take the tree level of the splitting scores into account.
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The tree index might be compared with other cluster indices. However, such a com-
parison is not straight-forward since those indices have to be adapted in order to address
the issue of cluster tree evaluation appropriately.

The tree index optimizes the tree structure of the cluster tree, not its display. The
leaf ordering inside the cluster tree is still arbitrary. For final visualization we recom-
mend the application of a leaf ordering algorithm and an enhanced visualization
technique with carefully selected graphical attributes (like color scale, line width, etc.).

In the presented examples single biological samples are clustered. The tree index
might also be applied to trees clustering genes. A possible external label might be the
primary function of a gene. Many databases exist for gene annotation and gene ontol-
ogy [3839]. However, a gene is usually involved in more than only one function or
pathway and the gene annotations are still incomplete. Adaptations of the tree index are
necessary to apply it with such multi-variate and incomplete external labels. Another
application of the tree index is that it can be used to test the robustness of cluster trees.
The influence of noise added to the microarray data or changing the scaling parameter
of the (dis-) similarity measure have to be further examined.

5 Availability

An implementation of the tree index in Matlab can be downloaded at
www . techfak.uni-bielefeld.de/ags/ani/projects/TreeIndex
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Abstract. Time series microarray analysis provides an invaluable insight into
the genetic progression of biological processes, such as pregnancy and disease.
Many algorithms and systems exist to meet the challenge of extracting knowl-
edge from the resultant data sets, but traditional methods limit user interaction,
and depend heavily on statistical, black box techniques. In this paper we present
a new design philosophy based on increased human computer synergy to over-
come these limitations, and facilitate an improved analysis experience. We pre-
sent an implementation of this philosophy, XMAS (eXperiential Microarray
Analysis System) which supports a new kind of “sit forward” analysis through
visual interaction and interoperable operators. Domain knowledge, (such as
pathway information) is integrated directly into the system to aid users in their
analysis. In contrast to the “sit back”, algorithmic approach of traditional sys-
tems, XMAS emphasizes interaction and the power, and knowledge transfer po-
tential of facilitating an analysis in which the user directly experiences the data.
Evaluation demonstrates the significance and necessity of such a philosophy
and approach, proving the efficacy of XMAS not only as tool for validation
and sense making, but also as an unparalleled source of serendipitous results.
Finally, one can download XMAS at http://cose-stor.sfsu.edu/~huiyang/
xmas_website/xmas.html

1 Introduction

Microarray-based experimentation is a technique, which measures the expression lev-
els for hundreds and thousands of genes within a tissue or cell simultaneously. It
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therefore provides a data rich environment to obtain a systemic understanding of vari-
ous biochemical processes and their interactions. Data from microarray experiments
have been used, among others, to infer probable functions of known or newly discov-
ered genes based on similarities in expression patterns with genes of known function-
ality, reveal new expression patterns of genes across gene families, and even uncover
entirely new categories of genes [1], [2]. In more applied settings, microarray data has
provided biologist with ways of identifying genes that are implicated in various dis-
eases through the comparison of expression patterns in diseased and healthy tissues.

The area of microarray data analysis remains particularly active, leading to the de-
velopment of numerous algorithms and software tools. The algorithmic underpinnings
of these methods span a variety of pattern analysis, machine learning, and data mining
methodologies including Bayesian belief networks (BBN), clustering, support vector
machines (SVM), neural networks and Hidden Markov models. A survey of many of
these techniques can be found in [1], [3], [4] and [5]. From a user perspective, a num-
ber of vendors have developed software systems for microarray data analysis such as
Ingenuity [6], Onto-Express [7] and GenMAPP [8]. Furthermore, plug-ins have been
developed for existing software systems such as the BioConductor [9] package for R
[10], along with SAM [11] and PAM [12] for Excel.

Despite this un-arguable richness of analysis tools, it is acknowledged however,
that analysis of microarray data is currently at a bottleneck [13]. Some of the most
fundamental reasons behind this include:

e Emphasis on the algorithmics to the exclusion of the user: Holistically taken, most
microarray analysis implementations are algorithm-oriented and do not provide
sufficient support for exploration and/or hypotheses formulation. From an end user
perspective, they function as a “black box” giving users very limited control over
the analysis process outside what the underlying algorithmic mechanism is in-
tended for. Among others, this limits the ability of users to integrate their domain
expertise into the analysis process or explore alternatives which the algorithm de-
sign had not foreseen.

o [nterpretability: Methods involving complex algorithms (such as BBN, SVM, and
dimensionality reduction) may produce results that are difficult to interpret or un-
derstand. This can create a disconnect between the algorithmic process and the bio-
chemical interpretability of the information.

e Biased statistical analysis: An important challenge outside the aforementioned
user-centric issues lies in the fact that many existing techniques (e.g., SAM and
PAM) employ statistical approaches to analyze microarray data. This can lead to
bias, since in the majority of microarray studies the data is under-constrained (there
are far fewer samples than genes or probes of interest). A representative example is
the dataset used in this paper. It studies the placenta over the duration of pregnancy
and is composed of just 36 samples containing expression levels for over 40,000
probes. As a result, it is difficult to construct reliable statistical samples or assume
a reasonable data distribution model to carry out further analysis.

Given the aforementioned context, we propose re-thinking the design philosophy
for developing microarray data analysis systems. Our central observation notes the
fact that computers are inherently strong at large scale processing, data storage and
data integration. However they lack the human skills of contextual reasoning, pattern
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detection, hypotheses formulation, exploratory behaviors, and sense making. Thus the
primary design goal we seek to establish is the ability to exploit human-machine syn-
ergy by taking advantage of the aforementioned complementarities.

In the area of human-computer interactions, such an emphasis on exploration and
hypothesis formulation in data rich environments has been the focus of study in [14]
and [15], where the term “experiential environment” was used to denote systems and
interfaces that take advantage of the human-machine synergy and allow users to use
their senses and directly interact with the data.

In this paper, we describe the anatomy of a microarray data analysis system called
XMAS (eXperiential Microarray Analysis System) that is developed by using and
extending the ideas of experiential computing. The proposed system is (1) direct in
that it does not use complex metaphors and commands; (2) supports unified query and
presentation spaces; (3) maintains user context; (4) provides external contextual in-
formation through assimilating a variety of supplementary data such as pathway data
from the Kyoto Encyclopedia of Genes and Genomes (KEGG) [16], and (5) supports
algorithmic and user-directed analysis, exploration and hypotheses formulation. Our
ultimate goal is to promote perceptual analysis by integrating the user directly in an
interactive and reflexive visualization environment with powerful algorithmic capa-
bilities. XMAS is not limited to the analysis of time series microarray data, and can be
more widely applied to any time-series datasets. XMAS supports the following visu-
alization and analyses:

e Trajectory based gene clustering: In time series microarray data, a trajectory is
composed of a sequence of expression measurements collected at different time
points for a certain probe or gene. It is essentially a time series of gene expression
data w.r.t. a single probe or gene. This function clusters different genes according
to the relative geometric similarity of their expression trajectories.

e Data filtering: This can be based on gene identifiers, pathways, and integrated or
user defined annotations. These filters facilitate the specification of genes of inter-
est, enabling the user to narrow down hypotheses. This functionality extends to
support any integrated secondary data.

o [nterestingness evaluators: XMAS implements a set of measurements such as
Pearson’s correlation and p-value to quantify the interestingness of the results, to
aid the user during visual inspection and more generally the entire analysis process.

e Visualizations: Two primary visualizations provide interactive representations of
data at different resolutions including (1) a discretized trajectory view; and (2) a
precise gene expression view.

e Interactions: Users can directly manipulate, interact and explore the data using
highly intuitive point-and-click interactions.

There exist systems which support some of the features described above. For ex-
ample the commercial system OmniViz [17] offers various reflective and interactive
visualizations in addition to the more traditional statistical measures and algorithmic
capabilities. Systems which share this closer resemblance to XMAS lack the core ex-
periential design philosophy, which in turn has a significant influence over the com-
pleted system in the following areas: interaction, visualization, data integration, and
interoperability. This will become apparent through the remainder of the paper.
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Through use of XMAS, users are expected to achieve three main goals: (1) to gain
a deeper understanding of a time series microarray dataset; (2) to verify or compare
phenomena reported in literature on comparable datasets; (3) to generate hypotheses
through examining results from different analyses. The main contributions of this
work include: (1) increased user involvement, comprehension and understanding
through development of a new design philosophy for microarray data analysis; (2)
improved biological results from analysis; and (3) a concrete web-based extensible
implementation of this design philosophy. This paper goes on to describe XMAS; its
fundamental components and associated combinatorial power in Section 2. In Section
3 experimental results and user evaluation are presented to demonstrate the efficacy
of this approach.

2 System Description

XMAS is an experiential system for time series microarray data (TSMAD) analysis
through realizing a collection of interactive visual data operators and assimilating
different types of knowledge such as pathway information. As shown in Fig. 1,
XMAS consists of the following main modules: (1) data preprocessing; (2) a collec-
tion of interoperable data operators, including a parameterized discretization operator,
basic data integration operators, and trajectory-oriented data operators; (3) interest-
ingness evaluators; and (4) visualization and Human Computer Interaction (HCI).
Next, we first discuss the datasets utilized by XMAS, and then describe in detail its
main modules.

2.1 Data Sets

XMAS focuses on the analysis of time series microarray data. Such data has been
used to study the developmental nature of an organ (e.g., a cancerous tissue) by con-
ducting Microarray experiments on samples drawn from this organ over time. The
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Fig. 1. System overview of XMAS
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genes of interest are generally specific to a study, which in turn determines the set of
probes on a microarray chip that one is interested in looking into.

Let D be a TSMAD, P={p;, ps, .., pu} be the set of M probes of interest, T=<t;,
ty, .., to> be the ordered Q time points when Microarray analyses are conducted,
and S;={ s,, s, .., Sn; / be the set of N; samples at time t;€T. Note that S; and S; (i#])
might be two different sets due to restrictions on acquisition of live tissues. Then D
can be considered as a dataset of M time series, each of which corresponds to one
probe and is referred to as a complex probe trajectory. For each probe p,eP, its
trajectory has Q time points. Each time point is associated with a vector of N; ex-
pression values, corresponding to the N; samples at this point. To further enhance
users’ explorative power, and analysis experience, XMAS integrates a variety of
existing domain knowledge such as a mapping database between the probe set P
and the set of genes, and pathway data from KEGG. XMAS adopts MySQL, an
open source RDMBS, to manage such data.

2.2 Data Preprocessing

Given a TSMAD D, this module first performs a base-2 logarithmic transformation
over each expression value in D. It then applies a simple data reduction technique to
reduce each complex probe trajectory to a simple time series. Specifically, for a given
complex trajectory, it replaces the vector of expression values at each time point by
the median of this vector. One main reason the median is chosen is that it is more
noise-tolerant. For the remainder of this paper, we refer to such simple time series as
simple probe trajectories or probe trajectories. This process simplifies analysis at a
global level, where the median expression is a reasonable representation of the con-
stituent samples. Complete expression levels are preserved within XMAS and are
accessible to aid in more concentrated analysis.

2.3 Interoperable Data Operators, Visualization and HCI

Interoperable data operators, intuitive visualization, and user-friendly HCI support
form the core of XMAS. XMAS consists of data operators that can both function in-
dividually and collaborate with others when combined at users’ command. Unlike
most existing software systems for Microarray data analysis, XMAS injects visualiza-
tion and HCI into data analysis. Therefore, users can not only visually observe the
results at any moment, but also be able to interactively respond to XMAS to design
their own explorative paths towards concept validation or hypothesis generation. It is
due to this tight coupling of data operators, visualization and HCI, we will describe
each data operator by also including the other two aspects.

Parameterized data discretization: One main interest in studying TSMADs is to
characterize the temporal movement of genes in terms of expression level. Given that
the collection of genes under study can be large, for instance, in the order of tens of
thousands, examining a dataset on a trajectory-by-trajectory basis is time consuming
and difficult. In addition, one also needs to reduce the impact from noise in the data.
To address such issues, XMAS first applies equi-width discretization to each probe
contained within the preprocessed TSMAD, where the width w (applied globally) is a
user-specified parameter. The result of this intuitive probe association operator is a
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collection of discretized probe trajectories, where each expression level is represented
by an integer, corresponding to its discretized value. The issue of information loss
inherent to such discretization is countered through the preservation of the precise
expression values which can be exposed through visualization or inspection.

Fig. 2 shows part of a screenshot of such discretized trajectories. In this figure,
each discretized value (or bin) occupies one row space. Small squares or nodes in
each bin can be clicked to reveal all the probes whose expression levels fall into this
bin at a give time point. Moreover, all the nodes are arranged from left to right in col-
umns, with the /™ column corresponding to the i time point. A node is colored in red
if its expression level is higher than the previous node on a trajectory and blue if it is
lower. The probes in the first node in a row share discretized expression value at the
first time point. The probes in each of the rightmost nodes share identical discretized
trajectories. And the probes in each of the middle nodes share a partial trajectory prior
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Fig. 2. The XMAS analysis environment is divided into three primary regions: (1) the visuali-
zation space displays discretized or precise trajectory views. Visualizations in this space can be
manipulated in a similar way to various interactive web based mapping applications. This ac-
commodates larger visualizations than would be practical in a static environment. Each node in
the primary visualization is interactive, allowing the user to inspect content through in-place
context windows (2). A complementary view, the visualization sidebar (3), provides similar
data for the entire visualization. Operator specification tools in addition to operator summaries
and correlation data are also accessible from this space.
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to that time point. All such nodes are expandable. Note that the system calls several
operators described later to construct those nodes.

Basic data integration operators: The operators contained within this category
realize integration of different datasets. They can be categorized as follows:

e Gene-probe integrators: These operators relate probes to genes or vice versa, for
instance, identifying the list of probes associated with a given gene.

e Probe-gene-pathway integrators: This set of operators enriches a gene or probe
with pathway information. For instance, one such operator determines whether a
given gene participates in a pathway; whereas another operator lists all the genes or
probes that are involved in a pathway.

e Trajectory-trajectory integrators: These operators relate the three forms of probe
trajectories utilized by XMAS: complex, simple and discretized probe trajectories.

Trajectory-oriented data operators: This set of operators support users to ex-
plore the data by examining and uncovering the similarity among probe trajectories.

e K-means clustering: This operator puts probes of similar, non discretized trajecto-
ries into the same group. The user can choose to cluster based on either Euclidian
or Pearson’s Correlation distance metrics and can specify the value of K.

e Expression level preserving trajectory-based clustering: This operator identifies
the genes whose discretized probe trajectories are identical and associates them in a
single cluster. Two trajectories are identical if they have the same expression level
at each time point. Fig. 2 shows examples of such clusters, each corresponding to
one trajectory. One can inspect the probes and related contextual information in a
cluster by clicking the corresponding node.

e Trajectory shape based clustering: This operator finds similar shaped trajectories
across possibly different expression values. Probes of the same trajectory shape are
essentially co-expressed at each time point. Therefore, each of such clusters identi-
fies one co-expression pattern. We implement this operator in two steps. It first
vertically translates all the discretized probe trajectories in a way such that the first
node of each trajectory corresponds to the same expression level 0. For instance,
for a given trajectory <2, 3, 1, 3, 4>, its translated trajectory is <0, 1, -1, 2>. The
second step finds such clusters by calling the previous clustering operator. Fig. 3
shows part of a screenshot of such clusters. One can view the content of each clus-
ter by expanding each of the rightmost nodes.

Inspect this node: X

Summary Probes | Pathways

Description Tags Affymetrix

fms-related tyrosine
a i

. DEG | x|/ 210316_at
kinase 4
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Fig. 3. Trajectory shape based clustering translates trajectories to a common root. Each node is
interactive, revealing contextual data about the content of the node as a mobile, in-place win-
dow in the visualization.
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e Discovery of inversely expressed probes/genes: This operator identifies probes
whose discretized trajectories are the inverse of each other. Fig. 4 shows the inter-
active query space and corresponding visualization showing five probes expressing
with perfect discretized inverse correlation to twelve others.

e Filtering operators: Such operators utilize one or more basic data integration op-
erators described earlier to identify trajectories that satisfy certain specified crite-
ria. All such operators are integrated into one interactive user interface as shown in
Fig. 2. XMAS currently supports the following filtering operators:

e Filtering by probes or genes: This identifies probe trajectories associated with
one or more specified genes.

e Filtering by pathway: This identifies probes involved in a specified pathway

o Filtering by gene expression movement: This identifies probes that are partially
or entirely co-expressed. Fig. 4 illustrates the interface where users can specify a
specific co-expression pattern of interest. This filtering operator can be applied
to strictly trajectory-based clusters, or trajectory shape based clusters, as illus-
trated in Figs. 2 and 4 respectively. In Fig. 2, a user is interested in identifying
all the probes or genes with a relative movement of 2 between the last two dis-
cretized expression levels. Fig. 4 illustrates the ability to include all the in-
versely expressed genes, this time for shape based clusters (i.e. with the same
root). A similar operator is also included where one can identify the probes that
have a similar expression level at one or more time points by specifying the
range of expression levels at such time points.

e Exclude a probe from the resulted probe set: This operator removes a probe
from analysis. In Fig. 3, one can remove a probe by clicking the ‘x’ symbol.

Note that all the above data operators are interoperable with each other. This is es-
sential, as XMAS does not prescribe data discovery paths for users. Instead, it em-
powers users to construct their own discovery paths by combining different operators
in different order. XMAS achieves this by accommodating an integrated user inter-
face shown in Fig. 2.

2.4 Interestingness Evaluators

Although visualization is powerful and intuitive for users to gain insight into a data-
set, its effectiveness can be greatly reduced in a variety of situations. For instance, the
amount of the data being visualized is too large to fit into a computer screen. In some
cases, data might exhibit an inherently complex structure such that it is difficult for
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human beings to make sense of the visualized data. To overcome this limitation,
XMAS includes a collection of evaluators to quantify the results.

e Volatility of a trajectory: Let TR=<e,, e,, ..., ep> represent a discretized trajectory,
where ¢; is the expression value at the i time point. The volatility of this trajectory

is defined as 2=70 1 /e,-—e,-,, / ). One can use this measure to identify probes with
extremely low or high volatility, where the former might not be of much interest
and the latter might be a result of noise in the dataset.

e Precision and recall: These two measurements are used to quantify the strength of
association between a pathway and the set of probes produced by a data operator.
Let P be the pathway of interest and x be the number of participating probes of P.
Let y be the number of probes returned by a certain operator, among which z
probes are associated with P. Then Precision=z/y and Recall=z/x.

e Pearson's correlation coefficient: Let X=<x;, x5, ..., Xp> and Y=<y, y,, ..., yo>
be two probe trajectories. One can use this evaluator to measure the direction and
strength of the linear relationship between X and Y.

o [dentification of differentially expressed genes (DEGs): DEGs are selected by
determining the moderated t statistic-adjusted P values (<0.05 using Bonferroni
correction [18]). Fig. 2 highlights the DEGs within the current analysis, as leaf an-
notations in the primary visualization (1), and as “tags” in the list view (3).

P-value: We adopt P-values to measure the statistical and biological significance of
observing a set of probes being associated with each other by a clustering operator
described earlier. Given a background distribution, the lower the p-value, the more
unlikely that observing a set of probes associated with each other is by chance. We
next use the pathway annotation as an example to explain how P-values are com-
puted. Let N be the number of probes under study, D be the number of probes in a
given pathway, n out of these N probes are associated with each other by a data opera-
tor, and finally, k out of these n probes are also in the said pathwaj. The P-value of

pevate - P [Y 2] [

2.5 Interoperability, Interactivity and Extensibility of XMAS

this association of n probes is then defined as:

Interoperability among data operators: Unlike most existing software tools for
TSMADs, XMAS does not prescribe analytical tasks for users. Instead, it empowers
users to construct their own data discovery paths tailored for their special needs by
combining different operators in different orders. XMAS achieves this by realizing
interoperable data operators and an integrative user interface shown in Fig. 2. Aided
by visualization, users can use this interface to select a sequence of data operators that
are most likely to maximize their understanding of a problem at hand. A use case is
described in detail in section 3 to illustrate this feature and its advantages.

Interactivity: Interactions with operators in XMAS are direct, i.e., no complex meta-
phors are involved. In addition, XMAS maintains contextual information on both
users’ behavior and data produced from such behavior. This ensures that there is no
unnecessary context switching, thereby reducing the cognitive load from users.
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Extensibility: Due to its modular architecture design (Fig. 2), XMAS can be readily
extended in one or more of the following aspects: (1) integrate additional supplemen-
tary datasets such as gene ontology (GO)[19] functional categories and implement
new data integration operators to enrich users' analytical experience; (2) integrate new
data operators; and (3) realize additional interestingness evaluators.

3 Experimental Evaluation

XMAS’ analytical power lies in the union of three areas: (1) visualization; (2) interac-
tivity; and (3) interoperability. As discussed earlier, existing algorithms and software
systems lack some or all of these desirable components. Considering the general
trends in the state of the art: user interaction is limited to data entry, parameter speci-
fication and analysis via a simple (text based) command driven interface. Workflow is
linear and disjoint, (often spread over numerous systems), and data presentation is
generally textual (with notable exceptions such as pathway visualization in Gen-
MAPP).

In this section we present evaluation of XMAS which demonstrates the importance
and necessity of having the three areas coexist. First, we describe how XMAS can be
used as an interactive visual tool to foster a greater breadth and depth of understand-
ing within microarray data. Second, a common information goal serves as the entry
point to a highly-non-traditional workflow drawing on many interoperable compo-
nents of XMAS. Finally, comparative quality information is presented to support the
generated hypotheses. Throughout, the inherent facilitation of hypothesis generation
and serendipitous discoveries are highlighted. All evaluations were performed on the
data set described below.

3.1 Data Description

To demonstrate the efficacy of XMAS, we used it to analyze a publicly available
TSMAD [GEO Accession No: GSE5999] which captures expression data of human
placentas during pregnancy. Using the description of a TSMAD provided in section
2.1, five time points (Q=5), comprising N;=6, N,=9, N;=6, N,=6, and Ns=9 samples
capture genome wide (45,000 probes representing 39,000 gene transcripts) expression
profiles of non-contiguous placentas between 14 and 40 weeks of pregnancy. The 5
distinct gestational time intervals (Q) range between 14-16, 18-19, 21, 23-24, and 37-
40 weeks. The experiments which compose Q=1 through Q=4 capture the stage of
pregnancy known as midgestation, and the samples from Q=5 are contained within
the third trimester, also known as Term. For complete experimental protocol, descrip-
tion and analysis workflow, readers are referred to [20]. The findings on this dataset,
reported in [20] will be cross-referenced where necessary. The dataset was first pre-
processed as described in Section 2.2. It was then discretized as explained in Section
2.3. Throughout the following evaluation, a bin size of 1 (i.e., w=1) was used.

3.2 XMAS as a Visual Interactive Tool to Aid in Data Comprehension

Developing a detailed understanding of a TSMAD is an important step towards gen-
erating focused analysis and hypotheses. Traditionally, the development of a broad
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and formal understanding is based almost exclusively on the dissection of output from
utilizing a variety of analysis systems and algorithms. In contrast, XMAS provides an
integrated environment to facilitate this process. We next describe two scenarios
(among many), where XMAS is being used to help expert users gain both a global
and localized view of the data and many times serendipitous discoveries.

Expression pattern knowledge discovery: Visualization of discretized trajectories and
shaped based trajectory clustering (i.e. unique trajectories) provide a global view of
the entire dataset (Fig. 2(1)). As the user began to specify the operators (Section 2.3),
the reflective query space updated to indicate the quantity of probes, DEGs and
unique trajectories that would match the defined operator (Fig. 2). This reciprocal
interaction aided the user to gain insight into the distribution of probes, DEGs, and the
variability of probe expression during the specification refinement process. For in-
stance, with 2 mouse clicks—one for the discretization operator and the other for the
shape-based trajectory clustering--XMAS reveals that there are 76 distinct expression
patterns and 504 DEGs in the dataset. Using the filter as shown in Fig. 4, more de-
tailed information of such patterns were identified within a few mouse clicks: 6 pat-
terns showing a significant expression increase (> 4-fold) at Term, 11 showing an
expression decrease (>4-fold) at Term, and only 1 showing a 16-fold increase. One
more click revealed that only one probe involved in the last case. Such information
provides the user with an insight into both the global and localized behavior of their
data. This is in sharp contrast to traditional analyses, where such information is
gleaned through utilizing a number of tools. Additionally, due to effective integration
of user knowledge, our evaluation has shown that XMAS can often uncover previ-
ously unknown, yet interesting patterns in the data, thereby leading to serendipitous
discoveries.

Pathway involvement analysis: The identification of known biological processes (or
pathways) involved in a TSMAD is one main goal in microarray analysis. Following
the identification of such pathways, domain users often find it necessary to further
support such identification by investigating the relative involvement of each pathway
in the context of the entire data set (i.e. not exclusive to DEGs, which are traditionally
the sole focus of pathway analysis such as GenMAPP). This is generally a labor-
intensive and manual process, which can take up to several hours and may become
impractical for large pathways. We next use the Apoptosis pathway as an example to
demonstrate how XMAS can significantly improve in this respect.

As illustrated in Fig. 5, we first used the pathway membership filter to identify the
631 probes involved in the Apoptosis pathway, among which 8 were annotated as
DEGs. We then inspected the annotations accompanying each discretized trajectory in
the visualization, to ascertain the quantity of probes sharing DEG expression profiles
(at the discretized level). This, the user determined, was a good way of assessing the
relative involvement of the entire pathway. Individual probes were subsequently re-
included into analysis, enabling visual assessment on a probe-by-probe basis.

This simple concatenation of operators led to a focused analysis of pathway in-
volvement, reducing what was previously a multi hour process to a few interactions
(mouse clicks). Too often, traditional analysis concentrates exclusively on DEG lists,
and here, simple trajectory association enabled the user to surround DEGs with



XMAS: An Experiential Approach for Visualization, Analysis, and Exploration 27

i ! Basic Data Exposed inverse, and
Total probes _iNtegration co-expression:

H DEG content

| 1
i 2
| 1
Cumulative operator specification: Inclusion of probes % 777777777777777
Pathway filter: Exclude sharing DEG i Visual
(Apoptosis) i non-DEGs i trajectories + .} operators
Full |+ 631 ¢ 8 ‘ 38 J
data set probes DEGs Probes

Fig. 5. User led analysis quickly identified DEG involvement in a given pathway. Probe con-
text information presented within the visualization enables the user to pull in similar, yet non-
DEG probes to focus an analysis on the relative involvement of the pathway as a whole.

contextually similar probes. Analysis of these probes facilitated a more confident dec-
laration of significance, and led to the specification of a subset of probes which could
form the basis of subsequent analysis.

3.3 Negative Expression Shift Approaching the End of Pregnancy

In this and the following sections, we described a complete workflow to illustrate the
power of discovering serendipitous knowledge as a direct consequence of the integra-
tion of visualization, interactivity, and interoperability among data operators. Such
integration enables a highly focused, yet simple analysis, which leads to the exposure
of pathway involvement, hypothesized crosstalk, and co-expression patterns. These
types of knowledge could not be reasonably developed by traditional means. The user
workflow is described below and illustrated in Figs. 6 and 7.

Towards the end of pregnancy, the placenta begins to shut down in preparation for
delivery. This process materializes at the genetic level as placental cells switch off,
and is observed as a shift in expression between the second trimester intervals and
term (time period 5) 0. The entry point to this analysis was to identify such probes.

Traditionally, such analysis involves the reduction of the data set into two repre-
sentative samples, between which the expression characteristic can be evaluated.
However, considerable details can be lost in this process. The analysis from 0, for
example, assumed constant expression during midgestation, reducing 27 samples to
just one. This is not the case, as one can observe directly within XMAS (Fig. 3). Fur-
thermore, the lack of interaction in traditional analyses heavily restricts the users’
ability to obtain a greater sense of completeness.

As shown if Fig. 6, we first performed a trajectory shape-based clustering to iden-
tify 39 probes that show a 4-fold or more increase at Term, of which 19 are DEGs.
The visualization based contextual information further verified that the clustering
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Fig. 6. Workflow, illustrating the specification of operators used to focus analysis. Correlation
scores demonstrate the power of exploratory analysis to expose common patterns of biological
interest based on simple interactions. Key visualizations provide an insight into the environ-
ment in which the user is empowered to apply domain knowledge.

captured the target characteristic well. DEGs were subsequently excluded from analy-
sis to concentrate on the remaining 20 candidates, as they share similar expression
patterns with DEGs yet not categorized as DEGs. Through visual inspection of pre-
cise probe trajectories the user was able to exclude probes judged to be of lesser inter-
est in the context of the current analysis. Interactively, we focused on the emergence
of a specific trajectory shape, shared by 6 probes. Correlation analysis verified and
strengthened this association. Through this process (Fig. 6), XMAS enables direct
application of domain knowledge and intuition from the domain user. This is un-
matched by other systems.

Main Observations: The quantity of discretized trajectories represented by the 39
probes (Fig. 6) indicates the details lost in traditional methods. XMAS facilitated a
less strict, more intuitive specification of characteristics, which accommodated a
greater sense of completeness than traditional analysis is capable of establishing. Fur-
thermore, probe membership information, such as DEG content, was integrated into
the analysis/query space in various ways. These provided valuable contextual infor-
mation which aided the user in the decision making process. The 6 probes identified
earlier were of great interest to domain experts, due to the reason that will be dis-
cussed in Section 3.4. Again, such probes would be unlikely to be associated without
the direct application of user knowledge and intuition.

3.4 Interoperable Pathway Analysis

Biologists commonly want to identify the involvement of known biological processes
in the observed time series. Systems such as GenMAPP, Ingenuity and GSEA provide
mechanisms by which such pathways can be exposed, yet analysis within such sys-
tems is generally confined to DEGs. Statistical methods are employed to expose the
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most “significant” pathways represented, but issues relating to the completeness and
quality of such subsets are here compounded.

Pathway analysis within XMAS can center on DEGs, as per traditional analysis,
but is equally applicable to sets of probes sharing other characteristics — demonstrat-
ing the core value of interoperability. The power of XMAS to facilitate the exposition
of probesets with significant commonality beyond, or in addition to differential ex-
pression, was explored in the previous scenario. Based on a serendipitous discovery,
this scenario is extended, illustrating pathway analysis functionality within XMAS.
This process is illustrated in Fig. 7.

It was indicated by the pathway membership view accompanying the visualization
of the six probed from the previous use case (see Fig. 7), that the set has a significant
three probe overlap with the pathway of Calcium regulation in cardiac cells. Interest-
ingness measures provided quantitative support for the discovery, and the application
of a corresponding pathway filter concentrated analysis on the three matching probes.
DEG probes were reintroduced into the analysis space, revealing a single DEG shar-
ing the developed characteristics. The appropriateness of the association of the addi-
tional DEG with the existing three probes was confirmed visually, and with the aid of
the correlation matrices.

Serendipitous Discoveries: The exposure of 6 non-DEG probes, with a shared trajec-
tory characteristic and expression profile led to the analysis of a pathway, which was
unlikely to be judged significant by traditional analysis that focuses entirely and glob-
ally on the set of DEGs. The workflow that led to the association of non-DEGs with
DEGs provided evidence to suggest that the localized observation was significant.
Domain experts agree that the finding is striking, strengthening its candidacy for web
lab experimentation. Further from the analysis of Calcium Regulation, the user noted
a pathway overlap with Purine metabolism. This provides another extension point to
analysis, which could manifest as a reverse analysis from local observation to global
view of the relative involvement of Purine metabolism. Smooth muscle contraction is
another such extension point.

o | Pathway filter Subsequent
| Existing | (Calcium reguiation | Removal L.l pyrine metabolism
| operalors | T jncardiac cells) - ; DEG Exclusion | analysis —l

6 Probes 3 Probes 4 Probes
(0DEGS) (0DEGS) (1 DEGS)

Description Description

Purine metabolism Purine metabolism

Calcium_regulation_in...

Calcium_regulation_in...

Fig. 7. Workflow for the exploration of a serendipitous pathway discovery
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Fig. 8. Comparative assessment of association quality: The left figure compares the two sets of
probes associated by k-means and XMAS respectively; the upper right figure identifies the
common probe shared by these two sets; and the lower right table compares the factors under
consideration by K-means and XMAS

Traditional analysis and analysis within XMAS are difficult to compare directly
because of the differing emphasis on interaction and exploratory analysis, and global
statistical/algorithmic analysis respectively. The outputs from both traditional and
experiential approaches are comparable, however.

K-means analysis from 0, for example, associated the DEG from our set of four
(201667_at) with 9 other DEGs, based on expression alone. This set serves as a direct
comparison for the set of four which emerged from the previously described analysis.
Despite having more probes, and more DEGs, the literature hits for our set far out-
weigh the expression (only) based association of k-means. See Fig. 8 for details.

4 Conclusions

This paper has presented XMAS, a web application developed with a new design
philosophy to foster increased human-computer synergy. Various interoperable op-
erators have been presented which combine with visualizations and HCI to compose
an exploratory, interactive analysis system. Detailed use cases and comparisons
made between XMAS and well established microarray analysis methods present evi-
dence to prove the ability of this new approach to dramatically enhance the users
experience during analysis. This materializes in the form of new, more complete
hypothesis generation.
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Abstract. Clustering genes into groups that exhibit similar expression patterns
is one of the most fundamental issues in microarray data analysis. In this pa-
per, we present a normalized Expectation-Maximization (EM) approach for the
problem of gene-based clustering. The normalized EM clustering also follows the
framework of generative clustering models but for the data in a fixed manifold.
We illustrate the effectiveness of the normalized EM on two real microarray data
sets by comparing its clustering results with the ones produced by other related
clustering algorithms. It is shown that the normalized EM performs better than
the related algorithms in term of clustering outcomes.

Keywords: clustering, microarray data, normalized EM, manifold.

1 Introduction

Microarray technology allows ones to simultaneously monitor expression measure-
ments of thousands of genes, across various conditions or over time [1I], [2]], [3]. To
explore a vast amount of data generated from microarray experiments, numerous data
mining techniques have been proposed to extract insightful biological data-based
knowledge. Clustering is one of the basic exploratory tools for microarray data analysis.
A wide range of clustering methods have been proposed in gene expression community
including hierarchical clustering [4], [3]], [6]; self-organizing maps (SOM) [[7]]; k-means
and its variants [8]], [9], [10]; graph-based methods [11]], [12]; and mixture model-based
clustering [[13]], (141, [T5].

One of the most important aspects in clustering is the metric utilized to gauge the
similarity between data points and their cluster representatives. It is well-known that
similar gene expression patterns often show co-linear stochastic relationship, especially
on standardized data sets. This stochastic relationship is suitably evaluated by the co-
sine similarity among data vectors. Indeed, the similarity measure has been seen to
be applied for clustering [16], [17]. In [16] Dhillon and Modha performed text clus-
tering using spherical k-means. In [17] Banerjee et al proposed a method to estimate
the concentration parameter of von Mises-Fisher distributions and applied their clus-
tering algorithms for yeast cell cycle gene expression data. They were ,however, more
concerned with the estimation of stochastic model parameters than the applicability of
the clustering on a hypersphere for extracting useful knowledge from gene expression
profiles.

M. Elloumi et al. (Eds.): BIRD 2008, CCIS 13, pp. 32 2008.
(© Springer-Verlag Berlin Heidelberg 2008
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In this paper, we propose a normalized EM algorithm for clustering gene expression
data, in which data points are already projected onto a hypersphere. The proposed ap-
proach also follows the mixture model-based clustering framework but data points are
assumed to be generated by a mixture of exponential distributions in a fixed manifold,
which is the surface of a hypersphere. The normalized EM is able to work stable with
high dimensional microarray data sets.

In short, our main contributions in this work are the following: (i) the normalized EM
algorithm is introduced for the problem of clustering genes using microarray data; (ii)
the viability of the proposed normalized EM is demonstrated by comparing its cluster-
ing performance with that of spherical k-means [16]] and Gaussian parsimonious clus-
terings [18].

The remainder of this paper is as follows. Section [2] presents the statistical model
of normalized EM and derivations of the algorithm. In section 3] the performance of
the proposed approach is examined with the demonstration through two real microar-
ray data sets. Finally, section [ reviews what has been done in this work and briefly
discusses directions of further research.

For the ease of presentation, some conventions of notation used in this paper are
provided: n is the number of data points or genes to be clustered; p is the dimension of
data points or the number of samples; X = {x;}; is the set of all data points; K is
the number of clusters in a data set; { X}, }7_, is a K -cluster partition of the data; {.) is
the inner product of two vectors; ||.|| is the Euclidean norm.

2 Statistical Model

A typical microarray data set is given as a matrix G x,,, where the entry (4, j) of the
matrix represents the expression level of gene j in the 7" experiment. In other words,
G = [x1, 22, ..., T,] where z; € RP is the expression profile of the j'" gene in the mi-
croarray. Usually the number of genes n is much larger than the number of experiments
p (n > p). Our primary aim is to detect groups of genes exhibiting similar expression
patterns. Specifically, we have to classify the set of data points or genes into K groups
Xy, Xs, ..., X such that genes within each cluster are highly correlated whereas ex-
pression patterns of genes between clusters are as much different as possible.

An important point to note here is that Euclidian distance is not capable of capturing
the co-linear stochastic relationship between the original gene expression profiles. To
overcome the limitation, data are projected onto the surface of a hypersphere. And as
can be seen, after the data projection cosine similarity between any two data vectors
still remains unchanged and can be trivially inferred from their Euclidian distance in
the new manifold.

Spherical k-means is one of the heuristic clustering algorithms applied for spherical
data, where at each iteration any data point is assigned to one of the clusters with prob-
ability one. This hard clustering procedure may not be robust against the complexity of
microarray data, which are inherently dense and noisy.

We now introduce a new normalized EM soft clustering approach for both gene
expression data. First, data points are normalized so that they lie on a hypersphere and
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then clustering of the data is performed on this hypersphere only. The statistical model
for the normalized EM clustering is described in detail as follows:

First, each gene expression profile x; is normalized so that they belong to a fixed
manifold S, = {z : ||z||*> = p,x € RP} for some p > 0. In other words, the data
points are processed by

T .
i s i=1,2,..., 1
€T; — \/MH%H 7 n (1)

Then these normalized x;’s are treated as drawn sampled outcomes of a mixture of
K exponential distributions

K
p(]O) = Y mye”Irrnl @)

h=1

where © = (71, p1, ..., T, fik ), in which the 7, 1, as mixing proportions and direc-
tional mean vectors respectively,

Y omn=17 =0, unl* = h=1,2,., K 3)
h=1

and 1y, is the normalizing constant

=1/ / e lle—mnl® g 4)
€S,

Assuming that the data vectors are independent and identically distributed with dis-
tribution p. Then the data likelihood function is

‘C(@‘X) :p(X‘Q) = H ($Z|Q H 'yu Zﬂhe [lz— /thH 5)
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=1

The maximum likelihood problem is thus
max{[, (0|X): @)} (6)

However, maximizing the likelihood function (@) is very difficult and we relax it by
maximizing the expectation of the marginal log-likelihood function [19].

Given current estimates O(“) at the ¢ iteration (¢ > 0) of the EM iterative proce-
dure, for each h = 1,2, ..., K, the posterior probability p(h|z;, ©(©)) that z; is gener-
ated by the h*" component 0f the mixture density is defined by
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The expectation of the marginal log-likelihood function for the observed data over
the given posterior distribution is

E[Y log(yumne I )]

i=1

=Y Ellog(yumpe Izl
=1

n K
= > > log(yumne = I p(hf;, 0)

i=1 h=1

n K
=33 Cogmn — s — pnl®)p(hlzi, 09) + nlog
i=1 h=1

(log 7, — 241+ 2(x4, pn))p(h|zi, ©1)) + nlogy,

I
[M]=
] >

&
Il
—
>
Il
—

M-
NE

(log 7y, + 2{x;, pp))p(hlz;, © ) —2nKpu+ nlogr,. (8)

>
Il

114

Il
—

The maximization (@) is relaxed by maximizing expectation of the marginal log-
likelihood function
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duce Lagrange multiplier A with the constraint Z 7w, = 1 and form the following
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Take the partial derivatives of (I0) with respect to each 7}, and ), then set them to
zero, we obtain

"1
> phle;,09) = X=0, h=1,2,...K (11)
‘ Th
=1
K
S m=1 : (12)
h=1

a ) = 15" p(hlai, 09), h=1,2,... K . (13)

To find maxz (x4, ) p(hlz;, D) subject to ||us||> = p, we introduce the La-

grange multlpher )\h and the Lagrangian here is given by

n

L(pn) =Y i, pn)p(hlai, 09) = X (|| pnl® = ). (14)

i=1

Similarly as above, take the partial derivatives of (I4) with respect to {jn, A} and
set them to zero, we obtain

> wip(hlzi, 0) = 22, =0 (15)

penl® = p (16)

Solving (T3) and (18), we get
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The EM iterative procedure of the normalized EM is as follows:
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The optimal parameter estimates ©,,; are obtained when the difference between two
observed data log-likelihoods corresponding to two successive iterations is less than a
given tolerance threshold. Finally, each data point is assigned to the component with the
maximum estimated posterior probability, i.e. a data point x; is assigned to component
h or cluster X}, if h = arg H}La}xp(h'|xi, Oopt)-

3 Results

The utility of the normalized EM clustering approach is demonstrated on two microar-
ray data sets: (1) yeast cell cycle data with the five-phase criterion [I3]]; (2) yeast cell
cycle data of regulated genes [20]]. The clusterings of the normalized EM on these gene
expression data sets are assessed with different values of i and the obtained results are
compared with those produced by spherical k-means for both data sets. The normalized
EM is also compared with Gaussian parsimonious clustering models on the first data
set. For the second data set, due to the lack of external criterion and the difference in
similarity measures used in the normalized EM and Gaussian parsimonious clustering
models, we just make comparison of the normalized EM with spherical k-means. Note
that the analysis of the normalized EM is only provided for the values of y in the range
from 0 up to 350 as with the bigger values of p, the iterative procedure of the normalized
EM involves the difficulty of very large exponential computations.

Yeast Cell Cycle Data with the Five-Phase Criterion

This data set was created and used by Yeung et al [13]]. It consists of 384 genes across
17 experiments and is supposed to include five clusters corresponding to five phases
during the mitotic cell cycle: Early G1, Late G1, S, G2 and M. It should be noted that
beside the original raw data set, the standardized data set derived from the original was
also analyzed. Both the two data sets have been made publicly available by Yeung et al
at http://faculty.washington.edu/kayee/cluster/. For the ease of comparing clusterings,
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Table 1. Clustering results of the normalized EM on the raw data set (10 runs were performed for
each value of p)

I 20 25 30 40 80 120 180 240 300 350
049 049 05 049 037 037 046 047 036 037

049 049 037 049 049 037 037 037 048 0.37

049 049 048 048 048 036 037 049 037 037

049 049 038 048 048 048 048 036 037 047

049 049 038 049 049 047 047 037 037 0.49

049 05 049 049 048 048 049 037 048 048

047 049 05 048 047 047 048 048 047 046

050 049 05 049 047 037 037 037 049 037

049 048 05 036 044 037 037 048 047 047

049 049 048 048 037 049 037 037 048 048

Average ARI 049 049 046 047 045 042 042 041 043 043

ARI

we made use of adjusted rand index (ARI) [21]], which is an information criterion to
evaluate the degree of agreement between two partitions, one is the real clustering and
the other is derived from given class labels. The higher the value of ARI, the better the
predictive ability of a clustering algorithm.

Table [[] and Table 2 show the values of ARI produced by the normalized EM and
spherical k-means respectively on the raw data set. Similar results were also obtained
on the standardized data set for both the normalized EM and spherical k-means. The
normalized EM worked well in the range from 20 to 350 and achieved the highest
values of ARI when p was in the range from 20 to 25. As can be seen, spherical k-
means worked quite comparable to the normalized EM in term of clustering results.
However, when the normalized EM worked best, e.g. 1+ was in the range from 20 to 25,
it consistently produced higher average values of ARI compared to spherical k-means.

Table 2. Clustering results of spherical k-means on the raw data set (20 runs were performed)

ARI 037 048 037 048 046 046 037 037 045 038
049 037 037 037 047 037 037 037 047 037
Average ARI 0.41

In [13], Yeung et al utilized five typical Gaussian parsimonious models for clustering
this yeast cell cycle data: EI(EIT), VI(VII), VVV, diagonal and EEE and they showed
that some of these models worked comparable to CAST, a leading heuristic cluster-
ing algorithm. The cluster quality of these Gaussian parsimonious clustering models on
this data with the number of clusters K = 5 was again examined using Mclust pack-
age [22]]. For diagonal models, EEI was taken to analyze. Since the normalized EM was
run using random initializations, to be fair we also performed Gaussian parsimonious
clusterings with random initializations as well. It should be noted that in [13]], the au-
thors made use of mixture model-based hierarchical clusterings to initialize the iterative
procedure of the EM algorithm. Table [3land Table [4] show the ARI values produced by
Gaussian parsimonious clustering models on the raw data set and standardized data set
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Table 3. Clustering results of Gaussian parsimonious clustering models on the raw data set (10
runs were performed for each clustering model)

EII VII VvV EEI EEE
0.0114 0.0111 0.011 0.011 0.011

0.0048 0.0048 0.0685 0.0048 0.0209

0.0289 0.0256 0.0349 0.0316 0.0175

0.0022 0.0077 0.0088 0.0083 0.0088

0.0236 0.0219 0.0029 0.0121 0.0118

ARI 0.0112 0.0054 0.0111 00111 0.0089
0.0048 0.0689 0.0048 0.0506 0.0053

0.0157 0.0349 0.0141 0.0252 0.0491

0.0029 0.0083 0.008 0.0088 0.0027

0.0001 0.0051 0.0026 0.0427 0.0104

Average ART  0.0106 0.0194 0.0167 0.0206 0.0146

Table 4. Clustering results of Gaussian parsimonious clustering models on the standardized data
set (10 runs were performed for each clustering model)

Ell VII \'AA% EEI EEE
0.5 0.45 0.21 0.47 0.45
0.5 0.37 0.17 0.47 0.45
0.37 0.48 0.32 0.49 0.45
0.37 0.48 0.31 0.49 0.42
0.46 0.48 0.29 0.49 0.48
0.5 0.44 0.29 0.37 0.48
0.37 0.5 0.23 0.49 0.46
0.37 0.43 0.25 0.37 0.47
0.5 0.47 0.29 0.37 0.43
0.46 0.45 0.26 0.44 0.41
Average ARI  0.44 0.45 0.26 0.45 0.45

ARI

respectively. As can be seen, on the raw data set these models failed to discover the
inherent cluster structure of the data as very low ARI values were achieved. On the
standardized data set, except VVV model the other four models produced quite high
ARI values. However, when the normalized EM worked best, e.g. 1o was in the range
from 20 to 25, it consistently produced higher average values of ARI compared to all
the five Gaussian parsimonious clustering models, see Table [I]and Table E for verifica-
tion. We mention again that on the standardized data set, the normalized EM produced
similar results as shown in Table[Il for the raw data set.

Yeast cell cycle data of regulated genes

This data set consists of 800 genes across 77 experiments. These 800 genes were se-
lected to meet an objective minimum criterion for cell cycle regulation [20]. For this
data, as we do not know the number of underlying clusters that the data should have,
the normalized EM and spherical k-means were run by trying various choices of the



40 N.M. Phuong and H.D. Tuan

number of clusters K. In order to evaluate clusterings when class labels are unknown,
internal indices have been used widely to measure clustering quality [17]], [23]], [1T].
In [17]], the homogeneity for spherical data of a clustering is defined to be

Heypg = Z Z (20)

nis 2o z||||uh||

which is the sum of cosine similarities between all data points and their own cluster
representatives. On the other hand, the inter-cluster separation is taken note as

T,.
Mg g (21)

Sav - |
Yy \XHX | 4 Z IIlellluhll

The bigger the value of H,,4 and the smaller the value of Sy, the higher the predic-
tive ability of a clustering algorithm. We made use of these figures of merit to compare
clusterings produced by the normalized EM and spherical k-means. For each value of p
and each choice of K, we ran the normalized algorithm 10 times and took the average
of Hyvg, Savg values of these clustering results. Similarly, we ran spherical k-means
10 times for each choice of K and the average values of Hy,g, Squg for these cluster-
ings were computed. These summary statistics are shown in Figure [Tl and Figure [2] to
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Fig. 1. Comparisons of cluster quality produced by the normalized EM (¢ = 50) and spherical
k-means
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Fig. 2. Comparisons of cluster quality produced by the normalized EM (x» = 100) and spherical
k-means
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compare the predictive ability of the two clustering algorithms. Note that for limited
space, only the comparisons with 4 = 50 and p = 100 are shown. It can be seen that
compared to spherical k-means, the normalized EM achieved higher values of H g4
and smaller values of S,,, even with different values of 1 as well as various choices
of K. This demonstrates that the normalized EM produced a bit higher cluster quality
than spherical k-means. In fact, we took many other values of x in the range from 40 to
350 and similar conclusions were taken out.

4 Conclusions and Future Works

We have introduced and described a statistical model for clustering data in a fixed
manifold in order to identify groups of genes with similar expression patterns using
microarray data. Additionally, the utility of the normalized EM has been confirmed
by comparing its clustering results with the ones produced by spherical k-means and
Gaussian parsimonious clusterings.

It is of interest and left for future work to show that the normalized EM is capable of
leaving out noisy genes and only producing meaningful clusters, in which genes within
each group are highly correlated. Besides, it should be noted that the normalized EM is
also able to work very stable with the problem of clustering samples as well but these
results are not included here.
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Abstract. As one of the most widely used bio-sequence searching tools,
BLAST adopts index-based approach to detect the matches between
two substrings by looking up a large table and processing one match
per query. In this paper, we propose a systolic array approach to detect
string matches without using looking up tables. The pipelining systolic
array is implemented as a multi-seeds detection and parallel extension
pipeline engine to accelerate the first two stages of NCBI BLAST family
algorithms. Different from the index-based approach, our implementa-
tion consumes little memory resources and eliminates redundant string
extensions by merging multiple adjoin seeds into a valid seed. Our FPGA
implementation achieves superior performance results in both of process-
ing element number and clock frequency over related works in the area
of FPGA BLAST accelerators. The experimental results also show the
speedup can reach about 17, 48, 14, 71 and 10 compared to the NCBI
BLASTp, TBLASTn, BLASTx, TBLASTx and BLASTn programs for
3072-residue queries on Intel P4 CPU, respectively. Furthermore, the
idea of multi-seeds detection also can be adopted in other seed-based
heuristic searching applications.

1 Introduction

The comparison of DNA or protein sequences has become a fundamental task
of modern molecular biology. BLAST (Basic Local Alignment Search Tool)[I]
as one of the most important tools has been designed to run on commodity PC
clusters at present, such as [2],[3],[],[E5],[6] to search for sequence similarity in
genomic databases. With the exponential growth of the bio-sequence databases,
such as the NCBI (National Center for Biotechnology Information) GenBank[7],
which has doubled in size every 12~16 months for the last decade and now
stands at over 56 billion characters, the computational requirements for sequence
comparisons have far exceeded the computing capability.

General-purpose microprocessors typically provide very limited bit-level par-
allelism. However, sequence comparison algorithms exhibit a much higher degree
of bit-level data parallelism, typically hundreds of bit-level operations can be per-
formed in parallel. Therefore, many researchers keen on implementing BLAST

M. Elloumi et al. (Eds.): BIRD 2008, CCIS 13, pp. 43 2008.
© Springer-Verlag Berlin Heidelberg 2008
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algorithms in hardware to avoid the low efficiency in general-purpose micropro-
cessors. Recently, FPGA chips have emerged as one promising application accel-
erator, using a combination of FPGAs and general-purpose CPUs to accelerate
BLAST algorithm attracts much more attention. A number of parallel architec-
tures have been proposed, such as Mercury BLASTn|[g],[9],[T0], Tree-BLAST[IT],
Mercury BLASTp[12], RC-BLAST[13], FPGA/FLASH Accelerator[14], Multi-
engine BLASTn Accelerator[I5],[I6] and many commercialized system,
BEE2[I7], CLC Cube[18], Mitrion[I9] and DeCypher[20] et al. have been built.

Most of the current implementations adopt the index-based searching ap-
proach, which builds all kinds of tables to record the position of each word in
query sequence, then drives the words (or named w-mers) in database flowing
through the accelerator one by one and looks up the table to find the seeds. How-
ever, this method typically suffers two drawbacks. Firstly, only one word can be
searched per cycle (meaning at most one seed can be detected per cycle), with
the limitation on memory port number, no matter whether the table is stored in
internal or external memory. Second, the storage and access overhead of lookup
table become the resource bottleneck.

Specifically, Mercury BLASTn[9] and Mitrion[I9] implement a pre-filter using
hashing, then check words in database against a hash table constructed from
the query one by one. Hash table is stored in an external SRAM attached to
FPGA, since the internal block RAMs are too limited in size to hold the tables for
large query sequence. The accessing delay to external SRAM incurs long pipeline
cycle time. RC-BLAST[I3] and BEE2[I7] implement the word-finding stage by
using query index. Each word from subject sequence is then used as an index
to lookup the table in order. Because of the limitation of on-chip memory size,
the design in RC-BLAST assumes that no word in query sequence is repeated
more than three times. Obviously, the assumption is unreasonable. Compared
with other designs, FPGA/FLASH adopted a novel approach, the database is
also formatted as an index structure. Each word is associated with its position
in the sequence and its neighboring environment. This information allows short
un-gapped alignments to be immediately computed, avoiding millions of random
accesses to the database. Unfortunately, the size of the database index has to
be very large. As an example, storing a 40 amino acid substring environment
leads to a 150 GB index for the Human genome. This is 50 times more than
the raw data[I4]. The storage cost will be intolerable with the steep growth of
database. To improve searching efficiency, Multi-engines BLASTn[16] fitted 64
identical computing machines in single chip to compare the query with 64 subject
sequences in database concurrently and Mercury BLASTp[I2] implemented a
two-seed generator for accelerating the first stage of BLASTp. Unfortunately,
these approaches are still based on the query index essentially.

Besides the index-based searching approach, there exists another searching
strategy, which uses systolic array without lookup tables. D.Hoang et al. [21],[22]
implemented the Needleman-Wunsch and dynamic programming algorithms us-
ing systolic array implementation on SPLASH 2. Using JBits S.Guccione et al.[23]
implements the Smith-Waterman algorithm. The most recent implementations
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were the Hyper Customized Processors in Nanyang Tech University[24] and
FPGA-Based Accelerators by Tom Van Court et al[25]. It is a natural approach
to use systolic array to mapping dynamic programming algorithms on FPGAs.
But it is rare to use systolic array for mapping the BLAST algorithm, only
Tree-BLAST[IT] can be found.

At present, most of the seed-based solutions test the words from database
stream in a serial mode, one match per cycle. The searching efficiency can be
improved if hardware can detect multiple ” seeds” concurrently and extend them
in parallel. In this paper we present a Multi-seeds Detection and Parallel Ez-
tension Engine to accelerate BLAST family algorithms. Our design is based on
systolic array rather than the static lookup table. It lessens the storage require-
ment to on-chip memory because all positions of match points can be calculated
dynamically at seeds detection pipelines. The multi-seeds detection has three ad-
vantages: Firstly, it improves the searching capability in word-matching stage,
which can execute up to 3072 matches/cycle and report all the match points
contemporarily with the help of 3072 PEs. Secondly, all the reported seeds at
a time are located in identical diagonal, which is convenient for filtering some
invalid seeds. Finally, the mechanism of multiple seeds detection supplies enough
seeds to reduce the empty time in the extension stage. As a result the extension
efficiency can be improved. Our implementation also uses merging seeds strat-
egy to reduce unnecessary extension. We fit our design on Altera FPGA chips
EP2S130C5 to accelerate the first two stages of BLAST family algorithms. The
experimental results show about at most 71 times faster than the desktop com-
puter with a 2.60GHz Pentium4 and 1.5GB Memory running the NCBI BLAST
family programs for 3072-residue queries.

2 BLAST Algorithm Overview

As one of the most widely used software tools searching for local similarities be-
tween a short query sequence and a large bio-sequence database, BLAST family
is composed of five subprograms: BLASTn, BLASTp, BLASTx, TBLASTn and
TBLASTx. They provide functionalities for comparing all possible combinations
of query and database sequence types by translating the sequences. Nevertheless,
the algorithms for each type of search operate are almost identically. The kernel
of the algorithm can be summarized as a 3 step procedure:

Find Hits. It creates a list of all short sequence (word or w-mer) by using sliding
window. Then detects substrings of fixed length w in DB stream that perfectly
match a substring of the query (typically, w = 11 for DNA, 3 for protein) and
records the positions of those exact match (hereafter called a ”seed”).

Ungapped Extension. Each seed is extended to either side to identify a longer
pair of sequences between the query and the subject sequence from the database.
Extension is continued until the score of the alignment drops below a threshold.
These longer matches are called high-scoring segment pairs (HSPs).
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Gapped Extension. HSP list is passed to the last stage, which uses the Smith-
Waterman algorithm usually to extend it into a gapped alignment. The search
result is a list of local alignments giving a measure of similarity between genomic
sequences with the decreasing order of alignment’s score.

Previous study[9] showed that most of the execution time is spent in the step
1 and 2, over 99%, especially in the first one, over 80%. Therefore, how to detect
and locate word matching quickly is critical to accelerate BLAST algorithm.

3 The Structure of Multi-seeds Detection and Parallel
Extension Engine

Our BLAST searching system consists of an algorithm accelerator engine and
a host processor. The accelerator scans database for an input query sequence
and produces a HSP list. Then the host analyses the HSP list in order to assign
statistical significance to those matches. The accelerator engine comprises one

Subject Sequence in Database

- G P A == K =P L =P P P T P E =P
Host 3 v v v v v v

Fmd3AA  Find3-AA
WordHit  Word Hit

Stage (2)

Amino acid in query sequence, registered inPEmodule  © G : Amino acid in database stream

= § Compare the char registered in PE to current input amino acid i the subject sequence
Output:  the maching result of current amino acid pair generated by current PE:
1_’ : Z Input : the maching result of amino acid pairs generated by neighbour PE

Detection Array
Seeds Merging

-9 The direction of DB stream pass through ¢ The seed detecting result generated by current PE

A) ®)

Fig. 1. (A) The Structure of Multi-seeds Detection and Parallel Extension Engine, (B)
The Structure of Multi-seeds Detection Array

FPGA chip (Altera StratixIT EP2S130C5), two 1GB SDRAM modules (Micron
MT16LSDT12864A) and an USB2.0 interface which is connected to the host.
The structure is shown in Figure 1(A). The design fitted in the FPGA includes
SDRAM&PE Array Interface Module, Sequence Memory Group, Multi-seeds
Detection Array, Seeds Merging Module and Multi-seeds Ungapped Extension
Module. SDRAM&PE Array Interface is responsible for system initialization
and providing the subject data stream. Sequence Memory holds the query and
current subject sequence, and produces the subsequence including seeds for un-
gapped extension. The last three modules compose the algorithm core. In the
following subsections, we take BLASTp algorithm as example to illustrate our
implementation in detail.
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3.1 Multi-seeds Detecting

The function of this stage is similar to word matching in NCBI BLASTp. It finds
out the common appearance of subsequence with 3 amino acids (3-AA word)
in both query sequence and subject sequence in database. The main difference
is that with the help of systolic array, multiple seeds can be detected at each
clock cycle, instead of one match per cycle in usual index-based method. Suppose
¢i—1¢iGi+1 and sj_15;8j41, (4, > 1) are substrings in query and subject sequence
respectively. If (¢i—1 = s;—1) A(¢i = $j) A (¢i+1 = s;+1) that means a 3-AA word
matching occurred and a seed had been detected. The structure of systolic seed
detecting array as shown in Figure 1(B).

The array consists of a series of Processing Elements (PEs), which holds
the query(a char per PE) while the database stream flows through the array.
PE[i](the ith PE) compares ¢;with s;, then send the match flag to previous and
next PEs, per cycle. At the same time, PE[i] receives the match flags, compares
results of amino acid pairs (¢;—1, s;—1) and (git+1, Sj4+1) , generated by neighbour
PEs and judges if a seed has been detected. Therefore, the array is capable of
processing word matching at up to L Matches/cycle (L is the PE array size) and
can report multi-seeds per cycle if they are detected. The array reports two seeds
(word AKL on PE2 and KLP on PE3) at the same time, as shown in Figure
1(B). The multi-seeds detect algorithm is illustrated in Figure 2(A).

Seed detecting and locating are two key functions of PE module implemented.
Statement S3 in Algorithm 1 implements the seed-detecting. The location of
word hit consists of the offsets in query and in subject, the subject sequence
ID in database, which calculated dynamically by S2(Initial phase), S1 and S2 in
processing phase respectively.

S2: if (Subject_in = Sequence_end_flag)
Sequence_ID_Subject — Sequence_ID_Subject +1; // sequence number in DB

Algorithm 1: Seed-detecting Algorithm for Each PE (PE[i], I<i<L) PE o - - - = = \
Initial phase: // drive query sequence into PE array and record the location of each AA char Module | Subject Seq_ID
Sl: Query reg+—0; PE_match_flag—0; Find 3-AA_Match — 0;
Hit_location_Query_reg < 0; Hit_location_Subject_reg < 0; // registers clear I
S2: if (Query_stop_in=0) // PE array no pause L
Query_reg ~= Query_in; Query_out ~ Query_in; o Subject in e, — T subjectom
Location_Query_reg <~ Location_Query_reg + 1; // compute location in query | 1
else all signals hold on; Query_in ,L | Query o >
Processing phase: /1 drive database stream into PE array and detect all the seeds | PE_match_flag
if (Subject_stop_in=0) // the database stream no pause |
S1: Subject_out < Subject_in;
Location_Subject_reg ~ Location_Subject_reg+ 1; // compute location in subject Match_flag_lefi_in I Find 3-AA Mate|
|

Match_flag_right_in
T

else if (Sj= Qi) L
Current_PE_match_flag < 1; // amino acid pair matching is detected T T T Quenystopin] TSubject stop_in
Match_flag_lefi out ~— 1;  //send match flag to previous PE L — — — — — — it locaton quer
Match_flag_right out <~ 15 // send match flag to next PE

S3:
Find_3-AA_Match < 1; /I seed is detected and set hitting flag

Hit_Location_Query < Hit_Location_Query_reg;
Hit_Location_Subject < Hit_Location_Subject_reg;// output match-point location

if ((Current_PE_match_flag = 1)&(Match_flag_left_in = )&Match_flag_right_in = 1)) [
else all signals hold on; [

A) (B)

Fig. 2. (A) The Seeds Detecting Algorithm for Each PE, (B) PE Module Structure
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3.2 Successive Seeds Merging

The systolic array implements the multi-seeds detect procedure very quickly.
The array may report a lot of seeds contemporarily when there is enough sim-
ilarity between the query and subject. It is hard for ungapped extension stage
to catch up with the speed of multi-seeds detect with the growth of the array
size. Finally, it will cause the unbalance in processing capability between the
two stages. To address the problem, we add a seeds merging stage to merge
the adjacent successive word-hits (because those seeds belong to identical HSP)
into a valid seed and pass it to extension stage as shown in Figure 3(A). The
benefit of merging seeds is that the number of valid seed can be reduced signif-
icantly. As result, the efficiency of ungapped extension stage is improved since
the duplication extension of single HSP had been eliminated.

3.3 Multi-seeds Extension

This stage extends the seeds to either side to identify a longer pair of protein
sequence with the score exceeds the threshold. To improve the extension effi-
ciency, we adopt the Multi-channel Parallel Extension Strategy, which will be
introduced particularly in section 4.4.

4 FPGA Implementation and Optimization

4.1 Multi-seeds Detection Array

As for the basic cell in multi-seeds detection array, PE Module performs the
character comparison in pipeline mode and calculates the hit position. The kernel
in PE module is a 3-input AND Gate(the middle rectangle area in Figure 2(B)),
which implements seed detection. The two input signals named Match flag left in
and Match flag right in generated by adjacent PEs and the current pair match-
flag are sent to input ports of the 3-input AND to generate a hit signal when
all inputs are TRUE. Three accumulators calculate the offsets of the seed by
counting the amino acid characters passed through. Since the Find 3-AA Match
flag depends on the comparing result of amino acid pairs calculated by adjacent
PEs, the calculating the hit flag is the critical path. Timing analysis shows the
path delay is less than 3ns, thus it is not the bottleneck in FPGA implementation.

The systolic array consists of a series of Processing Elements. The PE array
size is limited by logic (LUT) resource in FPGA. Generally, the larger array size
is, the higher searching efficiency can be reached since more words are scanned
and more seeds may be detected at the same time. However with the increase in
seed-detection capability, multi-seeds recording becomes a critical issue because
the number and location of seeds generated by PE array at each time is random.
When there is enough similarity between the query and subject, a lot of seeds
are reported contemporarily. The overhead recording the seeds orderly will lead
to a long pause and low efficiency since the array must be held up until all
the seeds have been recorded. To address this problem, we adopt two schemes:
decomposing the PE array and merging successive seeds.
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4.2 Decomposing the Detection Array

The idea of this strategy is decomposing the Multi-seeds Detection Array into
PE Groups to record the seeds in parallel. To record the seeds detected by
the array, the Seeds Merging Module should also be partitioned into some SM
subModules (corresponding to PE Groups), each of which records and merges
the seeds detected by local PE Group then sends it to a local Hit FIFO. The seed
in Hit FIFOs is delivered to Hit information FIFO by multilevel Fifo Merger
Modules. The partition and hierarchical merging process is illustrated in Figure
3(A).

Suppose the detection array detects H seeds each time and the seeds are
located in G groups evenly. Each one has H/G seeds because the position of
3-AA word hitting is random and satisfies the uniform distribution. Recording
these seeds only costs H/G cycles by using hierarchical merging strategy since all
of the SM subModules can collect and combine those seeds in parallel. However, it
takes H cycles to finish the process for Seeds Merging Module without merging
seeds strategy. Therefore, the processing overhead for recording match points
only occupies 1/G cycles of un-optimization.

The other advantage of decomposing the detection array is eliminating the
bottleneck in implementing the huge multiplexer (MUX) between the Multi-seeds
Detection Array and Seeds Merging Module as shown in Figure 3(B). We trans-
form the huge multiplexer into several smaller ones (subMUX) by partitioning
the large array and Seeds Merging Module into small groups. Thus the multi-
plexer units no longer become the bottleneck in FPGA implementation. The
synthesis results show that the 64 PEs compose a group is an optimal choice.
The clock frequency of the detection array with 512 PEs increases from 55MHz
to 156MHz since the large MUX (512-line to one) is divided into eight small
subMUX (64-line to one) and it does not change visibly with the array size
growth. The main cost in implementation is adding multilevel Hit FIFO and
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Merging modules(the level number is log, G). However, the storage resource is
not bottleneck in our design and the LUT overhead caused by FIFO Mergers
can be ignored compared to large MUX.

4.3 The Algorithm of Merging Successive Seeds

As far as each PE Group is concerned, recording multi-seeds still have to be
processed in order. If the two subsequences in query and current subject are
highly similar, many seeds will be reported by adjacent PEs contemporarily.
It will take a long time to record them one by one. Additionally, it will cause
redundant extension if every seed in successive position is sent to the Hit FIFO
because the seeds belong to the identical HSP.

To filter the redundant seeds and reduce unnecessary extension overhead, we
adopt a merging seeds strategy in SM sModule. The successive seeds merging
algorithm is illustrated in Figure 4. Each SM sModule registers the seed flags as
statement S1 in processing phase and checks whether word matches are detected.
The function in S4 finds the first position ”1” (”1” means a word hit), which
corresponds to the location of first seed detected. The loop in S6 merges the
successive word hits into a valid seed then reports it (S8). Suppose the current

Algorithm 2: Successive Seeds Merging

Initial phase:

S1: Hit_location — 0; Subject_stop < 0; Word_hit_reg[l..m] < 0; i ~—0;
Processing phase:
S1: Word_hit_reg[1..m] < Word_hit[1..m]; Hsp_flag < 0; i < 0;
S2: While (Word_hit_reg[1..m] !=0)
Do S3 ~S8;
S3: Subject_stop — 1; // Stop current subject sequence passing through

S4: FUNCTION Find the first location of I’ (n); // The value returned is n (1<n<m).
S5: Word_hit_reg[n] < 0; n<n+l; i ~1;
S6: While (Word_hit_reg[n] = 1)

Do { Word_hit_reg[n] ~ 0; // record the match point and clear the hit flag
n—n+l; i —i+l;}
S7: If(i > T) /" judge if finds a segment matched exactly with enough length
Hsp_flag ~ 13

S8: Hit location < { Hsp_flag, Hit_info[n] };
S9:  Subject _stop < 0; Returns SI;

Fig. 4. Successive Seeds Merging Algorithm for Each SM subModule

status of PE Group as shown in Figure 1(B). Both PE2 and 3 find a seed at
the same time. The SM sModule will deliver the two seeds to Hit FIFO and the
extension operation will be executed twice without the phase of merging seeds.
In fact only one extension is needed since the seed AKL and KLP can be merged
into a bigger seed AKLP.

Statement S7 judges whether it finds a segment matched exactly with enough
length from the count of successive hit flags (variable 7). If 7 is greater than
the value set by user (suppose T = 8, that means the substring with more
than 10 amino acid pairs matched exactly is detected), then Hsp flag is set ac-
tive. The extension module will no longer extend the seed but output it directly
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because the extension have finished. Our method reduces unnecessary extension
and endows the PE array with a measure of " macroscopic” searching ability.

4.4 Multi-channel Parallel Extension Strategy

In this stage seeds are read out from Hit information FIFO and extended (adopt-
ing Blosum62 Matrix) to either side to identify a HSP. So the seed’s context
characters are needed for extension. FPGA /FLASH[I4] constructs the index for
each word. Thus, it can get the subsequences directly. Mercury BLASTn[S] pre-
fetches the seed’s context because there is only one seed can be detected at a
time. However, because of the powerful capability of multi-seeds detecting and
the serial extension procedure (only one amino acid pair can be read out per
cycle from Sequence Memory), the seed-extension capability can’t catch up with
the throughput of multi-seeds detection units.

To solve the problem, we adopt the Multi-channel Parallel Extension method
by setting several Ungapped Eztension Modules as shown in Figure 5. Because
each Faxtension Module accesses query and subject sequence memory contem-
porarily to get the seed’s context characters, several Qry/Sub Memory copies
are fitted to supply enough access ports for multi-channel extension. Thus, mul-
tiple seeds from different Hit info FIFO can be extended in parallel.
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5 Experiments and Performance Comparison

The NCBI BLAST software with default parameters (Ver:2.2.16) runs on a desk-
top computer with a 2.60GHz P4 CPU and 1.5GB Memory. Theoretically, the
Multi-seeds Detection Array can detect all seeds. We searched a sequence se-
lected in Swiss-Prot with 2048 residues against a small part of Swiss-Prot with
65536 total letters. As a result, 12629 seeds have been detected and 793 seeds
have been extended successfully. Using the merging seeds strategy, the number of
seeds reported in our design is greatly less than that of the software, but the HSP
list accords with the software version. We did a series of tests to evaluate our
implementation in the aspects of synthesis performance, storage requirement,
actual searching capability and speedup over related works.
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5.1 Test 1: Comparing Synthesis Performance to Systolic Array
Approaches

We fit our design on FPGA EP2S130C5 with 3072 PEs as shown in Table 1.
Without seed-detecting, Tree-BLAST[T]] finds HSP directly by adding up the
scores of individual alignments between two amino acids. It allocates a BRAM
for every four PEs to index the scoring matrix, therefore the BRAM count limits
the query size up to 600 on XC2VP70 and 1024 on XC4VLX160. Different from
Tree-BLAST, the array size is not limited by BRAM but LUTSs in our implemen-
tation. It only consumes 38% on-chip memory resource of FPGA XC4VLX160,
compared with nearly 88% of related work. We also implement 1024 PEs on
XC2VP70-5, the same platform with Tree-BLAST. The result shows our design
is superior to Tree-BLAST in both PE number and clock frequency.

Table 1. Performance results and comparison

Ours Tree-BLAST[II]

FPGA EP2S130C5 XC2VP70-5 XC4VLX160 XC2VP70-5 XC4VLX160
PEs Fitted 3072 1024 3072 600 1024
ALUT/Slice (%) 92098/ (87%) 20007/ (60%) 48272 /(71%) —— 78%
Memory (%) 741376 bits/(11%) 36 BRAM/(11%) 110 BRAM/(38%) - 88%
Clock (MHz) 113 140 189 110 178
Single PE 42 ALUTSs or 31 Slices —— ——

5.2 Test 2: Comparing Storage Requirement to Index-Based
Approaches

As stated before, the systolic array storage requirements less than index-based
approaches. The main storage expense in our design is Sequence Memory and
multistage Hit FIFO (When the array size is 3072, the memory overhead is
692K bits, which is only 11% of the memory capacity in EP2S130C5). On the
contrary, the index-based approach is limited to the capacity of on-chip block
RAMs. RC-BLAST[13] fitted a query index with the size of 64K x 64bits in
Xilinx 4085XLA, which can only record three offsets for each word. Due to the
same reason, Mercury[9] and Mitrion[I9] have to store the hash table to external
SRAM. The delay of memory access becomes the performance bottleneck. Com-
pared to index-based RC-BLAST and systolic-based Tree-BLAST, our approach
reduced the storage requirement by about 90% and 50% respectively. Further-
more, in our implementation, little memory requirement reduces the complexity
of memory access and lessens the difficulty in FPGA layout and routing,.

5.3 Test 3: Comparing to Index-Based Hardware Accelerators

(1) Word-scanning Capability. Most of the current implementations can

execute only one word-match per cycle, such as [],[9],[10],[13],[17],[I9]. The
word-scanning capability in Mercury BLASTn[§] is 96M matches/s. Mercury
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BLASTp[I2] designed a two-seed generator, the processing capability reaches
up to 219M matches/s for 2048-residue queries. The capability in Multi-engine
BLASTn Accelerator[I6] achieves 6400M matches/s by using 64 identical par-
allel engines. Comparatively, our searching engine can execute 294912M word
matches per second, over 40 times, by using the multi-seeds parallel detecting
approach.

(2) Actual Searching Capability. We use the measurement unit, the num-
ber of Kilo Amino Acids (Kaa) compared to the number of Mega nucleotides
(Mnt) performed every second, KaaMnt/s, to measure the actual computing
power, because of the variation in the hardware structure, the amount of FPGA
resource and clock frequency among all kinds of accelerators. The computa-
tional power of FPGA/FLASH and Timelogic Decypher Engine reported in[I4]
is 451 and 182KaaMnt /s respectively. In our implementation, it took 424ms to
search a 3072-residue query against drosoph.nt downloaded from NCBI BLAST
Database[26] on our engine. We calculate our computational capability:

3Kaa x 122Mnt

= KaaM 3
494ms 863K aaMnt/ sec

Hence, as for the actual searching capability, our design is 1.91 and 4.74 times
as fast as the FPGA/FLASH and Timelogic Decypher Engine respectively.

5.4 Test 4: Comparing Execution-Time to Software Version

We fit the design on our testbed to accelerate the first two stages of NCBI
BLAST family programs. The experimental results are listed in Table 2 ([¥] The
execution time of hardware accelerator is tested by simulation tools (ModelSim
SE PLUS 6.2h) for the array size exceeding 4K-PE because of the limitation of
FPGA logical resource).

(1) Comparing to BLASTp. We did a series of experiments to search
queries selected in Swiss-Prot with different length(128~8K, which equals array
size) among the database Swiss-Prot, including 274,295 sequences, 100,686,439
total letters, downloaded from EBI[27]. Timings were averaged over at least 10

Table 2. Execution time (ms) and speed-up for different queries (SWt: software exe-
cution time, HWt: hardware execution time, Sp: Speedup)

Array Size BLASTp TBLASTn BLASTx TBLASTx BLASTn
(Query length) SWt HWt Sp SWt HWt Sp SWt HWt Sp SWt HWt Sp SWt HWt Sp

128 1901 1047 1.82 3203 150 21.3 1594 1034 1.54 4031 158 25.5 6225 1115 5.58
256 3087 1057 2.92 3641 163 22.3 2641 1045 2.53 5906 195 30.3 7378 1128 6.54
512 5603 1090 5.14 5156 199 25.9 4378 1073 4.08 9978 266 37.4 8904 1147 7.76
1K 9327 1157 8.06 9891 254 38.9 7828 1137 6.88 16266 344 47.2 9953 1180 8.43
2K 17814 1227 14.5 15438 358 43.0 13187 1221 10.8 27703 459 60.3 11343 1218 9.31
3K 25132 1487 16.9 20328 424 47.9 18875 1336 14.1 37500 527 71.1 12360 1260 9.81
4K [*] 32469 1620 20.0 25656 480 53.4 26031 1478 17.6 45392 575 78.9 13531 1316 10.28

8K[*] 61162 2207 27.7 47797 570 83.8 49828 1987 25.1 77766 720 108 15344 1393 11.0
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queries for each length, and each query’s running time was averaged over three
identical runs of BLASTp. The execution time in the first two stages of our
multi-seeds detection engine and BLASTp for different queries are listed in the
column 2~4 of Table 2.

The software execution time, with the growth of query size, is increasing very
fast. It only took 1901 ms to search the database with 128-residue queries, while
the time added up to 61162 ms to finish the mission with 8K-residue queries.
The reason is the cost in both index constructing and searching object increas-
ing greatly with the query size growth. However, the time on our accelerator
increases very slowly. This is due mainly to searching cycles of our accelerator
equals to the time of database stream flow through the array (that is L + 5,
where L is the array size and S is the database size) plus the pausing time. In
the above factors, S is a const and the variation in L can be ignored compared
with S. In addition, the pausing cost is related to the number of seeds detected
directly. When searching domain (DB) is certain, the valid seeds number and
the extension overhead will not increase sharply with the query size growth since
the optimized strategies introduced in section 4 are used in our implementation.
Thus the larger the array size is, the better the speedup achieves. It is about
17 times faster than the desktop computer for 3072-residue queries. Simulation
result shows it can reach 27.7 with the array size of 8K.

(2) Comparing to TBLASTn. Queries were selected in Swiss-Prot with
the length from 128 to 8K residues. The run time of TBLASTn is tested for
searching the database drosoph.nt downloaded from NCBI BLAST Database[26],
which includes 1170 sequences, 122,655,632 letters and the accelerator searches
against the Coding Sequence (CDS) picked out from drosoph.nt. The time for
database translation is not calculated, because this operation need to be done
only once and the result can be reused for many other applications.

TBLASTn is used for searching protein sequence against DNA database. It
translates all the DNA sequences into the 6 possible potential proteins before
searching. Therefore, for the same query, it is slower than BLASTp. However,
the execution time of our accelerator does not increase steeply with the query
size growth for the same reason as the Test4(1l), so the higher speedup can
be achieved. Our implementation has a speedup of approximately 48 for 3072-
residue queries using the array with 3072 PEs and the value can reach 84 for
S8K-PE array.

(3) Comparing to BLASTx. BLASTx is used for searching DNA sequence
against protein database. The queries are translated into six-frame protein se-
quence before searching. We selected a series of queries from drosoph.nt with the
length from 128 to 8K residues to search against the protein database, Swiss-
Prot, downloaded from EBI[27]. The execution time for different queries is also
listed in Table 2.

For the same reason as BLASTp and TBLASTn, the software execution time
of BLASTx is increasing very fast with the growth of query size. It only took 1594
ms to search the database with 128-residue queries, while the time added up to
49828 ms to finish the mission with 8K-residue queries. On the other hand, the
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execution time of hardware BLASTx algorithm does not increase steeply with
the query size growth. Thus, the speedup raises with the growing query size.
It is about 14 times faster than the desktop computer for 3072-residue queries.
Simulation result shows it can reach 25 with the array size of 8K.

(4) Comparing to TBLASTx. Queries were selected in drosoph.nt with the
length from 128 to 8K residues. The run time of NCBI TBLASTx is tested for
searching the database drosoph.nt downloaded from NCBI BLAST Database.
The accelerator searches against the Coding Sequence (CDS) picked out from
drosoph.nt and the time for database translation is not calculated.

TBLASTXx is used for searching six-frame translation of DNA sequence against
six-frame translation of DNA database. Both the queries and the database are
translated into the six possible potential proteins before searching. Therefore, it
is much slower than other programs in BLAST family. However, the execution
time of our accelerator does not increase steeply with the query size growth for
the same reason as state before, so the much higher speedup can be achieved.
Our implementation has a speedup of about 71 for 3072-residue queries using
the array with 3072 PEs and the simulation result shows it can reach 108 with
the array size of 8K.

(5) Comparing to BLASTn. The four subprograms in BLAST family:
BLASTp, BLASTx, TBLASTn and TBLASTx provide functionalities for com-
paring all possible combinations of query and database types, but they search
Protein vs. Protein sequence actually. Therefore, all of them can execute on our
Multi-seeds Detection and Parallel Extension Engine with w=3, named PSSE
(Protein Sequence Search Engine).

However, BLASTn program is used for searching DNA sequence against DNA
database and the word length equals 11-nucleotide, typically. To accelerate the
BLASTn program, we also designed a Multi-seeds Detection and Parallel Ex-
tension Engine with w=11, named DSSE (DNA Sequence Search Engine).

The main structure of DSSE is consistent with PSSE. The main difference
lies in PE structure. The PE[i/(the ith PE) in DSSE array compares g;with
sj, then send the match flag to adjacent Ten PEs (from PE[i-5] to PE[i-1]
and from PEfi+1] to PE[i+5]), per cycle. At the same time, PE[i] receives
the match flags, compares results of residue pairs generated by adjacent Ten
PEs and generate a hit signal when all the ten inputs and the match flag
of current residue pairs are TRUE. That means the exactly matched pairs
(Gi—5 - qi -~ qits||Sj—5 -~ - sj - - - Sj45) in the query and subject are found and
a 11-mer seed is detected. Then send it to extension stage.

We did a series of experiments to test our DSSE’s searching capability. Queries
with different length are selected in drosoph.nt and the experiment environment
is the same as the other programs in BLAST Family. As shown in the last
three columns of Table 2, the software execution time of BLASTn is increasing
obviously. It increases from 6225 ms to 15344 ms with the query size growing
from 128 to 8K-residue. However, the execution time of hardware BLASTn DSSE
does not increase visibly for the same reason as the PSSE. Our implementation
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has a speedup of approximately 10 for 3072-residue queries using the array with
3072 PEs.

6 Conclusion

In this paper we present a systolic array, which supports Multi-seeds Detec-
tion and Multi-channel Ungapped Extension in parallel, to accelerate the first
two stages of NCBI BLAST family algorithms. Our implementation reduces un-
necessary extension by using merging seeds strategy and decreases the memory
requirement on-chip as a result of eliminating the lookup tables. The experi-
mental results show about 17, 48, 14, 71 and 10 times faster than BLASTp,
TBLASTn, BLASTx, TBLASTx and BLASTn programs running on a desktop
computer with 2.60GHz P4 CPU for 3072-residue queries, respectively. Further-
more, our Multi-seeds Detecting Array also can be used to accelerate the seed
detection stage in other seed-based heuristic searching applications.
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Abstract. We study the problem of structured motif search in DNA sequences.
This is a fundamental task in bioinformatics which contributes to better under-
standing of genome characteristics and properties. We propose an efficient al-
gorithm for Exact Match, Overlapping Structured motif search (EMOS), which
uses a suffix tree index we proposed earlier and runs on a typical desktop com-
puter. We have conducted numerous experiments to evaluate EMOS and com-
pared its performance with the best known solution, SMOTIF1 [1]. While in
some cases the search time of EMOS is comparable to SMOTIF1, it is on aver-
age 5 to 6 times faster.

Keywords: DNA sequences, structured motif, suffix tree, performance.

1 Introduction

Advances in bioinformatics have facilitated experiments in biology laboratories and
genome sequences acquired are growing at exponential rate. Understanding the prop-
erties and characteristics of these sequences requires various types of searches to be
performed. A fundamental task in bioinformatics is searching in new sequences for
previously known information, expressed as structured motifs. Examples of potential
applications include searching for composite regulatory binding sites in DNA se-
quences and finding long terminal repeat (LTR) retrotransposons, which have signifi-
cant presence in typical mammalian genome and are believed to have major impact on
genome structures and functions [2,3].

A structured motif consists of several simple motifs, interleaved by variable-length
bounded gaps. Each simple motif can be represented either as a string of symbols from
a specific alphabet (pattern representation), or as a matrix which gives the probability
of observing a specific nucleotide at each position in the simple motif (profile repre-
sentation). A gap is represented as [x, y], which denotes the minimum and the maxi-
mum gap sizes allowed between two adjacent simple motifs. This structured motif
model provides a suitable way for simultaneously searching for several (related to each
other) DNA sequences, while accounting for some possible evolutionary mutations.

Consider the following sample structured motif SM = M;[2,5]M,[6,7]M;, taken
from [4]. In Table 1, rows 2 to 5 represent each simple motif as a profile, while row 6
gives their corresponding pattern representations using the IUPAC alphabet. As in
[1,5], in this work we adopt the IUPAC alphabet for pattern representation of the
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Table 1. A Sample Structured Motif

Bases M, [2,5] M, [6,7] M;
A 21 Juu]1[3]0]24 1o 3 [1[35
C oJw[s]s[2]ofo]9]o0 0 |25 5 [35] 1
G 255 ]2]w0[3]1]o]o 26 | 11 0o[ofo
T 2[9le2s[B3][1]o]17]12 9]0 28[0]o0
TUPAC DIN[N[N][N[DJR[Y[W][RsI[D]S]67N][H[M]M
Table 2. The [UPAC Alphabet
[Bases [ A[ C [ G[T]J]UJAG[CT[GT[AC]GC[AT][CGT[AGT[ACT[ACG[ACG.T]|
[Symbol[ A [ Cc [ G| TJU|JR]JY|[K|[M]|s|w]|[B|D]|H]V ] N |

structured motif, and use the DNA alphabet {A,C,G,T} for sequence data to be
searched. The mapping convention between the DNA bases and the corresponding
IUPAC symbols is shown in Table 2. To avoid confusion, we refer to characters in a
pattern motif as symbols and to sequence characters as DNA bases, or bases for short.

The goal of structured motif search, given a sequence S, is basically to find the
starting positions p in S at which a match between the query SM and a substring of S
occurs. For example, consider our sample SM and S[p, p+25], a sample substring of S
starting at position p, shown in the first row in Figure 1. The next four rows in the
figure show 4 matches between SM and S[p], for the gap sizes {3,6}, {3,7}, {5,6},
and {5,7}, respectively.

Slp,p+251= | T]AJC[G[T]AJA[T[T[G]GJAJA[CJA[C]G]CJA[T[AJCTAJATATA
SM = D[N|[N[N[N[D[R]Y[W - D[S]- -1- H[M[M
SM = D[N|N[N[N[D[R[Y[W B D[S|-[-|-|-|-[-[-|H[M[M
SM = D[N|N[N|N[D[R[Y[W TS - - - [-[-["aMm
SM = D[N[N[N[N|[D[R[Y[W - IoIs[-[--1-1- “(H[M|M

Fig. 1. Matching a SM with a substring of S

In this paper, we propose a search algorithm for finding structured motifs repre-
sented as patterns over the [IUPAC alphabet. The algorithm proceeds in three steps.
First, based on a heuristic using the information content of each simple motif in SM,
the algorithm selects a simple motif estimated to have the fewest number of matches
in S. In the second step, using a suffix tree index created for the sequence S, we re-
trieve all starting positions in S at which a match with the selected simple motif oc-
curs. We refer to these positions as anchors. In the final step, the simple motif and the
sequence S are aligned at all anchor positions, to search for matches for the whole
structured motif SM. A match of SM in § occurs if, for a unique and allowed combina-
tion of the gap values, a match for all simple motifs of SM is found in S.

The rest of the paper is organized as follows. In Section 2 we provide a background
and review related work. Section 3 recalls the suffix tree index we use in this work. In
Section 4, we propose our algorithm for structured motif search, EMOS (for Exact
Match, Overlapping Structured motif search). Experiments and results are presented
in Section 5. We conclude and outline future work in Section 6.
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2 Background and Related Work

Formally, a structured motif SM consisting of two or more simple motifs M, separated
by gaps of possibly variable lengths, is represented as SM = M;[i;, j1M,[i,, j.1M;...
M, ili,g, ju1lM,, where i, < ji. The gap values i; and j; indicate respectively the mini-
mum and the maximum gap sizes allowed between the last symbol in M and the first
symbol in My, ;.

In the related literature, we can find several variants of the structured motif search,
depending on the definition of match and the constraints imposed by the gaps. We
next review these variants and define the problem addressed in this paper.

An exact match of SM in S is defined as an “exact” match between all the symbols
in SM and the corresponding bases in a substring of S, obeying the gap constraints.
Note that when using IUPAC representation for a motif and using DNA representa-
tion for the sequence data, the notion of “exact” match between a motif symbol and a
sequence base is defined by the mapping scheme shown in Table 2. Examples of ex-
act matches of SM in S are shown in Figure 1. Even though this “exact” matching al-
lows some flexibility and is approximate in nature, some applications may require
even more relaxed matching. One such example is allowing for errors (i.e., insertions,
deletions, and substitutions of symbols/bases) when comparing simple motif symbols
and their corresponding DNA bases. This variation of the structured motif search is
referred to as approximate match [1]. For example, in our sample SM and S (Fig. 1),
suppose the number of errors allowed per simple motif is at most 1. Then approximate
match search returns a match for gap sizes {2, 6}, in addition to the results returned
by exact match. Another type of approximate search allows up to ¢’ (out of all n)
simple motifs to be missing. This version of the problem is referred to as g-
occurrence search [1,5] and its goal is to find all occurrences of SM in S, where at
least ¢ = n — g’ simple motifs are matched. For our sample SM and S, this type of
search for ¢ = 2 will return a match for gap sizes {4, 6}, in addition to the results re-
turned by exact match. In this work, we are interested in exact match structured motif
search, for which all IUPAC symbols in SM must match (according to the mapping
scheme in Table 2) the corresponding DNA bases in S, and no missing simple motifs
are allowed.

Considering the gap constraints, the fixed motif search problem is the simplest case
in which i, = ji, for all k in [1, n-1], and every i is known in advance and is positive.
When at least one i, is different from j;, the problem is referred to as structured motif
search. Yet another version of the problem allows negative values for i, with the re-
striction that the absolute value of i; is smaller than the size of M,. This amounts to al-
lowing partial overlap between M,,; and some of the rightmost symbols of M,, and
hence adds more flexibility to the search. This variant is referred to as overlapping
structured motif search and is addressed in this work. If the gap ranges are not known
in advance, the problem is called extended structured motif search [1].

To summarize, the problem we investigate in this paper is the exact match overlap-
ping structured motif search where structured motifs are represented as patterns over
the TUPAC alphabet, and no missing simple motifs are allowed.

Searching for structured motifs represented as patterns is an active research area
[6,7,8,5,1]. Anrep [6,7] allows the user to specify the simple motifs of the structured
motif via declarative, free-format, and strongly typed language, called A. These simple
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motifs are referred to as network expressions, and are essentially regular expressions,
excluding the Kleene star operator. Using this notation, the user may specify the
required parameters for approximate match and g-occurrence search. The gaps between
simple motifs are called spacers. Anrep executes in two steps. First, using an
g-automaton, it searches for simple motifs that satisfy the approximate threshold con-
straints. In the second step, it looks for structured motif occurrences using a backtrack-
ing match algorithm, optimized according to some statistical criterion. As one of the
first efforts on structured motif search, Anrep provides a unified pattern representation
of bio-sequence data, however the search performance was improved by other solu-
tions, discussed next.

Navarro et al. [8] refer to structured motifs as Classes of Characters and Bounded
Gaps (CBG) expressions. The proposed solutions (forward and backward search) are
based on a non-deterministic e-automaton with bit-parallelism. CBG provides effi-
cient search for relatively short structured motifs whose maximum span (i.e., the sum
of the sizes of all simple motifs plus the sum of the maximum sizes of the gaps) is less
than the number of bits in a computer word. For longer patterns, the size of the
automaton grows accordingly and the advantage of bit-parallelism deteriorates when
performing bit operations on several computer words instead of one. As a result, the
application of CBG is limited to searching for patterns with small number of symbols
and gaps.

SMaRTFinder [5] adopts a two-step approach. It first finds all the occurrences of
each simple motif, using a suffix tree (ST) index for the sequence data. The index can
be constructed either on the fly (the lazy approach), which builds only parts of the ST
that are relevant to the particular motif, or construct the entire ST for the sequence in
advance (the eager approach). In the second step, SMaRTFinder solves a constraint
satisfaction problem, by building a constraint graph for all possible pairs of simple
motifs occurrences (represented as nodes) which locally satisfy the gap constraints.
Subsequently this graph is pruned only to feasible nodes (i.e., nodes that represent oc-
currences of simple motifs that certainly belong to a match for the structured motif),
and the set of all structured motif matches is obtained by a depth-first traversal of the
pruned graph. The experimental results in [5] indicate a significant search time advan-
tage of SMaRTFinder over Anrep, when searching for a randomly generated set of
1,000 structured motifs in a 5 MB DNA sequence. Further, the SMaRTFinder exhibits
linear search time performance with respect to the number of matches found, while
the performance of Anrep depends strongly on the success of the statistical optimiza-
tion of the backtracking match algorithm. An important note made by Policriti ez al.
[5] is that the performance of SMaRTFinder for such number of queries is independ-
ent of the approach (eager or lazy) taken for constructing the ST index.

In a recent work [1], Zhang and Zaki proposed the SMOTIF technique for struc-
tured pattern and profile motif search. It consists of several algorithms, which support
exact match, approximate match, and g-occurrence search operations. There are two
alternative implementations for structured pattern search: SMOTIF1 and SMOTIF2.
Below, we review their approaches to the exact match search problem.

As a first step, SMOTIF1 scans once the sequence to be searched, and then
converts it into an equivalent inverted format [9,10], where each character in the
sequence is associated with its post-list — a sorted list of the positions at which the
base occurs in the sequence. Also, the structured motif is converted to its SMOTIF
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representation, by adding a gap [0,0] between adjacent symbols within each simple
motif, and then consolidating the gaps, if possible. For example, the motif
GCNI[O0,1]TB is converted into G[0,0]C[1,2]T[0,0]B. The second step in SMOTIF1
starts from the last two motif symbols (T and B in this example) and computes the
post-list of T[0,0]B, using positional joins over T and B’s post-lists (each of which
viewed as a union of the post-lists of their corresponding matching bases, computed
in the first step). The result essentially is the list of all starting positions of T[0,0]B in
the sequence. Next, the algorithm recursively expands the positional join process, by
considering the first unprocessed symbol to the left (in our example, C), and performs
a positional join over its post-list and the post-list of T[0,0]B. Upon completion of the
recursive positional join process, the post-list of the entire structured motif is ob-
tained, i.e., the list of all starting positions of the structured motif in the sequence. If
required by the application, the set of matching positions for each symbol in the motif
can be recovered.

In contrast to SMOTIF1, which performs positional joins on the post-lists of indi-
vidual motif symbols, SMOTIF2 performs the positional join process on the post-lists
of the whole simple motifs. That is, the post-list (i.e., the starting positions) of each
simple motif is obtained by lazy construction of the same ST index as in SMaRT-
Finder. While this first step is the same for SMOTIF2 and SMaRTFinder, the main
difference between them is in the second step, in which they process the information
obtained. The positional join technique of SMOTIF2 proves to be more efficient than
the constraint satisfaction technique used in SMaRTFinder.

The experimental results in [1] show that SMOTIF1 and SMOTIF2 are respec-
tively up to 18 and 4 times faster than SMaRTFinder searching for three real-life
motifs in chromosome 1 of A. Thaliana. Also, the performance of the three search
techniques is compared more comprehensively for searching chromosome 20 of
Homo sapiens for a set of 100 random structured motifs. Again, SMOTIF1 and
SMOTIF2 are considerably faster than SMaRTFinder, 6 and 4 times respectively.
Further, SMOTIF1 performs significantly better than SMOTIF2 when no missing
simple motifs are allowed. One of the shortcomings of SMOTIF2 (as well as of
SMaRTFinder) is that in the first step, it searches for the exact match occurrences of
all simple motifs of a SM. In case of long sequences and/or several simple motifs that
have low information content, this may lead to enormous intermediate output which
does not fit in main memory. As a result, SMOTIF2 and SMaRTFinder run out of
memory in such cases and cannot conclude the SM search.

Our EMOS algorithm has three important characteristics that distinguish it from
the above solutions. First, it handles efficiently some typical structured motif search
challenges, e.g., the maximum span of a SM could be several thousand bases long;
some of the simple motifs could be very short and/or with low information content,
etc. Second, while EMOS can search in very long sequences (e.g., chromosome 2 of
Homo sapiens containing around 238 million bases), it does not require extensive
memory space and runs on typical desktop computers (with 2 GB RAM as in our
computer system). Third, the fastest known solution for exact match overlapping
structured motif search is SMOTIF1 [1]. The results of our experiments indicate that
for majority of the cases, EMOS is 5 to 6 times faster than SMOTIF1.



Fast Structured Motif Search in DNA Sequences 63

3 The STTD64 Index

Similar to SMOTIF2 and SMaRTFinder, a part of our solution to the structured motif
search problem uses a suffix tree based index. As illustrated in [11], such an index is
suitable for biological sequences and provides efficient and versatile support for nu-
merous bioinformatics search applications. In a previous work [12], we proposed the
suffix tree indexing structure STTD64 (Suffix Tree, Top Down, 64 bits). Using this
index, we also developed efficient and scalable algorithms for string searching (exact
match and k-mismatch problems), and for finding supermaximal repeats in sequences.
Interested readers are referred to [13] to experiment with and evaluate these applica-
tions accessible through a web-based interface. Our focus in this work is to develop
an efficient motif search algorithm, for which we use the STTD64 index. Here, we as-
sume the index is already constructed and stored on disk. In Section 5, we justify this
assumption. Below we review the key points in the STTD64 representation to better
understand the EMOS algorithm and a source of its efficiency.

To illustrate the STTD64 index, consider sequence S = AGAGAGCTTS$. Figure 2
shows a general, high-level graphical representation of a ST for S. In the figure, the
numbers in squares illustrate the order in which the nodes in the tree are evaluated and
recorded in STTD64. Each edge is labeled with the corresponding bases from S. The
number below each leaf node s indicates the starting location in S at which we can
find the suffix indicated by the labels of the path from the root to s.

Figure 3 shows the actual STTD64 index for S. Each ST node is represented as a
record of size 64 bits (shown vertically), divided into four fields, as follows. For each
node v, we store, in the first field of 32 bits (the first row in Fig. 3), its left pointer
value. This value, denoted Ip(v), is the sum of the leftmost starting location in S at
which we can find the substring encoded from the ST root to node v plus the depth of
node v. The depth of a node v is defined as the number of characters from the root to
the parent of v. For example, for node 10, the substring that is encoded from the root
to this node is “GAG.” The leftmost occurrence of “GAG” in § starts at S [1]. The
parent of node 10 is node 2, and hence the depth of node 10 is 1. Thus, Ip(10) = 1+1 =
2. For each ST node, the second field of size 1 bit (second row in Fig. 3), stores its
leaf value. A leaf value O indicates that the current node is a branch node, while leaf
value 1 indicates a leaf node. For clarity, the leaf nodes are shown in gray in the fig-
ure. For each ST node, the third field of size 1 bit (third row in Fig. 3), stores its
rightmost value. A rightmost value 1 indicates that the current node is the rightmost
child of its parent. For example, node 5 is the rightmost child of the root, and node 7
is the rightmost child of node 1. In the last field of size 30 bits (the fourth row) we
store different information depending on whether the current node is a branch or a
leaf node. In case it is a branch, we store a pointer to the location in the STTD64 in-
dex at which the first child of this branch node is stored, thus providing means for
downwards traversal of the ST. These pointers are illustrated by the arrows above
Figure 3. In case of a leaf, in the fourth field we store the depth of the leaf node.

It should be noted that the starting locations of the suffixes in S indicated in Figure
2 by the number below each leaf node are just to facilitate our description in the text;
they are not explicitly stored in the STTD64 representation. For search applications
which use STTD64, the availability of depth values allows for fast computation of the
starting locations. For example, the starting location of the suffix encoded by the path
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from the root to node 13 is computed by subtracting the depth value of node 13 from
its Ip value, i.e., the starting location of the suffix “GAGCTTS$” is 6 — 3 = S[3] (see
Figures 2 and 3). Storing the information required for this computation in a single
node eliminates unnecessary ST traversals, leading to a significant decrease of the
number of disk I/O operations, and eventually to search time improvements for appli-
cations based on STTD64.

[
I 1
| | | vl v
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
(o v el 7 Tl 2 e a6 2] 6 ] 4 6 ] 8 ] 9.
SN ISR 0 5 N O 5 O VO O A I I
SN ISR 1 N O 5 20 O O O A I 2 I
6 10 0 14 0 8 2 4 4 12 1 3 3 1 1

Fig. 3. STTD64 Representation of ST for S = AGAGAGCTTS$

Although inspired by the suffix tree based wotd index [14] adopted in SMaRT-
Finder and SMOTIF 2, STTD64 differs from it. First, STTD64 requires 16 bytes per
sequence character (in the worst case), compared to the 12 bytes required by the wotd,
which is known to be the most space efficient ST representation [14]. The reason is
that in STTD64 we store the additional information, i.e., the depth of the ST leaf
nodes. Regardless of the larger storage requirements, STTD64 construction time is
comparable with TDD [15], which is known to be the most time efficient ST con-
struction technique. Second, STTD64 has a theoretical limit of 4 GB on the size of the
sequence being indexed (assuming there are no repeats longer than 2*° bases), and in
[12] we have shown its capability for indexing the entire human genome (approxi-
mately 3 GB) on a regular desktop computer with 2 GB RAM. On the other hand, the
theoretical limit for sequences handled by wotd is around 700 million bases [14].
However, since both construction algorithms (wotd-eager and wotd-lazy) proposed in
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[14] are memory based, the practical limit depends on the available RAM size. The
results in [14] show that word-eager construction algorithm needs around 10.5 bytes
per input character, which for a typical desktop with 2 GB RAM leads to a practical
limit on the input sequence size of around 200 million bases. The exact memory re-
quirement is not given for wotd-lazy, but it is more than wotd-eager.

Based on the above comparisons, we find that STTD64 is more suitable and effi-
cient for indexing biological sequences, and we use it as our index in conjunction with
the EMOS algorithm, presented next.

4 The EMOS Algorithm

Our proposed EMOS (Exact Match, Overlapped Structured motif search) algorithm
takes as input a structured motif SM represented as a pattern over the ITUPAC
alphabet, a DNA sequence S to be searched, and its STTD64 index. The output of the
algorithm consists of all positions in S at which an exact match between the SM and a
substring of S starts, together with the length of the match. The EMOS algorithm is
presented in Figure 4. Our algorithm takes a three-step approach in solving the struc-
tured motif search problem. In a nutshell, in the first step, based on preprocessing the
structured motif, a suitable simple motif (M,) is selected. In the second step, using the
STTD64 index, all exact occurrences of M, in the sequence are found. In the third
step, the structured motif is aligned with the sequence by using the exact occurrences
of M, as anchors, and the symbols of the remaining motifs are compared with the cor-
responding sequence bases.

To illustrate the EMOS algorithm, consider the following example: Find all exact
match occurrences of SM = WN[-1,2]KW[2,4]Y in our sample sequence S =
AGAGAGCTTS. For clarity of the exposition and to avoid unnecessary technical de-
tails, in our discussion we will use the graphical ST representation of the index (Fig.
2), noting that EMOS uses the equivalent STTD64 representation (Fig. 3).

In Step 1 of our algorithm, we preprocess SM to select a suitable simple motif, as
the anchor motif M,. Intuitively, “most suitable” is a simple motif with smallest num-
ber of exact matches in S, which in the subsequent phase are to be used as anchors.
Since we do not know in advance the number of exact matches of each simple motif
in S, we employ the following fast heuristic for selecting M,. By reading SM once, we
compute the selectivity power (SP) of each simple motif, by considering the informa-
tion content of its symbols, according to Table 2. For example, the selectivity powers
of the three simple motifs of the SM are computed as follows: SP(M;) = SP(WN) = 2/4
*,=0.50; SP(M,) = SP(KW) = %/, * */,= 0.25; SP(M;) = SP(Y) = */4= 0.50. Assum-
ing uniform distribution of the DNA bases in S, the expected number of exact matches
is estimated to be around 50% of the size of S for M;, 25% for M,, and 50% for Mj;.
Thus, we select M, to be our M,. One drawback of this selection heuristic is that in
practice the distribution of bases in nucleotide sequences is not strictly uniform. How-
ever, our experimental results indicate that although not optimal, the employed heuris-
tic provides an overall SM search speedup of 2 to 3 times, compared to an alternative
in which we pick M, randomly, as discussed in more detail in the experimental sec-
tion. Note that since the SP for each simple motif is strictly greater than 0, this step
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Algorithm EMOS (Sequence S,Index STTD64,Structured Motif SM)
0. Read Sequence S from disk to memory

Step 1 //Preprocess the Structured Motif SM

1. Select the anchor simple motif, I ;

Step 2 //Find all occurrences of M in S

2. ARS := STTD64 root; //ARS is Answer Root Set

3. for each symbol in M, (starting from M [0]){

4. dna_set := convert Mﬂ[i] to its corresponding DNA base(s);
5. for each STTD64 node in ARS, node_old

6 for each node_old outgoing edge

7 if (its label match one base in dna_set)

8 then insert in ARS edge destination node, node_new;

9. delete node_old from ARS;
10. } //at this point ARS contains all answer roots
11. M (all):=0;
12. for each answer root (AR) node in ARS({
13. for each leaf in subtree rooted at AR
14. compute S location, add it to M (all);
15. )//M(all) contains start locations of all exact matches of M, in S
Step 3 //For each L in M (all), align SM with S, check the other s1mple motifs
16. L = first location in M (all);
17. while (not all locatlons in M (all) are examined) {
18. sm_len = |M|;
//Explore SM to right and left of M, matching remaining motifs
19. extendRight (a, L);
20. }//End EMOS

extendRight (v, loc) {
//M, - verified simple motif; loc - a starting location of M, in S;
right := v+1;
while (right <= n){
for each x, i <= x <= j, (starting from i) {
align M. and S such that M., [0] is at S[loc+|M |+x];
compare M iohe symbols with the corresponding S bases
if (mismatch) x++; //consider next gap value
else //exact match for M, e found
sm_len = sm_len + |M + X;
loc = loc+|M,|+x; //18¢ points to the leftmost M. symbol
if (right < n) //not reached the rightmost simple motif yet
extendRight (right, loc);
else //a match for rightmost simple motif found
extendLeft (a, L);
}//end for
}//end while
}//end extendRight
extendLeft (v, loc){

left := v-1;
while (left >= 1){
for each x, i, ., <= x <= 7, _, (startlng from 1) {
align M,_, and S such that M, . [0] is at S[loc-|M_,| - x];
compare M, . symbols with the correspondlng S bases
if (mismatch) x++; //consider next gap value
else //exact match for M, . found
sm_len = sm_len + |M,, \ + x;
loc = loc-|M, | - x; 7/ 1oc points to the leftmost M, , symbol

if (left > 1) //not reached the leftmost simple motif yet
extendLeft (left, loc);
else //a match for leftmost simple motif found
return (SM occurs at S[loc]l, length = sm len bases);
}//end for
}//end while
}//end extendLeft

Fig. 4. EMOS Algorithm

cannot lead to a premature and incorrect conclusion that SM does not occur in S, i.e.,
the adopted heuristic does not contravene the 100% recall and precision of our EMOS
algorithm.

In Step 2, we find all exact match occurrences of the selected M, in S in two
phases. In the first phase (lines 2-10), starting from the ST root and the first symbol of
M,, the ST is traversed downwards, matching the corresponding bases for each of the
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M, symbols. At the end of the traversal, the set ARS contains the answer roots for all
DNA queries that can be derived from the IUPAC represented M, and for which at
least one occurrence in S is found. An answer root for a query is a ST node, which is
the root of the subtree that contains all the query answers. In the second phase (lines
11-15), each answer subtree is traversed and from each leaf node, we obtain a starting
location of M, in S. Consider our selected M, = KW, where K=G or T and W = A or
T (see Table 2). Initially ARS = {root} (Fig. 4, line 2). The first iteration of the FOR
loop (lines 3-10), converts the first M, symbol K to the dna_set = {G, T}. All outgo-
ing edges of the root (Fig. 2) are examined for a match between their label and the
bases in the dna_set, and as a result at the end of this iteration ARS = {node 2, node
4}. For the second M, symbol, dna_set = {A, T} and after considering the outgoing
edges of each of the ARS nodes, the set ARS is updated to {node 10, node 14}. Since
all M, symbols are processed, the second phase starts. The answer subtree rooted in
node 10 has two leaf nodes — nodes 12 and 13, representing starting locations S[1] and
S[3], which are added to the M (all) set. Similarly, answer root node 14 has one leaf
node in its subtree (node 14 itself), representing starting location S[7], also added to
the M (all). So, at the end of the second phase (also the end of Step 2), the starting lo-
cations of all exact matches of M, in § are in the set M (all) = {1, 3, 7}.

In Step 3, starting with the first verified simple motif (M,) as an anchor, the
algorithm iteratively explores the right adjacent simple motifs (Fig. 4, function
extendRight). If for a particular combination of gap values, exact matches for all
simple motifs to the right of M, are found, then the algorithm explores iteratively the
M,’s left adjacent simple motifs in a similar manner (i.e., function extendLeft). If for a
particular combination of gap values, exact matches for all simple motifs to the left of
M, are found, then an exact match for the whole SM is found, and its starting location
in § and its length are returned to the user. In the context of our ongoing example,
consider the first location of the M (all) set, L = 1. In Step 3, the algorithm sets
sm_len = IM,| = 2, and calls the function extendRight with a =2 and L = 1 (line 19).
For L = 1, EMOS finds two occurrences of SM in S, one of size 7 bases, and one of

extendRight (2,1) :
right := 2+1 = 3,
X = 2 => compare Ma[O] Y with S[1+2+2] S[5] = G - no match
x = 3 => compare M,[0] Y with S[1+2+3] S[6] = C - match,
all M, symbols matched, sm_len=2+1+3=6, Mzis rightmost simple motif
extendLeft (2,1) :

left := 2-1 = 1,
x = -1 => compare M [0] =W with S[1-2-(-1)] = S[0] = A - match
compare M, [1] = N with S[1] = G - match

all M, symbols matched, sm_len = 6+2+(-1)=7,
M is leftmost simple motif
print: SM occurs at S[0], length = 7 bases
x = 0 => compare M [0] = R with S[1-2-0] = S[-1]:terminate extendLeft;
x = 4 => compare M,[0] = Y with S[1+2+4] = S[7] = T - match,
all M, symbols matched, sm_len=2+1+4=7, Mzis rightmost simple motif
extendLeft (2,1):

left := 2-1 = 1,
x = -1 => compare M [0] =W with S[1-2-(-1)] = S[0] = A - match
compare M, [1] = N with S[1] = G - match

all M, symbols matched, sm_len = 7+2+(-1)=8,
M is leftmost simple motif
print: SM occurs at S[0], length = 8 bases
x = 0 => compare M [0] = R with S[1-2-0] = S[-1]:terminate extendLeft;
end extendRight(2,1);

Fig. 5. Partial illustration of Step 3 (EMOS)
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size 8 bases, both starting at S[0], as shown in Figure 5. Overall, there are 6 exact
match occurrences of SM in S: four starting at S[0] with gaps sizes {-1,3}, {-1,4},
{1,2}, and {1,3}, respectively; and two starting at S[2] with gaps sizes {-1,2} and
{-1,3}.

5 Experiments and Results

We conducted numerous experiments to evaluate the performance of our EMOS algo-
rithm and compare it to SMOTIF1, the most efficient alternative solution. In our ex-
periments we used chromosomes Y, 20, 10, and 2 of Homo sapiens (build number 36,
version 2 [16]) as sequences to be searched. From each of the sequences we removed
the still unknown nucleotides (represented by N), which leads to sequence sizes of 26,
60, 132, and 238 million bases (Mb), respectively.

We used a standard 32-bit desktop computer with Intel Pentium 4 @ 3GHz, 2 GB
RAM, 300 GB HDD, 2 MB L2 cache, running Linux kernel 2.6. All I/O operations
are unbuffered at the OS level. All times reported are real times.

In our experiments we used the source code of SMOTIF1 available at [17]. Its cur-
rent implementation is limited to processing only a single structured motif query at a
time. While our implementation of EMOS accepts a set of structured motifs as input,
in our experiments we pose only a single query at a time to both programs. This
makes the comparison fair to SMOTIF1, since otherwise EMOS is much faster.
EMOS is implemented in C and is available through the WEB, as part of our FASST
(Fast and Scalable Search Tool for biological sequence data) project [13].

5.1 Comparison with SMOTIF1

In our first set of experiments we compare the performance of the two algorithms us-
ing the same collection of random structured motifs used in [1], which was provided
to us by the authors. The set contains 100 random structured motifs over the [IUPAC
alphabet. Each structured motif consists of 3 to 8 simple motifs of length between 5
and 10 symbols. The number of simple motifs and their lengths are selected uniformly
at random within these ranges. The gaps between simple motifs are chosen as a ran-
dom subinterval of [-5, 100]. Recall that negative values for the gap size allow for
partially overlapping simple motifs. The measured search times are accumulated for
all 100 queries and reported in Table 3. Our results indicate that EMOS performs 5 to
6 times faster than SMOTIF1, due to reasons discussed in detail in Section 5.2.

In our second set of experiments we compare the performance of the two algo-
rithms for real-life structured motifs. We use the same 4 real-life motifs as in [1],
which are obtained by a multiple alignment of 36 A. thaliana LTR retrotransposons.

Table 3. Cumulative Search Times for 100 random structured motifs

Sequence Sequence Size SMOTIF1 (sec) EMOS (sec) Speedup
chr_ Y 26 Mb 422 88 4.8
chr_20 60 Mb 1,072 184 5.8
chr_10 132 Mb 2,205 371 5.9
chr_2 238 Mb 3,859 645 6.0
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The motifs are shown in Figure 6 (where ZZ stands for Zhang & Zaki) and the meas-
ured search times are presented in Figure 7. Again, for structured motifs with practical
selectivity, EMOS significantly outperforms SMOTIF1, providing up to 8 times faster
search (i.e., ZZ4 in chr_2). For ZZ3, due to the low selectivity power of all its simple
motifs (there are almost 4 million occurrences of ZZ3 in chr_2), the advantage of se-
lecting a suitable simple motif M, which will reduce the work done in Step 3 cannot
be achieved, and EMOS exhibits performance similar to SMOTIF]1.

ZZ1 = HNGTNYDNHDNBTNNDNA[0,3]YNHTNYRHGGNBTNAR|[0,2]JARDBNBH

772 = TNVRNKAYNKNVVNDV[9,11JHNRR[6,8]YDNNVNNV|[9,13]HB[4,5]TNNNNRBNYDBDNNRR

ZZ3 = DNNNNDRYW][2,5]DS[6,7JHMM[1,2]TNDB

Z74 = DBNNNND[48,102]JKRRYMYNNNMRNHYNDVNYAYVH[7,10]VNNNYNNND[34,63]WD[2,8]KNNH][3,5]
VNDDRNNNNNNHVNNNNNNNHHH

Fig. 6. Real-life structured motifs [1]
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Fig. 7. Search Times for real-life structured motifs

5.2 Sources of EMOS Speedup

There are two major sources for the improvement achieved by EMOS. First, our ap-
proach of finding exact matches for a single simple motif and then aligning the struc-
tured motif with the sequence and performing character comparisons is more efficient
compared to the approach taken by SMOTIF1, which is based on extracting the full
post-lists for all motif symbols and then performing positional joins on them. Second,
the heuristic used for selecting a suitable simple motif, although imperfect, signifi-
cantly reduces the amount of work done by our algorithm, thus further improving its
search time performance.

To evaluate the first source of improvement, in our third set of experiments, we
modified EMOS so that a random simple motif is selected as M,, (i.e., EMOS_random).
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In this way its performance is independent of how suitable the selected M, is. The
measured search times are presented in Table 4. As can be seen from the results, our
approach is 2.2 to 2.6 times more efficient than the alternative. This is explained by the
fact that in the first step SMOTIF1 considers all possible locations in the sequence, i.e.,
the full post-lists of all SM symbols. In the second step, it explores these post-lists by
performing positional joins. On the other hand, by first performing exact match search
for a single simple motif, EMOS greatly reduces the number of sequence locations
(usually less than 10% of the sequence size) that has to be further examined in Step 3
by aligning the SM with S at these anchor locations.

Table 4. Cumulative Search Times for 100 random structured motifs (random M,,)

Sequence SMOTIF1 (sec) EMOS_random (sec) Speedup
chr_ Y 422 174 2.4
chr_20 1,072 410 2.6
chr_10 2,205 935 24
chr_2 3,859 1,728 2.2

The second source of the improvement provided by EMOS is based on selecting a
suitable simple motif as M,. The goal is to choose M, in such a way, that the number
of anchor positions that has to be examined in Step 3 is the smallest. We choose the
M, by computing the selectivity powers of all simple motifs as discussed in Section 4.
Table 5 shows the search time improvement obtained by selecting and using a suitable
M, compared to using a random simple motif as M,. Our experimental results indicate
that by selecting a suitable M,, the number of sequence locations that have to be
examined in Step 3 of EMOS is further reduced by a factor of 10 (i.e., now anchor lo-
cations are less than 1% of the sequence size). As a result, an additional search time
improvement of 2 to 2.7 times is obtained.

Table 5. 100 random structured motifs: Random versus Suitable M,

Sequence EMOS_random (sec) EMOS (sec) Speedup
chr Y 174 88 2.0
chr_20 410 184 2.2
chr_10 935 371 2.5

chr_2 1,728 645 2.7

A related interesting question is to evaluate the performance of our heuristic used
for selecting M,. As already illustrated, the adopted technique for calculating the se-
lectivity power is fast and provides significant search time improvement (Table 5),
but is it optimal as an estimator of the actual number of exact matches of M, in S? In
our last set of experiments, using the 100 random structured motifs, we study the ac-
curacy of the estimator. We compute the estimation percentage error E = (num_act —
num_est) | num_est, where num_est is the number of matches estimated by our heuris-
tic and num_act is the actu